1
|
Jayalekshmi VS, Ramachandran S. Maternal cholesterol levels during gestation: boon or bane for the offspring? Mol Cell Biochem 2021; 476:401-416. [PMID: 32964393 DOI: 10.1007/s11010-020-03916-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
An increase in cholesterol levels is perceived during pregnancy and is considered as a normal adaptive response to the development of the fetus. In some pregnancies, excessive increase in total cholesterol with high levels of Low-Density Lipoprotein leads to maladaptation by the fetus to cholesterol demands, resulting in a pathological condition termed as maternal hypercholesterolemia (MH). MH is considered clinically irrelevant and therefore cholesterol levels are not routinely checked during pregnancy, as a consequence of which there is scarce information on its global prevalence in pregnant women. Studies have reported that MH during pregnancy can cause atherogenesis in adults emphasizing the concept of in utero programming of fetus. Moreover, Gestational Diabetes Mellitus, obesity and Polycystic Ovary Syndrome are potential risk factors which strengthen combined pathologies in placenta and fetuses of mothers with MH. However, lack of conclusive evidence on cholesterol transport and underlying programming demand substantial research to develop population-based life style strategies for women in their childbearing years. The current review focuses on the mechanisms and outcomes of MH from existing epidemiological as well as experimental data and presents a detailed insight on this novel risk factor of cardiovascular diseases.
Collapse
Affiliation(s)
- V S Jayalekshmi
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
- PhD Program in Biotechnology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Surya Ramachandran
- Cardiovascular Diseases and Diabetes Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India.
| |
Collapse
|
2
|
Burris RL, Vick SC, Popovic B, Fraungruber PE, Nagarajan S. Maternal exposure to soy diet reduces atheroma in hyperlipidemic F1 offspring mice by promoting macrophage and T cell anti-inflammatory responses. Atherosclerosis 2020; 313:26-34. [PMID: 33032233 DOI: 10.1016/j.atherosclerosis.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/20/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND AND AIMS Maternal hypercholesterolemia has been implicated in earlier onset of atherosclerotic lesions in neonatal offspring. In this study, we investigated whether maternal exposure to soy protein isolate (SPI) diet attenuated the progression of atherosclerosis in F1 offspring. METHOD Pregnant apolipoprotein E knockout (Apoe-/-) female mice were fed SPI diet until postnatal day 21 (PND21) of the offspring (SPI-offspring). SPI-offspring were switched at PND21 to casein (CAS) diet until PND140. Mice fed CAS throughout their lifetime (gestation to adulthood) were used as controls (CAS-offspring). RESULTS Atherosclerotic lesions in the aortic sinuses were reduced in SPI-offspring compared with CAS-offspring. Total serum cholesterol levels in CAS-offspring or dams were comparable to levels in their SPI-counterparts, suggesting that alternative mechanisms contributed to the athero-protective effect of maternal SPI diet. Aortic VCAM-1, MCP-1, and TNF-α mRNA and protein expression, and expression of macrophage pro-inflammatory cytokines was reduced in SPI-offspring. Interestingly, CD4+ T cells from SPI-offspring showed reduced IFN-γ expression (Th1), while the expression of IL-10 (Th2/Treg), and IL-13 (Th2) was increased. DNA methylation analyses revealed that anti-inflammatory T cell-associated Gata3 and Il13 promoter regions were hypomethylated in SPI-offspring. These findings suggest that anti-inflammatory macrophage and T cell response may have contributed to the athero-protective effect in SPI-offspring. CONCLUSIONS Our findings demonstrate that gestational and lactational soy diet exposure inhibits susceptibility to atherosclerotic lesion formation by promoting anti-inflammatory responses by macrophages and T cells.
Collapse
Affiliation(s)
- Ramona L Burris
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah C Vick
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Branimir Popovic
- Department of Pathology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pamelia E Fraungruber
- Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA
| | - Shanmugam Nagarajan
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Department of Pathology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, UNC at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Excessive early-life cholesterol exposure may have later-life consequences for nonalcoholic fatty liver disease. J Dev Orig Health Dis 2020; 12:229-236. [PMID: 32290895 DOI: 10.1017/s2040174420000239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The in utero and immediate postnatal environments are recognized as critical windows of developmental plasticity where offspring are highly susceptible to changes in the maternal metabolic milieu. Maternal hypercholesterolemia (MHC) is a pathological condition characterized by an exaggerated rise in maternal serum cholesterol during pregnancy which can program metabolic dysfunction in offspring, including dysregulation of hepatic lipid metabolism. Although there is currently no established reference range MHC, a loosely defined cutoff point for total cholesterol >280 mg/dL in the third trimester has been suggested. There are several unanswered questions regarding this condition particularly with regard to how the timing of cholesterol exposure influences hepatic lipid dysfunction and the mechanisms through which these adaptations manifest in adulthood. Gestational hypercholesterolemia increased fetal hepatic lipid concentrations and altered lipid regulatory mRNA and protein content. These early changes in hepatic lipid metabolism are evident in the postweaning environment and persist into adulthood. Further, changes to hepatic epigenetic signatures including microRNA (miR) and DNA methylation are observed in utero, at weaning, and are evident in adult offspring. In conclusion, early exposure to cholesterol during critical developmental periods can predispose offspring to the early development of nonalcoholic fatty liver disease (NAFLD) which is characterized by altered regulatory function beginning in utero and persisting throughout the life cycle.
Collapse
|
4
|
Expression of cholesterol packaging and transport genes in human and rat placenta: impact of obesity and a high-fat diet. J Dev Orig Health Dis 2019; 11:222-227. [PMID: 31601282 DOI: 10.1017/s2040174419000606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence suggests that sub-optimal maternal nutrition has implications for the developing offspring. We have previously shown that exposure to a low-protein diet during gestation was associated with upregulation of genes associated with cholesterol transport and packaging within the placenta. This study aimed to elucidate the effect of altering maternal dietary linoleic acid (LA; omega-6) to alpha-linolenic acid (ALA; omega-6) ratios as well as total fat content on placental expression of genes associated with cholesterol transport. The potential for maternal body mass index (BMI) to be associated with expression of these genes in human placental samples was also evaluated. Placentas were collected from 24 Wistar rats at 20-day gestation (term = 21-22-day gestation) that had been fed one of four diets containing varying fatty acid compositions during pregnancy, and from 62 women at the time of delivery. Expression of 14 placental genes associated with cholesterol packaging and transfer was assessed in rodent and human samples by quantitative real time polymerase chain reaction. In rats, placental mRNA expression of ApoA2, ApoC2, Cubn, Fgg, Mttp and Ttr was significantly elevated (3-30 fold) in animals fed a high LA (36% fat) diet, suggesting increased cholesterol transport across the placenta in this group. In women, maternal BMI was associated with fewer inconsistent alterations in gene expression. In summary, sub-optimal maternal nutrition is associated with alterations in the expression of genes associated with cholesterol transport in a rat model. This may contribute to altered fetal development and potentially programme disease risk in later life. Further investigation of human placenta in response to specific dietary interventions is required.
Collapse
|
5
|
Juritsch A, Tsai YT, Patel MS, Rideout TC. Transcriptional control of enterohepatic lipid regulatory targets in response to early cholesterol and phytosterol exposure in apoE -/- mice. BMC Res Notes 2017; 10:529. [PMID: 29084592 PMCID: PMC5661921 DOI: 10.1186/s13104-017-2859-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE An excessive rise in blood lipids during pregnancy may promote metabolic dysfunction in adult progeny. We characterized how maternal phytosterol (PS) supplementation affected serum lipids and the expression of lipid-regulatory genes in the intestine and liver of newly-weaned apo-E deficient offspring from dams fed a chow diet supplemented with cholesterol (0.15%, CH) or cholesterol and PS (2%) (CH/PS) throughout pregnancy and lactation. RESULTS Serum lipid concentrations and lipoprotein particle numbers were exacerbated in offspring from cholesterol-supplemented mothers but normalized to chow-fed levels in pups exposed to PS through the maternal diet during gestation and lactation. Compared with the CH pups, pups from PS-supplemented mothers demonstrated higher (p < 0.05) expression of the primary intestinal cholesterol transport protein (Niemann-Pick C1-like 1) and the rate-limiting enzyme in hepatic cholesterol synthesis (HMG-CoAr), suggestive of a compensatory response to restore cholesterol balance. Furthermore, pups from PS-supplemented mothers exhibited a coordinated downregulation (p < 0.05) of several genes regulating fatty acid synthesis including PGC1β, SREBP1c, FAS, and ACC compared with the CH group. These results suggest that maternal PS supplementation during hypercholesterolemic pregnancies protects against aberrant lipid responses in newly-weaned offspring and results in differential regulation of cholesterol and lipid regulatory targets within the enterohepatic loop.
Collapse
Affiliation(s)
- Anthony Juritsch
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
| | - Yi-Ting Tsai
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA
| | - Mulchand S Patel
- Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14214, USA
| | - Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
6
|
Daniel Z, Swali A, Emes R, Langley-Evans SC. The effect of maternal undernutrition on the rat placental transcriptome: protein restriction up-regulates cholesterol transport. GENES AND NUTRITION 2016; 11:27. [PMID: 27777632 PMCID: PMC5059985 DOI: 10.1186/s12263-016-0541-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/14/2016] [Indexed: 11/12/2022]
Abstract
Background Fetal exposure to a maternal low protein diet during rat pregnancy is associated with hypertension, renal dysfunction and metabolic disturbance in adult life. These effects are present when dietary manipulations target only the first half of pregnancy. It was hypothesised that early gestation protein restriction would impact upon placental gene expression and that this may give clues to the mechanism which links maternal diet to later consequences. Methods Pregnant rats were fed control or a low protein diet from conception to day 13 gestation. Placentas were collected and RNA sequencing performed using the Illumina platform. Results Protein restriction down-regulated 67 genes and up-regulated 24 genes in the placenta. Ingenuity pathway analysis showed significant enrichment in pathways related to cholesterol and lipoprotein transport and metabolism, including atherosclerosis signalling, clathrin-mediated endocytosis, LXR/RXR and FXR/RXR activation. Genes at the centre of these processes included the apolipoproteins ApoB, ApoA2 and ApoC2, microsomal triglyceride transfer protein (Mttp), the clathrin-endocytosis receptor cubilin, the transcription factor retinol binding protein 4 (Rbp4) and transerythrin (Ttr; a retinol and thyroid hormone transporter). Real-time PCR measurements largely confirmed the findings of RNASeq and indicated that the impact of protein restriction was often striking (cubilin up-regulated 32-fold, apoC2 up-regulated 17.6-fold). The findings show that gene expression in specific pathways is modulated by maternal protein restriction in the day-13 rat placenta. Conclusions Changes in cholesterol transport may contribute to altered tissue development in the fetus and hence programme risk of disease in later life. Electronic supplementary material The online version of this article (doi:10.1186/s12263-016-0541-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoe Daniel
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Angelina Swali
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| | - Richard Emes
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough, UK ; Advanced Data Analysis Centre, University of Nottingham, Sutton Bonington, Loughborough, UK
| | - Simon C Langley-Evans
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough, LE12 5RD UK
| |
Collapse
|
7
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
8
|
Maternal high-fat feeding in pregnancy programs atherosclerotic lesion size in the ApoE*3 Leiden mouse. J Dev Orig Health Dis 2016; 7:290-297. [PMID: 26829884 DOI: 10.1017/s2040174416000027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Periods of rapid growth seen during the early stages of fetal development, including cell proliferation and differentiation, are greatly influenced by the maternal environment. We demonstrate here that over-nutrition, specifically exposure to a high-fat diet in utero, programed the extent of atherosclerosis in the offspring of ApoE*3 Leiden transgenic mice. Pregnant ApoE*3 Leiden mice were fed either a control chow diet (2.8% fat, n=12) or a high-fat, moderate-cholesterol diet (MHF, 19.4% fat, n=12). Dams were fed the chow diet during the suckling period. At 28 days postnatal age wild type and ApoE*3 Leiden offspring from chow or MHF-fed mothers were fed either a control chow diet (n=37) or a diet rich in cocoa butter (15%) and cholesterol (0.25%), for 14 weeks to induce atherosclerosis (n=36). Offspring from MHF-fed mothers had 1.9-fold larger atherosclerotic lesions (P<0.001). There was no direct effect of prenatal diet on plasma triglycerides or cholesterol; however, transgenic ApoE*3 Leiden offspring displayed raised cholesterol when on an atherogenic diet compared with wild-type controls (P=0.031). Lesion size was correlated with plasma lipid parameters after adjustment for genotype, maternal diet and postnatal diet (R 2=0.563, P<0.001). ApoE*3 Leiden mothers fed a MHF diet developed hypercholesterolemia (plasma cholesterol two-fold higher than in chow-fed mothers, P=0.011). The data strongly suggest that maternal hypercholesterolemia programs later susceptibility to atherosclerosis. This is consistent with previous observations in humans and animal models.
Collapse
|
9
|
Rideout TC, Movsesian C, Tsai YT, Iqbal A, Raslawsky A, Patel MS. Maternal Phytosterol Supplementation during Pregnancy and Lactation Modulates Lipid and Lipoprotein Response in Offspring of apoE-Deficient Mice. J Nutr 2015; 145:1728-34. [PMID: 26084365 PMCID: PMC4516775 DOI: 10.3945/jn.115.215061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/28/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In utero exposure to excessive cholesterol has been shown to increase fetal plasma cholesterol concentration and predispose adult offspring to cardiovascular disease (CVD) risk. Because lipid-lowering drugs are contraindicated during pregnancy, natural cholesterol-lowering compounds may be a safe and effective alternative to reduce CVD risk in offspring born to hypercholesterolemic mothers. OBJECTIVE This study used the hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) mouse model to test the hypothesis that mothers supplemented with phytosterols during gestation and lactation would produce offspring with a more favorable lipid profile than offspring from unsupplemented mothers, despite having a genetic predisposition toward hypercholesterolemia. METHODS Sixteen female apoE(-/-) mice were randomly assigned to 2 diets fed throughout the gestation and lactation periods: a cholesterol-enriched diet (CH) (0.15%) or the cholesterol-enriched diet supplemented with phytosterols (CH/PS) (2%). Serum lipids and lipoproteins were measured by enzyme assay and nuclear magnetic resonance spectroscopy, respectively, and liver cholesterol was analyzed by GC. RESULTS Compared with the CH-fed dams at the end of lactation, phytosterol-supplemented dams displayed lower (P < 0.05) serum total cholesterol (-55%), non-HDL cholesterol (-56%), and LDL cholesterol (-47%), but no change (P > 0.05) in HDL cholesterol and triacylglycerol (TG) concentrations. Pups from phytosterol-fed dams demonstrated lower (P < 0.05) total cholesterol (-25%), non-HDL cholesterol (-25%), LDL cholesterol (-47%), and TGs (-41%), without any change (P > 0.05) in HDL cholesterol compared with pups from CH-fed dams. Furthermore, compared with pups from CH-fed dams, pups from phytosterol-supplemented dams displayed a lower (P < 0.05) number of total LDL particles (-34%), VLDL particles (-31%), and HDL particles (-30%). CONCLUSION Our results in apoE(-/-) mice suggest that even under strong genetic predisposition to hypercholesterolemia, pups born to mothers supplemented with phytosterols during gestation and lactation exhibit favorable liver and serum lipid responses compared with pups from unsupplemented mothers.
Collapse
Affiliation(s)
- Todd C Rideout
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Cheryl Movsesian
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Yi-Ting Tsai
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Aadil Iqbal
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Amy Raslawsky
- Departments of Exercise and Nutrition Sciences, School of Public Health and Health Professions, and
| | - Mulchand S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY
| |
Collapse
|
10
|
Early onset intrauterine growth restriction in a mouse model of gestational hypercholesterolemia and atherosclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:280497. [PMID: 25295255 PMCID: PMC4176652 DOI: 10.1155/2014/280497] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/23/2014] [Accepted: 06/20/2014] [Indexed: 01/30/2023]
Abstract
The susceptibility to develop atherosclerosis is increased by intrauterine growth restriction and prenatal exposure to maternal hypercholesterolemia. Here, we studied whether mouse gestational hypercholesterolemia and atherosclerosis affected fetal development and growth at different stages of gestation. Female LDLR KO mice fed a proatherogenic, high cholesterol (HC) diet for 3 weeks before conception and during pregnancy exhibited a significant increase in non-HDL cholesterol and developed atherosclerosis. At embryonic days 12.5 (E12.5), E15.5, and E18.5, maternal gestational hypercholesterolemia and atherosclerosis were associated to a 22-24% reduction in male and female fetal weight without alterations in fetal number/litter or morphology nor placental weight or structure. Feeding the HC diet exclusively at the periconceptional period did not alter fetal growth, suggesting that maternal hypercholesterolemia affected fetal weight only after implantation. Vitamin E supplementation (1,000 UI of α-tocopherol/kg) of HC-fed females did not change the mean weight of E18.5 fetuses but reduced the percentage of fetuses exhibiting body weights below the 10th percentile of weight (HC: 90% vs. HC/VitE: 68%). In conclusion, our results showed that maternal gestational hypercholesterolemia and atherosclerosis in mice were associated to early onset fetal growth restriction and that dietary vitamin E supplementation had a beneficial impact on this condition.
Collapse
|
11
|
Affiliation(s)
- Wulf Palinski
- From the Department of Medicine, University of California San Diego, La Jolla, CA.
| |
Collapse
|
12
|
Kusters DM, Avis HJ, Braamskamp MJ, Huijgen R, Wijburg FA, Kastelein JJ, Wiegman A, Hutten BA. Inheritance pattern of familial hypercholesterolemia and markers of cardiovascular risk. J Lipid Res 2013; 54:2543-9. [PMID: 23833242 DOI: 10.1194/jlr.m034538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies in children and adults have resulted in conflicting evidence in the quest for the answer to the hypothesis that offspring from hypercholesterolemic mothers might have an increased cardiovascular risk. Previous studies might have suffered from limitations such as cohort size and clinical sampling bias. We therefore explored this hypothesis in large cohorts of both subjects with familial hypercholesterolemia (FH) and unaffected siblings in a wide age range. In three cohorts (cohort 1: n = 1,988, aged 0-18 years; cohort 2: n = 300, 8-30 years; cohort 3: n = 369, 18-60 years), we measured lipid and lipoproteins as well as carotid intima-media thickness (c-IMT) in offspring from FH mothers versus FH fathers. For LDL cholesterol, triglycerides (TGs), and c-IMT, we performed a pooled analysis. No significant differences could be observed in c-IMT, lipid, or lipoprotein levels from offspring of FH mothers versus FH fathers. Pooled analyses showed no significant differences for either LDL cholesterol [mean difference 0.02 (-0.06,0.11) mmol/l, P = 0.60], TGs [mean difference 0.07 (0.00,0.14) mmol/l, P = 0.08], or c-IMT [mean difference -0.00 (-0.01,0.01) mm, P = 0.86]. Our data do not support the hypothesis that cardiovascular risk markers are different between offspring from FH mothers and FH fathers.
Collapse
|
13
|
Prenatal stress enhances severity of atherosclerosis in the adult apolipoprotein E-deficient mouse offspring via inflammatory pathways. J Dev Orig Health Dis 2012; 4:90-7. [DOI: 10.1017/s2040174412000608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atherosclerosis is the underlying cause of cardiovascular disease and stroke. Endothelial cell dysfunctions are early events in atherosclerosis, resulting in the recruitment of circulating monocytes. The immune system can elicit an inflammatory response toward the atherosclerotic lesion, thereby accelerating lesion growth. Risk factors for atherosclerosis include hypertension, smoking, stress perception or low birth weight. As prenatal stress challenge decreases the birth weight and affects the offspring's postnatal immune response, we aimed to investigate whether prenatal stress contributes to the development of atherosclerosis in mice. Syngenic pregnant apolipoprotein E-deficient (apoE−/−) dams were exposed to sound stress on gestation days 12.5 and 14.5. The presence and size of atherosclerotic plaques in the offspring at the age of 15 weeks was evaluated by histomorphology, accompanied by flow cytometric analysis of the frequency and phenotype of monocytes/macrophages and regulatory T (Treg) cells in the blood. Further, cytokine secretion of peripheral blood lymphocytes was analyzed. In response to prenatal stress challenge, an increased frequency of large atherosclerotic plaques was detectable in apoE−/− offspring, which was particularly profound in females. Prenatal stress also resulted in alterations of the offspring's immune response, such as a decreased frequency of Treg cells in blood, alterations of macrophage populations in blood and an increased secretion of inflammatory cytokines. We provide novel evidence that prenatally stressed adult offspring show an increased severity of atherosclerosis. As Treg cells are key players in dampening inflammation, the observed increase in atherosclerosis may be due to the lack of Treg cell frequency. Future interdisciplinary research is urgently required to understand the developmental origin of prenatal stress-induced atherosclerosis. The availability of our model may facilitate and foster such research endeavors.
Collapse
|
14
|
Fox KA, Longo M, Tamayo E, Gamble P, Makhlouf M, Mateus JF, Saade GR. Sex-specific effects of nicotine exposure on developmental programming of blood pressure and vascular reactivity in the C57Bl/6J mouse. Am J Obstet Gynecol 2012; 207:208.e1-9. [PMID: 22789524 DOI: 10.1016/j.ajog.2012.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 04/26/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of the study was to determine whether perinatal nicotine exposure adversely affects cardiovascular health in adulthood. STUDY DESIGN C57Bl/6J female mice were randomized to 200 μg/mL nicotine in 2% saccharin or 2% saccharin alone from 2 weeks before breeding until weaning. Offspring weight, vital signs, and carotid artery vascular reactivity were studied. A second cohort was subjected to shaker stress on day 4 of 7 days. Selected mediators of vascular tone were evaluated by molecular studies. Student t or Mann-Whitney U test was performed for statistical analysis (significance: P < .05). RESULTS Nicotine-exposed compared with control female offspring had significantly elevated mean blood pressure under normal and stress conditions. Nicotine females lacked heart rate elevation after stress. Nicotine males had higher mean heart rate and a blunted contractile response to phenylephrine compared with controls, without an increase in blood pressure. CONCLUSION Perinatal nicotine exposure has an impact on the developmental programming of future cardiovascular health, with adverse effects more evident in female offspring.
Collapse
|
15
|
Remacle C, Bieswal F, Bol V, Reusens B. Developmental programming of adult obesity and cardiovascular disease in rodents by maternal nutrition imbalance. Am J Clin Nutr 2011; 94:1846S-1852S. [PMID: 21543546 DOI: 10.3945/ajcn.110.001651] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Studies on fetal undernutrition have generated the hypothesis that fetal programming corresponds to an attempt of the fetus to adapt to adverse conditions encountered in utero. These adaptations would be beneficial if these conditions prevail later in life, but they become detrimental in the case of normal or plentiful nutrition and favor the appearance of the metabolic syndrome. In this article, the discussion is limited to the developmental programming of obesity and cardiovascular disorders caused by an early mismatched nutrition, particularly intrauterine growth retardation followed by postnatal catch-up growth. Selected data in humans are reviewed before evoking some mechanisms revealed or suggested by experiments in rodents. A variety of physiologic mechanisms are implicated in obesity programming, 2 of which are detailed. In some, but not all observations, hyperphagia resulting namely from perturbed development of the hypothalamic circuitry devoted to appetite regulation may contribute to obesity. Another contribution may be the developmental changes in the population of fat cell precursors in adipose tissue. Even if the link between obesity and cardiovascular disease is well established, alteration of blood pressure regulation may appear independently of obesity. A loss of diurnal variation in heart rate and blood pressure in adulthood has resulted from maternal undernutrition followed by postnatal overnutrition. Further research should clarify the effect of mismatched early nutrition on the development of brain centers regulating energy intake, energy expenditure, and circadian rhythms.
Collapse
Affiliation(s)
- Claude Remacle
- Université Catholique de Louvain, Life Sciences Institute, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
16
|
Quehenberger O, Yamashita T, Armando AM, Dennis EA, Palinski W. Effect of gestational hypercholesterolemia and maternal immunization on offspring plasma eicosanoids. Am J Obstet Gynecol 2011; 205:156.e15-25. [PMID: 21621186 DOI: 10.1016/j.ajog.2011.03.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/09/2011] [Accepted: 03/17/2011] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Maternal immunization with oxidized low-density lipoprotein prior to pregnancy prevents pathogenic in utero programming by gestational hypercholesterolemia, but it is unknown whether gestational hypercholesterolemia and maternal immunization affect similar pathways. STUDY DESIGN A lipidomic approach was used for unbiased plasma eicosanoid profiling in adult offspring of immunized and nonimmunized normocholesterolemic or hypercholesterolemic rabbit mothers. RESULTS Gestational hypercholesterolemia was associated with increased levels of some eicosanoids formed by the cyclooxygenase and 12-lipoxygenase pathways only (including thromboxane B2, prostaglandin [PG] F2α, PGE2, and PGD2). Immunization of hypercholesterolemic or normocholesterolemic mothers reduced 9 of 14 eicosanoids of the cyclooxygenase pathway, 21 of 23 eicosanoids of the 5- and 12-lipoxygenase pathways (eg, 5-hydroxyeicosatetraenoic acid, hepoxilin B3, 12-hydroxyeicosatetraenoic acid), 8 of 19 eicosanoids of the cytochrome P-450 pathway, and all metabolites of the nonenzymatic pathway. CONCLUSION Maternal immunization not only counteracts in utero programming by gestational hypercholesterolemia but reduces a broad range of eicosanoid modulators of immunity and inflammation in offspring.
Collapse
Affiliation(s)
- Oswald Quehenberger
- Department of Medicine of the University of California-San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
17
|
Napoli C. Developmental Mechanisms Involved in the Primary Prevention of Atherosclerosis and Cardiovascular Disease. Curr Atheroscler Rep 2011; 13:170-5. [DOI: 10.1007/s11883-010-0156-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Bol V, Desjardins F, Reusens B, Balligand JL, Remacle C. Does early mismatched nutrition predispose to hypertension and atherosclerosis, in male mice? PLoS One 2010; 5:e12656. [PMID: 20844591 PMCID: PMC2936567 DOI: 10.1371/journal.pone.0012656] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 07/21/2010] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND A link between early mismatched nutritional environment and development of components of the metabolic syndrome later in life has been shown in epidemiological and animal data. The aim of this study was to investigate whether an early mismatched nutrition produced by catch-up growth after fetal protein restriction could induce the appearance of hypertension and/or atherosclerosis in adult male mice. METHODOLOGY/PRINCIPAL FINDINGS Wild-type C57BL6/J or LDLr-/- dams were fed a low protein (LP) or a control (C) diet during gestation. Catch-up growth was induced in LP offspring by feeding dams with a control diet and by culling the litter to 4 pups against 8 in controls. At weaning, male mice were fed either standard chow or an obesogenic diet (OB), leading to 4 experimental groups. Blood pressure (BP) and heart rate (HR) were assessed in conscious unrestrained wild-type mice by telemetry. Atherosclerosis plaque area was measured in aortic root sections of LDLr-/- mice. We found that: (1) postnatal OB diet increased significantly BP (P<0.0001) and HR (P<0.008) in 3-month old OB-C and OB-LP offspring, respectively; (2) that maternal LP diet induced a significant higher BP (P<0.009) and HR (P<0.004) and (3) an altered circadian rhythm in addition to higher plasma corticosterone concentration in 9 months-old LP offspring; (4) that, although LP offspring showed higher plasma total cholesterol than control offspring, atherosclerosis assessed in aortic roots of 6-mo old mice featured increased plaque area due to OB feeding but not due to early mismatched nutrition. CONCLUSIONS/SIGNIFICANCE These results indicate a long-term effect of early mismatched nutrition on the appearance of hypertension independently of obesity, while no effect on atherosclerosis was noticed at this age.
Collapse
Affiliation(s)
- Vanesa Bol
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Fanny Desjardins
- Unit of Pharmacology and Theurapeutics, Université Catholique de Louvain, Brussels, Belgium
| | - Brigitte Reusens
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jen-Luc Balligand
- Unit of Pharmacology and Theurapeutics, Université Catholique de Louvain, Brussels, Belgium
| | - Claude Remacle
- Laboratory of Cell Biology, Institute of Life Science, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
19
|
Abstract
Human epidemiological studies have indicated that the risk of developing non-communicable diseases in later life may be related to exposures during the developmental period. Developmental life is a vulnerable period of the lifespan during which adverse environmental factors have the potential to disturb the processes of cell proliferation and differentiation or to alter patterns of epigenetic remodelling. Animal models have been instrumental in demonstrating the biological plausibility of the associations observed in human populations, providing proof of principle to the theory of the developmental origins of health and disease (DOHaD). A variety of large- and small-animal models have made important contributions to the field, providing strong evidence of a causal relationship between early-life exposures and metabolic risk factors in later life. Studies of animal models are continuing to contribute to improving the understanding of the mechanisms of the developmental origins of disease. All models have their advantages and disadvantages, and the model that is most appropriate for any particular study is hypotheses dependent. The present review aims to briefly summarise the contributions that animal models have made to the DOHaD field, before reviewing the strengths and weaknesses of these animal models. It is proposed that the integration of evidence from a variety of different models is required for the advancement of understanding within the field.
Collapse
|
20
|
Palinski W, Nicolaides E, Liguori A, Napoli C. Influence of maternal dysmetabolic conditions during pregnancy on cardiovascular disease. J Cardiovasc Transl Res 2009; 2:277-85. [PMID: 19655024 PMCID: PMC2719748 DOI: 10.1007/s12265-009-9108-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 05/11/2009] [Indexed: 01/02/2023]
Abstract
Pathogenic factors associated with maternal hypercholesterolemia, obesity, and diabetic conditions during pregnancy influence fetal development and predispose offspring to cardiovascular disease. Animal models have established cause–effect relationships consistent with epidemiological findings in humans and have demonstrated, in principle, that interventions before or during pregnancy can reduce or prevent pathogenic in utero programming. However, little is known about the mechanisms by which maternal dysmetabolic conditions enhance disease susceptibility in offspring. Identification of these mechanisms is rendered more difficult by the fact that programming effects in offspring may be latent and may require conventional risk factors and inherited genetic co-factors to become clinically manifest. Given the increasing prevalence of maternal risk factors, which is expected to lead to a wave of cardiovascular disease in the coming decades, and the length of prospective studies on developmental programming in humans, greater-than-usual emphasis on experimental models and translational studies is necessary.
Collapse
Affiliation(s)
- Wulf Palinski
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0682, USA.
| | | | | | | |
Collapse
|
21
|
Casellas J, Farber CR, Gularte RJ, Haus KA, Warden CH, Medrano JF. Evidence of maternal QTL affecting growth and obesity in adult mice. Mamm Genome 2009; 20:269-80. [PMID: 19399551 PMCID: PMC2690847 DOI: 10.1007/s00335-009-9182-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 03/13/2009] [Indexed: 01/12/2023]
Abstract
Most quantitative trait loci (QTL) studies fail to account for the effect that the maternal genotype may have on an individual's phenotypes, even though maternal effect QTL have been shown to account for considerable variation in growth and obesity traits in mouse models. Moreover, the fetal programming theory suggests that maternal effects influence an offspring's adult fitness, although the genetic nature of fetal programming remains unclear. Within this context, our study focused on mapping genomic regions associated with maternal effect QTL by analyzing the phenotypes of chromosomes 2 and 7 subcongenic mice from genetically distinct dams. We analyzed 12 chromosome 2 subcongenic strains that spanned from 70 to 180 Mb with CAST/EiJ donor regions on the background of C57BL/6 J, and 14 chromosome 7 subcongenic strains that spanned from 81 to 111 Mb with BALB/cByJ donor regions on C57BL/6ByJ background. Maternal QTL analyses were performed on the basis of overlapping donor regions between subcongenic strains. We identified several highly significant (P < 5 x 10(-4)) maternal QTL influencing total body weight, organ weight, and fat pad weights in both sets of subcongenics. These QTL accounted for 1.9-11.7% of the phenotypic variance for growth and obesity and greatly narrowed the genomic regions associated with the maternal genetic effects. These maternal effect QTL controlled phenotypic traits in adult mice, suggesting that maternal influences at early stages of development may permanently affect offspring performance. Identification of maternal effects in our survey of two sets of subcongenic strains, representing approximately 5% of the mouse genome, supports the hypothesis that maternal effects represent significant sources of genetic variation that are largely ignored in genetic studies.
Collapse
Affiliation(s)
| | - Charles R. Farber
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
- Department of Medicine, Division of Cardiovascular Medicine and Center for Public Health Genomics, University of Virginia, P.O. Box 800717, Charlottesville, VA 22908 USA
| | - Rodrigo J. Gularte
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
| | - Kari A. Haus
- Department of Pediatrics and Section of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA 95616-8521 USA
| | - Craig H. Warden
- Department of Pediatrics and Section of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, CA 95616-8521 USA
| | - Juan F. Medrano
- Department of Animal Science, University of California-Davis, Davis, CA 95616-8521 USA
| |
Collapse
|
22
|
Maternal hypercholesterolemia leads to activation of endogenous cholesterol synthesis in the offspring. Am J Obstet Gynecol 2008; 199:273.e1-6. [PMID: 18771980 DOI: 10.1016/j.ajog.2008.06.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/27/2008] [Accepted: 06/21/2008] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effect of maternal hypercholesterolemia on hepatic cholesterol metabolism in the offspring in a mouse model. STUDY DESIGN Male and female wild type and apoE(-/-KO) (knockout for the apoprotein E [apoE]) gene) mice were crossbred to obtain all 4 possible genetic offspring types. The litters were maintained on regular chow and sacrificed at 8 months of age. Liver samples were collected and the mRNA expression levels for SCAP, SREBP-1a, SREBP-2, HMGCR, and LDLR determined using real-time RT-PCR. RESULTS We found a significant activation of the transcriptional activity of genes involved in endogenous cholesterol synthesis, as well as LDLR, in the liver of adult mice born to hypercholesterolemic dams. CONCLUSION Reprogramming of hepatic cholesterol homeostasis may be the basis for an increased predisposition to hypercholesterolemia and atherosclerosis found in offspring of mice exposed to a high cholesterol environment during early life.
Collapse
|
23
|
DeRuiter MC, Alkemade FE, Gittenberger-de Groot AC, Poelmann RE, Havekes LM, van Dijk KW. Maternal transmission of risk for atherosclerosis. Curr Opin Lipidol 2008; 19:333-7. [PMID: 18607178 DOI: 10.1097/mol.0b013e328304b670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW In the last 20 years, an increasing amount of epidemiological and pathological evidence has become available illustrating the relationship between an adverse in-utero environment and increased risk of vascular disease in the offspring. It is now generally accepted that epigenetic phenomena, such as either DNA methylation or chromatin modifications or both mediate the long-term memory and thus developmental programming of cells and tissues. RECENT FINDINGS In utero, the placenta and fetus are exposed to the metabolic, antioxidant and pro-inflammatory and anti-inflammatory signals from the mother and will likely respond specifically. In the fetus, these responses may lead to permanent changes either in DNA methylation or chromatin modification or both and these changes may lead to increased atherosclerosis susceptibility in adulthood. However, the molecular mechanisms responsible for the translation of an adverse maternal environment into permanent epigenetic changes are poorly understood. SUMMARY In this review, we briefly summarize the possible signals crossing the placental barrier and discuss the molecular mechanisms of epigenetic programming in the developing fetus leading to increased athero-susceptibility of the vessel wall.
Collapse
Affiliation(s)
- Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|