1
|
Pedersen C, Chen VT, Herbst P, Zhang R, Elfert A, Krishan A, Azar DT, Chang JH, Hu WY, Kremsmayer TP, Jalilian E, Djalilian AR, Guaiquil VH, Rosenblatt MI. Target specification and therapeutic potential of extracellular vesicles for regulating corneal angiogenesis, lymphangiogenesis, and nerve repair. Ocul Surf 2024; 34:459-476. [PMID: 39426677 DOI: 10.1016/j.jtos.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Extracellular vesicles, including exosomes, are small extracellular vesicles that range in size from 30 nm to 10 μm in diameter and have specific membrane markers. They are naturally secreted and are present in various bodily fluids, including blood, urine, and saliva, and through the variety of their internal cargo, they contribute to both normal physiological and pathological processes. These processes include immune modulation, neuronal synapse formation, cell differentiation, cancer metastasis, angiogenesis, lymphangiogenesis, progression of infectious disease, and neurodegenerative disorders like Alzheimer's and Parkinson's disease. In recent years, interest has grown in the use of exosomes as a potential drug delivery system for various diseases and injuries. Importantly, exosomes originating from a patient's own cells exhibit minimal immunogenicity and possess remarkable stability along with inherent and adjustable targeting capabilities. This review explores the roles of exosomes in angiogenesis, lymphangiogenesis, and nerve repair with a specific emphasis on these processes within the cornea. Furthermore, it examines exosomes derived from specific cell types, discusses the advantages of exosome-based therapies in modulating these processes, and presents some of the most established methods for exosome isolation. Exosome-based treatments are emerging as potential minimally invasive and non-immunogenic therapies that modulate corneal angiogenesis and lymphangiogenesis, as well as enhance and accelerate endogenous corneal nerve repair.
Collapse
Affiliation(s)
- Cameron Pedersen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victoria T Chen
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paula Herbst
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Runze Zhang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Amr Elfert
- University of Illinois Cancer Center, Chicago, IL, USA
| | - Abhi Krishan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| | - Wen-Yang Hu
- Department of Urology, University of Illinois at Chicago, Chicago, IL, USA
| | - Tobias P Kremsmayer
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA; Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
3
|
Than NG, Romero R, Fitzgerald W, Gudicha DW, Gomez-Lopez N, Posta M, Zhou F, Bhatti G, Meyyazhagan A, Awonuga AO, Chaiworapongsa T, Matthies D, Bryant DR, Erez O, Margolis L, Tarca AL. Proteomic Profiles of Maternal Plasma Extracellular Vesicles for Prediction of Preeclampsia. Am J Reprod Immunol 2024; 92:e13928. [PMID: 39347565 DOI: 10.1111/aji.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/01/2024] Open
Abstract
PROBLEM Preeclampsia is a heterogeneous syndrome of diverse etiologies and molecular pathways leading to distinct clinical subtypes. Herein, we aimed to characterize the extracellular vesicle (EV)-associated and soluble fractions of the maternal plasma proteome in patients with preeclampsia and to assess their value for disease prediction. METHOD OF STUDY This case-control study included 24 women with term preeclampsia, 23 women with preterm preeclampsia, and 94 healthy pregnant controls. Blood samples were collected from cases on average 7 weeks before the diagnosis of preeclampsia and were matched to control samples. Soluble and EV fractions were separated from maternal plasma; EVs were confirmed by cryo-EM, NanoSight, and flow cytometry; and 82 proteins were analyzed with bead-based, multiplexed immunoassays. Quantile regression analysis and random forest models were implemented to evaluate protein concentration differences and their predictive accuracy. Preeclampsia subgroups defined by molecular profiles were identified by hierarchical cluster analysis. Significance was set at p < 0.05 or false discovery rate-adjusted q < 0.1. RESULTS In preterm preeclampsia, PlGF, PTX3, and VEGFR-1 displayed differential abundance in both soluble and EV fractions, whereas angiogenin, CD40L, endoglin, galectin-1, IL-27, CCL19, and TIMP1 were changed only in the soluble fraction (q < 0.1). The direction of changes in the EV fraction was consistent with that in the soluble fraction for nine proteins. In term preeclampsia, CCL3 had increased abundance in both fractions (q < 0.1). The combined EV and soluble fraction proteomic profiles predicted preterm and term preeclampsia with an AUC of 78% (95% CI, 66%-90%) and 68% (95% CI, 56%-80%), respectively. Three clusters of preeclampsia featuring distinct clinical characteristics and placental pathology were identified based on combined protein data. CONCLUSIONS Our findings reveal distinct alterations of the maternal EV-associated and soluble plasma proteome in preterm and term preeclampsia and identify molecular subgroups of patients with distinct clinical and placental histopathologic features.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Nardhy Gomez-Lopez
- Department of Obstetrics and Gynecology & Department of Pathology and Immunology, Washington University, St. Louis, Missouri, USA
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
- Semmelweis University Doctoral School, Budapest, Hungary
| | - Fei Zhou
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Gaurav Bhatti
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Awoniyi O Awonuga
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Doreen Matthies
- Unit on Structural Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - David R Bryant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Leonid Margolis
- Faculty of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Adi L Tarca
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| |
Collapse
|
4
|
Sánchez-Rubio M, Abarzúa-Catalán L, Del Valle A, Méndez-Ruette M, Salazar N, Sigala J, Sandoval S, Godoy MI, Luarte A, Monteiro LJ, Romero R, Choolani MA, Wyneken Ú, Illanes SE, Bátiz LF. Maternal stress during pregnancy alters circulating small extracellular vesicles and enhances their targeting to the placenta and fetus. Biol Res 2024; 57:70. [PMID: 39342314 PMCID: PMC11438166 DOI: 10.1186/s40659-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Maternal psychological distress during pregnancy can negatively impact fetal development, resulting in long-lasting consequences for the offspring. These effects show a sex bias. The mechanisms whereby prenatal stress induces functional and/or structural changes in the placental-fetal unit remain poorly understood. Maternal circulating small extracellular vesicles (sEVs) are good candidates to act as "stress signals" in mother-to-fetus communication. Using a repetitive restraint-based rat model of prenatal stress, we examined circulating maternal sEVs under stress conditions and tested whether they could target placental-fetal tissues. RESULTS Our mild chronic maternal stress during pregnancy paradigm induced anhedonic-like behavior in pregnant dams and led to intrauterine growth restriction (IUGR), particularly in male fetuses and placentas. The concentration and cargo of maternal circulating sEVs changed under stress conditions. Specifically, there was a significant reduction in neuron-enriched proteins and a significant increase in astrocyte-enriched proteins in blood-borne sEVs from stressed dams. To study the effect of repetitive restraint stress on the biodistribution of maternal circulating sEVs in the fetoplacental unit, sEVs from pregnant dams exposed to stress or control protocol were labeled with DiR fluorescent die and injected into pregnant females previously exposed to control or stress protocol. Remarkably, maternal circulating sEVs target placental/fetal tissues and, under stress conditions, fetal tissues are more receptive to sEVs. CONCLUSION Our results suggest that maternal circulating sEVs can act as novel mediators/modulators of mother-to-fetus stress communication. Further studies are needed to identify placental/fetal cellular targets of maternal sEVs and characterize their contribution to stress-induced sex-specific placental and fetal changes.
Collapse
Affiliation(s)
- Mario Sánchez-Rubio
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Lorena Abarzúa-Catalán
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Ana Del Valle
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Maxs Méndez-Ruette
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- PhD Program in Biomedicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Natalia Salazar
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Jacinta Sigala
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Soledad Sandoval
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - María Inés Godoy
- Department of Educational Assessment, Measurement, and Registry, Universidad de Chile, Santiago, Chile
| | - Alejandro Luarte
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Lara J Monteiro
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Detroit, and Maryland, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Mahesh A Choolani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Úrsula Wyneken
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Sebastián E Illanes
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Research Program in Biology of Reproduction, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- Department of Obstetrics and Gynecology, School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| | - Luis Federico Bátiz
- Research Program in Neuroscience, Center for Biomedical Research and Innovation (CiiB), Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- School of Medicine, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- Centro de Investigación e Innovación Biomédica (CiiB), Facultad de Medicina, Universidad de los Andes, Mons. Álvaro del Portillo 12455, Las Condes, Santiago, Chile.
| |
Collapse
|
5
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Bowman-Gibson S, Chandiramani C, Stone ML, Waker CA, Rackett TM, Maxwell RA, Dhanraj DN, Brown TL. Streamlined Analysis of Maternal Plasma Indicates Small Extracellular Vesicles are Significantly Elevated in Early-Onset Preeclampsia. Reprod Sci 2024; 31:2771-2782. [PMID: 38777947 PMCID: PMC11393201 DOI: 10.1007/s43032-024-01591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Preeclampsia (PE) is a leading cause of maternal and fetal mortality and morbidity. While placental dysfunction is a core underlying issue, the pathogenesis of this disorder is thought to differ between early-onset (EOPE) and late-onset (LOPE) subtypes. As recent reports suggest that small extracellular vesicles (sEVs) contribute to the development of PE, we have compared systemic sEV concentrations between normotensive, EOPE, and LOPE pregnancies. To circumvent lengthy isolation techniques and intermediate filtration steps, a streamlined approach was developed to evaluate circulating plasma sEVs from maternal plasma. Polymer-based precipitation and purification were used to isolate total systemic circulating maternal sEVs, free from bias toward specific surface marker expression or extensive subpurification. Immediate Nanoparticle Tracking Analysis (NTA) of freshly isolated sEV samples afforded a comprehensive analysis that can be completed within hours, avoiding confounding freeze-thaw effects of particle aggregation and degradation.Rather than exosomal subpopulations, our findings indicate a significant elevation in the total number of circulating maternal sEVs in patients with EOPE. This streamlined approach also preserves sEV-bound protein and microRNA (miRNA) that can be used for potential biomarker analysis. This study is one of the first to demonstrate that maternal plasma sEVs harbor full-length hypoxia inducible factor 1 alpha (HIF-1α) protein, with EOPE sEVs carrying higher levels of HIF-1α compared to control sEVs. The detection of HIF-1α and its direct signaling partner microRNA-210 (miR-210) within systemic maternal sEVs lays the groundwork for identifying how sEV signaling contributes to the development of preeclampsia. When taken together, our quantitative and qualitative results provide compelling evidence to support the translational potential of streamlined sEV analysis for future use in the clinical management of patients with EOPE.
Collapse
Affiliation(s)
- Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Chandni Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Madison L Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Christopher A Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA
| | - Traci M Rackett
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Rose A Maxwell
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - David N Dhanraj
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Highway, 457 NEC Building, Dayton, OH, 45435, USA.
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
7
|
Cui J, Yang Z, Ma R, He W, Tao H, Li Y, Zhao Y. Placenta-targeted Treatment Strategies for Preeclampsia and Fetal Growth Restriction: An Opportunity and Major Challenge. Stem Cell Rev Rep 2024; 20:1501-1511. [PMID: 38814409 PMCID: PMC11319408 DOI: 10.1007/s12015-024-10739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/31/2024]
Abstract
The placenta plays a crucial role in maintaining normal pregnancy. The failure of spiral artery remodeling (SAR) is a key factor leading to placental ischemia and poor perfusion which is strongly associated with obstetric diseases, including preeclampsia (PE) and fetal growth restriction (FGR). Existing interventions for PE and FGR are limited and termination of pregnancy is inevitable when the maternal or fetus condition deteriorates. Considering the safety of the mother and fetus, treatments that may penetrate the placental barrier and harm the fetus are not accepted. Developing targeted treatment strategies for these conditions is urgent and necessary. With the proven efficacy of targeted therapy in treating conditions such as endometrial cancer and trophoblastic tumors, research on placental dysfunction continues to deepen. This article reviews the studies on placenta-targeted treatment and drug delivery strategies, summarizes the characteristics proposes corresponding improvement measures in targeted treatment, provides solutions for existing problems, and makes suggestions for future studies.
Collapse
Affiliation(s)
- Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wencong He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ya'nan Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
8
|
YUSTINASARI LR, HYOTO M, IMAI H, KUSAKABE KT. Appearance of small extracellular vesicles in the mouse pregnant serum and the localization in placentas. J Vet Med Sci 2024; 86:787-795. [PMID: 38749740 PMCID: PMC11251818 DOI: 10.1292/jvms.24-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/24/2024] [Indexed: 07/05/2024] Open
Abstract
Exosomes or small extracellular vesicles (sEVs) are present in the blood of pregnant mice and considered to be involved in pregnancy physiology. Although sEVs in pregnant periods are proposed to be derived from placentas, sEVs-producing cells are not well known in mouse placentas. We studied the dynamics and localization of sEVs in pregnant serum and placentas, and examined gestational variation of microRNA (miRNA). Serums and placentas were collected from non-pregnant (NP) and pregnant mice throughout the entire gestational day (Gd). EVs were purified from serums and total RNA was isolated from EVs. Nanoparticle-tracking assay (NTA) revealed that the rates of sEVs in EVs are 53% at NP, and increased to 80.1% at Gd 14.5 and 97.5% at Gd 18.5. Western blotting on EVs showed positive reactivity to the tetraspanin markers and clarified that the results using anti-CD63 antibody were most consistent with the sEVs appearance detected by NTA. Serum EVs also showed a positive reaction to the syncytiotrophoblast marker, syncytin-1. Immunohistostaining using anti-CD63 antibody showed positive reactions in mouse placentas at the syncytiotrophoblasts and endothelial cells of the fetal capillaries. Quantitative PCR revealed that significantly higher amounts of miRNAs were included in the sEVs of Gd 18.5. Our results suggested that sEVs are produced in the mouse placenta and transferred to maternal or fetal bloodstreams. sEVs are expected to have a miRNA-mediated physiological effect and become useful biomarkers reflecting the pregnancy status.
Collapse
Affiliation(s)
- Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muneyoshi HYOTO
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
9
|
Mitchell MI, Khalil M, Ben-Dov IZ, Alverez-Perez J, Illsley NP, Zamudio S, Al-Khan A, Loudig O. Customizing EV-CATCHER to Purify Placental Extracellular Vesicles from Maternal Plasma to Detect Placental Pathologies. Int J Mol Sci 2024; 25:5102. [PMID: 38791142 PMCID: PMC11121217 DOI: 10.3390/ijms25105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Placenta Accreta Spectrum (PAS) is a life-threatening condition in which placental trophoblastic cells abnormally invade the uterus, often up to the uterine serosa and, in extreme cases, tissues beyond the uterine wall. Currently, there is no clinical assay for the non-invasive detection of PAS, and only ultrasound and MRI can be used for its diagnosis. Considering the subjectivity of visual assessment, the detection of PAS necessitates a high degree of expertise and, in some instances, can lead to its misdiagnosis. In clinical practice, up to 50% of pregnancies with PAS remain undiagnosed until delivery, and it is associated with increased risk of morbidity/mortality. Although many studies have evaluated the potential of fetal biomarkers circulating in maternal blood, very few studies have evaluated the potential of circulating placental extracellular vesicles (EVs) and their miRNA contents for molecular detection of PAS. Thus, to purify placental EVs from maternal blood, we customized our robust ultra-sensitive immuno-purification assay, termed EV-CATCHER, with a monoclonal antibody targeting the membrane Placental Alkaline Phosphatase (PLAP) protein, which is unique to the placenta and present on the surface of placental EVs. Then, as a pilot evaluation, we compared the miRNA expression profiles of placental EVs purified from the maternal plasma of women diagnosed with placenta previa (controls, n = 16); placenta lying low in uterus but not invasive) to those of placental EVs purified from the plasma of women with placenta percreta (cases, n = 16), PAS with the highest level of invasiveness. Our analyses reveal that miRNA profiling of PLAP+ EVs purified from maternal plasma identified 40 differentially expressed miRNAs when comparing these two placental pathologies. Preliminary miRNA pathway enrichment and gene ontology analysis of the top 14 upregulated and top nine downregulated miRNAs in PLAP+ EVs, purified from the plasma of women diagnosed with placenta percreta versus those diagnosed with placenta previa, suggests a potential role in control of cellular invasion and motility that will require further investigation.
Collapse
Affiliation(s)
- Megan I. Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Marwa Khalil
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| | - Iddo Z. Ben-Dov
- Laboratory of Medical Transcriptomics, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel;
| | - Jesus Alverez-Perez
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Nicholas P. Illsley
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Stacy Zamudio
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Abdulla Al-Khan
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
- Hackensack University Medical Center, Department of Maternal and Fetal Medicine, Hackensack Meridian Health, Hackensack, NJ 07601, USA; (N.P.I.)
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ 07110, USA;
- Hackensack University Medical Center, Department of Pediatrics, Hackensack Meridian Health, Hackensack, NJ 07601, USA;
- Hackensack Meridian School of Medicine (HMHSOM), Nutley, NJ 07110, USA; (J.A.-P.); (A.A.-K.)
| |
Collapse
|
10
|
Nishi K, Modi D. Placental exosomes in pregnancy and preeclampsia. Am J Reprod Immunol 2024; 91:e13857. [PMID: 38716824 DOI: 10.1111/aji.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/24/2024] Open
Abstract
Preeclampsia, poses significant risks to both maternal and fetal well-being. Exosomes released by the placenta play a crucial role in intercellular communication and are recognized as potential carriers of essential information for placental development. These exosomes transport a payload of proteins, nucleic acids, and lipids that mirror the placental microenvironment. This review delves into the functional roles of placental exosomes and its contents shedding light on their involvement in vascular regulation and immune modulation in normal pregnancy. Discernible changes are reported in the composition and quantity of placental exosome contents in pregnancies affected by preeclampsia. The exosomes from preeclamptic mothers affect vascularization and fetal kidney development. The discussion also explores the implications of utilizing placental exosomes as biomarkers and the prospects of translating these findings into clinical applications. In conclusion, placental exosomes hold promise as a valuable avenue for deciphering the complexities of preeclampsia, providing crucial diagnostic and prognostic insights. As the field progresses, a more profound comprehension of the distinct molecular signatures carried by placental exosomes may open doors to innovative strategies for managing and offering personalized care to pregnancies affected by preeclampsia.
Collapse
Affiliation(s)
- Kumari Nishi
- Department of Neuroendocrinology, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, India
| |
Collapse
|
11
|
Khorami-Sarvestani S, Vanaki N, Shojaeian S, Zarnani K, Stensballe A, Jeddi-Tehrani M, Zarnani AH. Placenta: an old organ with new functions. Front Immunol 2024; 15:1385762. [PMID: 38707901 PMCID: PMC11066266 DOI: 10.3389/fimmu.2024.1385762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
The transition from oviparity to viviparity and the establishment of feto-maternal communications introduced the placenta as the major anatomical site to provide nutrients, gases, and hormones to the developing fetus. The placenta has endocrine functions, orchestrates maternal adaptations to pregnancy at different periods of pregnancy, and acts as a selective barrier to minimize exposure of developing fetus to xenobiotics, pathogens, and parasites. Despite the fact that this ancient organ is central for establishment of a normal pregnancy in eutherians, the placenta remains one of the least studied organs. The first step of pregnancy, embryo implantation, is finely regulated by the trophoectoderm, the precursor of all trophoblast cells. There is a bidirectional communication between placenta and endometrium leading to decidualization, a critical step for maintenance of pregnancy. There are three-direction interactions between the placenta, maternal immune cells, and the endometrium for adaptation of endometrial immune system to the allogeneic fetus. While 65% of all systemically expressed human proteins have been found in the placenta tissues, it expresses numerous placenta-specific proteins, whose expression are dramatically changed in gestational diseases and could serve as biomarkers for early detection of gestational diseases. Surprisingly, placentation and carcinogenesis exhibit numerous shared features in metabolism and cell behavior, proteins and molecular signatures, signaling pathways, and tissue microenvironment, which proposes the concept of "cancer as ectopic trophoblastic cells". By extensive researches in this novel field, a handful of cancer biomarkers has been discovered. This review paper, which has been inspired in part by our extensive experiences during the past couple of years, highlights new aspects of placental functions with emphasis on its immunomodulatory role in establishment of a successful pregnancy and on a potential link between placentation and carcinogenesis.
Collapse
Affiliation(s)
- Sara Khorami-Sarvestani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Negar Vanaki
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Shojaeian
- Department of Biochemistry, School of Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kayhan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Acharya B, Behera A, Behera S, Moharana S. Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Reproductive Disorders. ACS APPLIED BIO MATERIALS 2024; 7:1336-1361. [PMID: 38412066 DOI: 10.1021/acsabm.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Over the past decade, nanotechnology has seen extensive integration into biomedical applications, playing a crucial role in biodetection, drug delivery, and diagnostic imaging. This is especially important in reproductive health care, which has become an emerging and significant area of research. Global concerns have intensified around disorders such as infertility, endometriosis, ectopic pregnancy, erectile dysfunction, benign prostate hyperplasia, sexually transmitted infections, and reproductive cancers. Nanotechnology presents promising solutions to address these concerns by introducing innovative tools and techniques, facilitating early detection, targeted drug delivery, and improved imaging capabilities. Through the utilization of nanoscale materials and devices, researchers can craft treatments that are not only more precise but also more effective, significantly enhancing outcomes in reproductive healthcare. Looking forward, the future of nanotechnology in reproductive medicine holds immense potential for reshaping diagnostics, personalized therapies, and fertility preservation. The utilization of nanotechnology-driven drug delivery systems is anticipated to elevate treatment effectiveness, minimize side effects, and offer patients therapies that are not only more precise but also more efficient. This review aims to delve into the various types, properties, and preparation techniques of nanocarriers specifically designed for drug delivery in the context of reproductive disorders, shedding light on the current landscape and potential future directions in this dynamic field.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| | | | - Srikanta Moharana
- Department of Chemistry, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
13
|
do Amaral CC, Nedel F, Ferrúa CP, Garcia TF, Corrêa GP, Giorgi R, Longoni dos Santos A, de Assis AM, de Avila Quevedo L, Ghisleni GC, de Matos MB, Pinheiro KAT, Trettim JP, Pinheiro RT. Maternal hsa-miR-423-5p associated with the cognitive development of babies in pregnant women without mental disorders. Front Hum Neurosci 2024; 18:1322820. [PMID: 38487105 PMCID: PMC10937415 DOI: 10.3389/fnhum.2024.1322820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs capable of regulating gene expression post-transcriptionally. MiRNAs are recognized as key regulators of diverse biological and developmental processes. During the pregnancy-puerperal cycle, numerous changes occur in the female body for the formation, growth, and development of the baby. After birth, there is a critical period in child development, as rapid gains in the physical, cognitive, and socio-emotional domains constitute the "building blocks" of children's later growth. Objective The aim of this study was to investigate the association between maternal expression of hsa-miR-423-5p during the first and second trimesters of pregnancy and neurocognitive development at 90 days of life in infants. Methods: This is a longitudinal study included in a population-based cohort study, carried out in a city in southern Brazil. The Bayley III was used to assess the babies' cognitive development. Blood samples from mothers were obtained for RNA extraction from serum and analysis of miRNA expression by qRT-PCR. Results In total, 87 dyads (mother-baby) were included. The average gestational age was 15.86 weeks (SD ± 5.55). An association of maternal miRNA with infant cognitive development was found; as maternal miR-423-5p increases, infants' cognitive development increases by 2.40 (95% CI 0.37; 4.43, p = 0.021) points at 3 months of age. Conclusion In this context, it is suggested to use this miRNA as a biomarker of child neurocognitive development detectable in the prenatal period, thus allowing the planning of early interventions.
Collapse
Affiliation(s)
- Cainá Corrêa do Amaral
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Fernanda Nedel
- Anatomy Department, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Perelló Ferrúa
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | - Tiago Fernandez Garcia
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | - Roberta Giorgi
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | | | | - Mariana Bonati de Matos
- Post-Graduate Program in Health and Behavior, Catholic University of Pelotas, Pelotas, Brazil
| | | | | | | |
Collapse
|
14
|
Rice GE, Salomon C. IFPA Joan Hunt Senior Award in Placentology lecture: Extracellular vesicle signalling and pregnancy. Placenta 2024:S0143-4004(24)00055-9. [PMID: 38458919 DOI: 10.1016/j.placenta.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024]
Abstract
The field of extracellular vesicle (EV) signalling has the potential to transform our understanding of maternal-fetal communication and affords new opportunities for non-invasive prenatal testing and therapeutic intervention. EVs have been implicated in implantation, placentation, maternal adaptation to pregnancy and complications of pregnancy, being detectable in maternal circulation as early as 6 weeks of pregnancy. EVs of differing biogenic origin, composition and bioactivity are released by cells to maintain homoeostasis. Induction of EV signalling is associated with aberrant cellular metabolism and manifests as changes in EV concentrations and/or composition. Characterizing such changes affords opportunity to develop more informative diagnostics and efficacious interventions. To develop accurate and reliable EV-based diagnostics requires: identification of disease-associated biomarkers in specific EV subpopulations; and rapid, reproducible and scalable sample processing. Conventional isolation methods face challenges due to co-isolation of particles with similar physicochemical properties. Methods targeting specific vesicle-surface epitopes and compatible with automated platforms show promise. Effective EV therapeutics require precise targeting, achieved through genetic engineering to release EVs expressing cell-targeting ligands and carrying therapeutic payloads. Unlike cell-based therapies, this approach offers advantages including: low immunogenicity; stability; and long-term storage. Although EV diagnostics and therapeutics in reproductive biology are nascent, available technologies can enhance our understanding of EV signalling between mother and fetus, its role in pregnancies and improve outcomes.
Collapse
Affiliation(s)
- Gregory E Rice
- Inoviq Limited, Notting Hill, Australia; Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
15
|
Shi H, Yang Z, Cui J, Tao H, Ma R, Zhao Y. Mesenchymal stem cell-derived exosomes: a promising alternative in the therapy of preeclampsia. Stem Cell Res Ther 2024; 15:30. [PMID: 38317195 PMCID: PMC10845755 DOI: 10.1186/s13287-024-03652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Preeclampsia (PE) is a common morbid complication during pregnancy, affecting 2%-8% of pregnancies globally and posing serous risks to the health of both mother and fetus. Currently, the only effective treatment for PE is timely termination of pregnancy, which comes with increased perinatal risks. However, there is no effective way to delay pathological progress and improve maternal and fetal outcomes. In light of this, it is of great significance to seek effective therapeutic strategies for PE. Exosomes which are nanoparticles carrying bioactive substances such as proteins, lipids, and nucleic acids, have emerged as a novel vehicle for intercellular communication. Mesenchymal stem cell-derived exosomes (MSC-Exos) participate in various important physiological processes, including immune regulation, cell proliferation and migration, and angiogenesis, and have shown promising potential in tissue repair and disease treatment. Recently, MSC-Exos therapy has gained popularity in the treatment of ischaemic diseases, immune dysfunction, inflammatory diseases, and other fields due to their minimal immunogenicity, characteristics similar to donor cells, ease of storage, and low risk of tumor formation. This review elaborates on the potential therapeutic mechanism of MSC-Exos in treating preeclampsia, considering the main pathogenic factors of the condition, including placental vascular dysplasia, immunological disorders, and oxidative stress, based on the biological function of MSC-Exos. Additionally, we discuss in depth the advantages and challenges of MSC-Exos as a novel acellular therapeutic agent in preeclampsia treatment.
Collapse
Affiliation(s)
- Haoran Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shen Zhen, 518000, China.
| |
Collapse
|
16
|
Paul N, Maiti K, Sultana Z, Fisher JJ, Zhang H, Cole N, Morgan T, Smith R. Human placenta releases extracellular vesicles carrying corticotrophin releasing hormone mRNA into the maternal blood. Placenta 2024; 146:71-78. [PMID: 38190772 DOI: 10.1016/j.placenta.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/14/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
The human placenta releases diverse extracellular vesicles (EVs), including microvesicles (100-1000 nm) and exosomes (30-150 nm), into the maternal blood for feto-maternal communication. Exosomes and microvesicles contribute to normal pregnancy physiology and major pregnancy pathologies. Differences in miRNA expressions and protein content in placental exosomes have been reported in complicated pregnancies. During human pregnancy, Corticotropin-Releasing Hormone (CRH) is produced and released by the placenta into the maternal blood. CRH is involved in regulating gestational length and the initiation of labour. CRH mRNA levels in the maternal plasma rise with gestation. High levels of CRH mRNA are reported to be associated with preeclamptic and preterm pregnancies. However, the underlying mechanism of placental CRH mRNA secretion remains to be elucidated. We hypothesise that the placenta releases CRH mRNA packaged within extracellular vesicles (EVs) into the maternal blood. In this study, placental EVs (microvesicles and exosomes) were isolated from human term healthy placentas via villus washes and from explant culture media by differential centrifugation and purified by density gradient ultracentrifugation using a continuous sucrose gradient (0.25-2.5 M). Western blotting using placenta- and exosome-specific markers and electron microscopy confirmed exosomes and microvesicles in the placental wash and explant media samples. Real-time quantitative RT-PCR data detected CRH mRNA in placenta-derived EVs from placental washes and explants. We also sorted placenta-secreted EVs in maternal plasma samples (≥37 weeks) by high-resolution flow cytometry using a fluorescent-labelled PLAP antibody. CRH mRNA was demonstrated in placental EVs obtained from maternal blood plasma. We therefore show that human placental EVs carry CRH mRNA into the maternal blood. Our study implies that measuring CRH mRNA in placental EVs in the maternal plasma could beused for monitoring pregnancy.
Collapse
Affiliation(s)
- Nilanjana Paul
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia; Department of Genetic Engineering and Biotechnology, The University of Dhaka, Bangladesh
| | - Kaushik Maiti
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Joshua J Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia
| | - Huiming Zhang
- Research and Innovation Division, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Nicole Cole
- Research and Innovation Division, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Terry Morgan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, The University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| |
Collapse
|
17
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Chen Z, Li Z, Zong Y, Xia B, Luo S, Deng G, Gao J. Exosome-delivered miR-410-3p reverses epithelial-mesenchymal transition, migration and invasion of trophoblasts in spontaneous abortion. J Cell Mol Med 2024; 28:e18097. [PMID: 38164738 PMCID: PMC10844701 DOI: 10.1111/jcmm.18097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/15/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Current studies have indicated that insufficient trophoblast epithelial-mesenchymal transition (EMT), migration and invasion are crucial for spontaneous abortion (SA) occurrence and development. Exosomal miRNAs play significant roles in embryonic development and cellular communication. Hereon, we explored the roles of serum exosomes derived from SA patients on trophoblast EMT, migration and invasion. Exosomes were isolated from normal control (NC) patients with abortion for unplanned pregnancy and SA patients, then characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting. Exosomal miRNA profiles were identified by miRNA sequencing. The effects of serum exosomes on trophoblast migration and invasion were detected by scratch wound healing and transwell assays, and other potential mechanisms were revealed by quantitative real-time PCR (RT-PCR), western blotting and dual-luciferase reporter assay. Finally, animal experiments were used to explore the effects of exosomal miR-410-3p on embryo absorption in mice. The serum exosomes from SA patients inhibited trophoblast EMT and reduced their migration and invasion ability in vitro. The miRNA sequencing showed that miR-410-3p was upregulated in SA serum exosomes. The functional experiments showed that SA serum exosomes restrained trophoblast EMT, migration and invasion by releasing miR-410-3p. Mechanistically, SA serum exosomal miR-410-3p inhibited trophoblast cell EMT, migration and invasion by targeting TNF receptor-associated factor 6 (TRAF6) at the post-transcriptional level. Besides, SA serum exosomal miR-410-3p inhibited the p38 MAPK signalling pathway by targeting TRAF6 in trophoblasts. Moreover, milk exosomes loaded with miR-410-3p mimic reached the maternal-fetal interface and aggravated embryo absorption in female mice. Clinically, miR-410-3p and TRAF6 expression were abnormal and negatively correlated in the placental villi of SA patients. Our findings indicated that exosome-derived miR-410-3p plays an important role between SA serum and trophoblasts in intercellular communication, suggesting a novel mechanism by which serum exosomal miRNA regulates trophoblasts in SA patients.
Collapse
Affiliation(s)
- Zhen‐yue Chen
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhen Li
- The Second Clinical College of Guangzhou University of Chinese MedicineThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yun Zong
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Bo Xia
- The First Clinical Medical College of Guangzhou University of Chinese MedicineGuangzhouChina
- Lingnan Medical Research Center of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Song‐ping Luo
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Gao‐pi Deng
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Jie Gao
- Department of GynecologyFirst Affifiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| |
Collapse
|
19
|
Klemetti MM, Pettersson ABV, Ahmad Khan A, Ermini L, Porter TR, Litvack ML, Alahari S, Zamudio S, Illsley NP, Röst H, Post M, Caniggia I. Lipid profile of circulating placental extracellular vesicles during pregnancy identifies foetal growth restriction risk. J Extracell Vesicles 2024; 13:e12413. [PMID: 38353485 PMCID: PMC10865917 DOI: 10.1002/jev2.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/13/2024] [Indexed: 02/16/2024] Open
Abstract
Small-for-gestational age (SGA) neonates exhibit increased perinatal morbidity and mortality, and a greater risk of developing chronic diseases in adulthood. Currently, no effective maternal blood-based screening methods for determining SGA risk are available. We used a high-resolution MS/MSALL shotgun lipidomic approach to explore the lipid profiles of small extracellular vesicles (sEV) released from the placenta into the circulation of pregnant individuals. Samples were acquired from 195 normal and 41 SGA pregnancies. Lipid profiles were determined serially across pregnancy. We identified specific lipid signatures of placental sEVs that define the trajectory of a normal pregnancy and their changes occurring in relation to maternal characteristics (parity and ethnicity) and birthweight centile. We constructed a multivariate model demonstrating that specific lipid features of circulating placental sEVs, particularly during early gestation, are highly predictive of SGA infants. Lipidomic-based biomarker development promises to improve the early detection of pregnancies at risk of developing SGA, an unmet clinical need in obstetrics.
Collapse
Affiliation(s)
- Miira M. Klemetti
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
| | - Ante B. V. Pettersson
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Aafaque Ahmad Khan
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Leonardo Ermini
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Tyler R. Porter
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | - Michael L. Litvack
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
| | - Sruthi Alahari
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
| | | | | | - Hannes Röst
- Donnelly Centre for Cellular and Biomolecular ResearchUniversity of TorontoTorontoCanada
| | - Martin Post
- Program in Translational Medicine, Peter Gilgan Centre for Research and LearningHospital for Sick ChildrenTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| | - Isabella Caniggia
- Lunenfeld‐Tanenbaum Research InstituteMount Sinai HospitalTorontoOntarioCanada
- Department of Obstetrics & GynecologyUniversity of TorontoTorontoOntarioCanada
- Institute of Medical ScienceUniversity of TorontoTorontoOntarioCanada
- Department PhysiologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
20
|
Noguchi S, Tozawa S, Sakurai T, Ohkuchi A, Takahashi H, Fujiwara H, Takizawa T. BeWo exomeres are enriched for bioactive extracellular placenta-specific C19MC miRNAs. J Reprod Immunol 2024; 161:104187. [PMID: 38199177 DOI: 10.1016/j.jri.2023.104187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Extracellular vesicles (EVs), including exosomes, are carriers of extracellular microRNAs (miRNAs). Exomeres, non-vesicular extracellular nanoparticles (NVEPs), are novel extracellular cargo carriers. However, little is known of the characteristics of placental trophoblast-derived exomeres. In this study, we characterized trophoblast-derived exomeres and investigated the cell-cell communication of placenta-specific miRNAs carried by those exomeres using an in vitro model system (BeWo trophoblasts and Jurkat T cells). BeWo exomeres (∼ 40 nm diameter) had pilling-like nanoparticle structures, which were distinct from cup-shaped exosomes (∼ 90-110 nm diameter). BeWo cells secreted more exomeres than exosomes. Exomeres were positive for AGO2 but negative for exosome markers (CD63, CD9, CD81, FLOT1, and TSG101). The levels of placenta-specific miRNAs in exomeres were significantly higher than in exosomes. In a cell-cell communication analysis using a placenta-specific miRNA, BeWo exomeres delivered significantly more miR-517a-3p to recipient Jurkat cells compared with exosomes. Moreover, exomere-miR-517a-3p significantly reduced the expression of PRKG1 in miR-517a-3p-inhibitor (-) Jurkat cells compared with miR-517a-3p-inhibitor (+) cells, suggesting that miR-517a-3p inhibition reversed the exomere-miR-517a-3p-mediated repression of PRKG1 expression in recipient cells. Therefore, BeWo trophoblast exomeres are enriched with bioactive extracellular placenta-specific miRNAs, which were formerly considered to be carried by exosomes. Our findings provide insight into trophoblast-derived NVEPs.
Collapse
Affiliation(s)
- Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Shohei Tozawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan; Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takanobu Sakurai
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan
| | - Akihide Ohkuchi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroyuki Fujiwara
- Department of Obstetrics and Gynecology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan.
| |
Collapse
|
21
|
YUSTINASARI LR, KURATOMI M, KAGAWA S, GONDO A, ARAMAKI N, IMAI H, KUSAKABE KT. Specific expression and blood kinetics for relaxin 2, lipocalin 2, and tissue factor pathway inhibitor 2 at the canine placenta and pregnant bloods. J Vet Med Sci 2024; 86:77-86. [PMID: 38057091 PMCID: PMC10849861 DOI: 10.1292/jvms.23-0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023] Open
Abstract
In general, humoral factors released from the placenta influence pregnancy progression, but the involvement of the canine placenta is often unidentified. We investigated specific genes in canine placentas and analyzed the blood dynamics of the translated proteins. Furthermore, RNAs are known to be released from placentas embedding in exosomes, a type of extracellular vesicles. Here, the presence of cell-free RNAs in pregnant serums was also confirmed. RNA specimens were purified from the normal healthy dog placentas and applied to RNA-Seq analysis. Expressions of frequent genes were confirmed by RT-PCR using placentas from other individuals and breeds. Relaxin (RLN) 2, lipocalin (LCN) 2, and tissue factor pathway inhibitor (TFPI) 2 were selected as high-expressed and placenta-specific genes. By western blot, the three factors were clearly detected in the pregnant serums. Quantitative analysis revealed that the amount of RLN2 increased significantly from non-pregnancy to day 41 of pregnancy. Regarding LCN2 and TFPI2, the protein serum levels elevated during pregnancy, but the statistical differences were not detected. Exosomes were found in all pregnant serums; however, the percentage was less than 6% in total extracellular vesicles. The cell-free RNA related to RLN2 was detected, but no elevation was confirmed during pregnancy. We found specific genes in the canine placenta and the transition of their translated protein into the blood. These factors may become useful tools for research on canine pregnancy and monitoring of reproductive management. Exosomes and cell-free RNA could not be found to be valid in canine reproduction.
Collapse
Affiliation(s)
- Lita Rakhma YUSTINASARI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria KURATOMI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Seizaburo KAGAWA
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ai GONDO
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Nobuaki ARAMAKI
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroyuki IMAI
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Ken Takeshi KUSAKABE
- Laboratory of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Veterinary Anatomy, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
22
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|
23
|
Wang Y, Yuan Y, Shen S, Ge Z, Zhu D, Bi Y. Placenta-derived exosomes exacerbate beta cell dysfunction in gestational diabetes mellitus through delivery of miR-320b. Front Endocrinol (Lausanne) 2024; 14:1282075. [PMID: 38260139 PMCID: PMC10800463 DOI: 10.3389/fendo.2023.1282075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Recent studies have shown placenta-derived exosome (pdE) acts as an important mediator of organ-to-organ interplay regulating maternal metabolic alterations, however, the function and mechanisms of placental exosomes on pancreatic β-cell maladaptation in gestational diabetes mellitus (GDM) remain unclear. The purpose of this investigation was to ascertain how placental exosomes affected the β-cell dysfunction associated with the onset of GDM. Exosomes were isolated from chorionic villi explants of pregnant mice and humans with normal glucose tolerance (NGT) and GDM. The effects of pdE from GDM on glucose tolerance in vivo and islets function in vitro were determined. Isolated islets from mice fed on the chow diet displayed an increase in apoptosis and observed their glucose-stimulated insulin secretion (GSIS) greatly diminished by PdE from GDM mice. Mice that accepted PdE from mice with GDM possessed glucose intolerance.Based on miRNA microarray assay and bioinformatics analysis from human placental exosomes, we identified miR-320b selectively enriched in PdE secreted in GDM compared with NGT. Importantly, the level of placental miR-320b was positively correlated with the 1h-glucose and 2-h glucose of a 75 g oral glucose tolerance test (OGTT) during human pregnancies. Furthermore, miR-320 overexpression attributed to impaired insulin secretion and increased apoptosis in MIN6 cells and islets obtained from mice with normal insulin sensitivity. This study firstly proposed that altered miRNAs in pdE contribute to defective adaptation of β cells during pregnancy, which expands the knowledge of GDM pathogenesis. Exosomes from the placenta may be an emerging therapeutic target for GDM.
Collapse
Affiliation(s)
- Yanmei Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yue Yuan
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Shanmei Shen
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Zhijuan Ge
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Dalong Zhu
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| | - Yan Bi
- Department of Endocrinology, Endocrine and Metabolic Disease Medical Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China
| |
Collapse
|
24
|
Gallo DM, Fitzgerald W, Romero R, Gomez-Lopez N, Gudicha DW, Than NG, Bosco M, Chaiworapongsa T, Jung E, Meyyazhagan A, Suksai M, Gotsch F, Erez O, Tarca AL, Margolis L. Proteomic profile of extracellular vesicles in maternal plasma of women with fetal death. J Matern Fetal Neonatal Med 2023; 36:2177529. [PMID: 36813269 PMCID: PMC10395052 DOI: 10.1080/14767058.2023.2177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
OBJECTIVES Fetal death is a complication of pregnancy caused by multiple etiologies rather than being the end-result of a single disease process. Many soluble analytes in the maternal circulation, such as hormones and cytokines, have been implicated in its pathophysiology. However, changes in the protein content of extracellular vesicles (EVs), which could provide additional insight into the disease pathways of this obstetrical syndrome, have not been examined. This study aimed to characterize the proteomic profile of EVs in the plasma of pregnant women who experienced fetal death and to evaluate whether such a profile reflected the pathophysiological mechanisms of this obstetrical complication. Moreover, the proteomic results were compared to and integrated with those obtained from the soluble fraction of maternal plasma. METHODS This retrospective case-control study included 47 women who experienced fetal death and 94 matched, healthy, pregnant controls. Proteomic analysis of 82 proteins in the EVs and the soluble fractions of maternal plasma samples was conducted by using a bead-based, multiplexed immunoassay platform. Quantile regression analysis and random forest models were implemented to assess differences in the concentration of proteins in the EV and soluble fractions and to evaluate their combined discriminatory power between clinical groups. Hierarchical cluster analysis was applied to identify subgroups of fetal death cases with similar proteomic profiles. A p-value of <.05 was used to infer significance, unless multiple testing was involved, with the false discovery rate controlled at the 10% level (q < 0.1). All statistical analyses were performed by using the R statistical language and environment-and specialized packages. RESULTS Nineteen proteins (placental growth factor, macrophage migration inhibitory factor, endoglin, regulated upon activation normal T cell expressed and presumably secreted (RANTES), interleukin (IL)-6, macrophage inflammatory protein 1-alpha, urokinase plasminogen activator surface receptor, tissue factor pathway inhibitor, IL-8, E-Selectin, vascular endothelial growth factor receptor 2, pentraxin 3, IL-16, galectin-1, monocyte chemotactic protein 1, disintegrin and metalloproteinase domain-containing protein 12, insulin-like growth factor-binding protein 1, matrix metalloproteinase-1(MMP1), and CD163) were found to have different plasma concentrations (of an EV or a soluble fraction) in women with fetal death compared to controls. There was a similar pattern of change for the dysregulated proteins in the EV and soluble fractions and a positive correlation between the log2-fold changes of proteins significant in either the EV or the soluble fraction (ρ = 0.89, p < .001). The combination of EV and soluble fraction proteins resulted in a good discriminatory model (area under the ROC curve, 82%; sensitivity, 57.5% at a 10% false-positive rate). Unsupervised clustering based on the proteins differentially expressed in either the EV or the soluble fraction of patients with fetal death relative to controls revealed three major clusters of patients. CONCLUSION Pregnant women with fetal death have different concentrations of 19 proteins in the EV and soluble fractions compared to controls, and the direction of changes in concentration was similar between fractions. The combination of EV and soluble protein concentrations revealed three different clusters of fetal death cases with distinct clinical and placental histopathological characteristics.
Collapse
Affiliation(s)
- Dahiana M Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Wendy Fitzgerald
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Systems, Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Arun Meyyazhagan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Detroit, MI, USA.,Division of Intramural Research, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
26
|
Starodubtseva NL, Tokareva AO, Volochaeva MV, Kononikhin AS, Brzhozovskiy AG, Bugrova AE, Timofeeva AV, Kukaev EN, Tyutyunnik VL, Kan NE, Frankevich VE, Nikolaev EN, Sukhikh GT. Quantitative Proteomics of Maternal Blood Plasma in Isolated Intrauterine Growth Restriction. Int J Mol Sci 2023; 24:16832. [PMID: 38069155 PMCID: PMC10706154 DOI: 10.3390/ijms242316832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Intrauterine growth restriction (IUGR) remains a significant concern in modern obstetrics, linked to high neonatal health problems and even death, as well as childhood disability, affecting adult quality of life. The role of maternal and fetus adaptation during adverse pregnancy is still not completely understood. This study aimed to investigate the disturbance in biological processes associated with isolated IUGR via blood plasma proteomics. The levels of 125 maternal plasma proteins were quantified by liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) with corresponding stable isotope-labeled peptide standards (SIS). Thirteen potential markers of IUGR (Gelsolin, Alpha-2-macroglobulin, Apolipoprotein A-IV, Apolipoprotein B-100, Apolipoprotein(a), Adiponectin, Complement C5, Apolipoprotein D, Alpha-1B-glycoprotein, Serum albumin, Fibronectin, Glutathione peroxidase 3, Lipopolysaccharide-binding protein) were found to be inter-connected in a protein-protein network. These proteins are involved in plasma lipoprotein assembly, remodeling, and clearance; lipid metabolism, especially cholesterol and phospholipids; hemostasis, including platelet degranulation; and immune system regulation. Additionally, 18 proteins were specific to a particular type of IUGR (early or late). Distinct patterns in the coagulation and fibrinolysis systems were observed between isolated early- and late-onset IUGR. Our findings highlight the complex interplay of immune and coagulation factors in IUGR and the differences between early- and late-onset IUGR and other placenta-related conditions like PE. Understanding these mechanisms is crucial for developing targeted interventions and improving outcomes for pregnancies affected by IUGR.
Collapse
Affiliation(s)
- Natalia L. Starodubtseva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O. Tokareva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Maria V. Volochaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexey S. Kononikhin
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Alexander G. Brzhozovskiy
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Anna E. Bugrova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Evgenii N. Kukaev
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Victor L. Tyutyunnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Natalia E. Kan
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N. Nikolaev
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia; (A.O.T.); (M.V.V.); (A.S.K.); (A.G.B.); (A.E.B.); (A.V.T.); (E.N.K.); (V.L.T.); (N.E.K.); (V.E.F.); (G.T.S.)
| |
Collapse
|
27
|
Díaz M, Casano P, Quesada T, López-Bermejo A, de Zegher F, Villarroya F, Ibáñez L. Circulating exosomes decrease in size and increase in number between birth and age 7: relations to fetal growth and liver fat. Front Endocrinol (Lausanne) 2023; 14:1257768. [PMID: 38027180 PMCID: PMC10653443 DOI: 10.3389/fendo.2023.1257768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose Exosomes play a key role in cell-to-cell communication by transferring their cargo to target tissues. Little is known on the course of exosome size and number in infants and children. Methods Longitudinally, we assessed the size and number of circulating exosomes at birth and at ages 2 and 7 yr in 75 infants/children born appropriate-for-gestational-age (AGA; n=40) or small-for-gestational-age (SGA; n=35 with spontaneous catch-up), and related those results to concomitantly assessed measures of endocrine-metabolic health (HOMA-IR; IGF-1), body composition (by DXA at ages 0 and 2) and abdominal fat partitioning (subcutaneous, visceral and hepatic fat by MRI at age 7). Results Circulating exosomes of AGAs decreased in size (on average by 4.2%) and increased in number (on average by 77%) between birth and age 7. Circulating exosomes of SGAs (as compared to those of AGAs) had a larger size at birth [146.8 vs 137.8 nm, respectively; p=0.02], and were in lower number at ages 2 [4.3x1011 vs 5.6x1011 particles/mL, respectively; p=0.01] and 7 [6.3x1011 vs 6.8x1011 particles/mL, respectively; p=0.006]. Longitudinal changes were thus more pronounced in SGAs for exosome size, and in AGAs for exosome number. At age 7, exosome size associated (P<0.0001) to liver fat in the whole study population. Conclusion Early-life changes in circulating exosomes include a minor decrease in size and a major increase in number, and these changes may be influenced by fetal growth. Exosome size may become one of the first circulating markers of liver fat in childhood.
Collapse
Affiliation(s)
- Marta Díaz
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Paula Casano
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Quesada
- Department of Biomedicine, Institut de Recerca Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
| | - Abel López-Bermejo
- Pediatric Endocrinology Research Group, Girona Institute for Biomedical Research (IDIBGI), Faculty of Medicine, University of Girona and Dr. Josep Trueta Hospital, Girona, Spain
| | - Francis de Zegher
- Leuven Research & Development, University of Leuven, Leuven, Belgium
| | - Francesc Villarroya
- Network Biomedical Research Center of Physiopathology of Obesity and Nutrition (CIBEROBN), Health Institute Carlos III, Madrid, Spain
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues, Spain
| | - Lourdes Ibáñez
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
28
|
Barnes MVC, Pantazi P, Holder B. Circulating extracellular vesicles in healthy and pathological pregnancies: A scoping review of methodology, rigour and results. J Extracell Vesicles 2023; 12:e12377. [PMID: 37974377 PMCID: PMC10654380 DOI: 10.1002/jev2.12377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Extracellular vesicles (EVs) play a crucial role in pregnancy, revealed by the presence of placental-derived EVs in maternal blood, their in vitro functionality, and their altered cargo in pregnancy pathologies. These EVs are thought to be involved in the development of pregnancy pathologies, such as pre-eclampsia, pre-term birth, and fetal growth restriction, and have been suggested as a source of biomarkers for gestational diseases. However, to accurately interpret their function and biomarker potential, it is necessary to critically evaluate the EV isolation and characterization methodologies used in pregnant cohorts. In this systematic scoping review, we collated the results from 152 studies that have investigated EVs in the blood of pregnant women, and provide a detailed analysis of the EV isolation and characterization methodologies used. Our findings indicate an overall increase in EV concentrations in pregnant compared to non-pregnant individuals, an increased EV count as gestation progresses, and an increased EV count in some pregnancy pathologies. We highlight the need for improved standardization of methodology, greater focus on gestational changes in EV concentrations, and further investigations into the functionality of EVs. Our review suggests that EVs hold great promise as diagnostic and translational tools for gestational diseases. However, to fully realize their potential, it is crucial to improve the standardization and reliability of EV isolation and characterization methodologies, and to gain a better understanding of their functional roles in pregnancy pathologies.
Collapse
Affiliation(s)
- Megan V. C. Barnes
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Paschalia Pantazi
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| | - Beth Holder
- Institute of Reproductive and Developmental Biology, Department of MetabolismDigestion and Reproduction, Imperial College LondonLondonUK
| |
Collapse
|
29
|
Ning H, Tao H. Small RNA sequencing of exosomal microRNAs reveals differential expression of microRNAs in preeclampsia. Medicine (Baltimore) 2023; 102:e35597. [PMID: 37861520 PMCID: PMC10589583 DOI: 10.1097/md.0000000000035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now clear that the placenta is central to disease progression. Exosomal microRNAs (miRNAs) are possible mediators that regulate placenta-related physiological and pathological processes. Placental mesenchymal stem cells have considerable potential to help us understand the pathogenesis and treatment of pregnancy-related diseases. Here, we investigate the exosomal miRNA profiles of human placenta-derived mesenchymal stem cells between healthy pregnant women and those with PE. We performed small RNA sequencing to obtain miRNA profiles, and conducted enrichment analysis of the miRNA target genes to identify differentially expressed miRNAs associated with PE. Overall, we detected 1795 miRNAs; among them, 206 were differentially expressed in women with PE, including 35 upregulated and 171 downregulated miRNAs, when compared with healthy pregnant women. Moreover, we identified possible functions and pathways associated with PE, including angiogenesis, cell proliferation, migration and invasion, and the coagulation-fibrinolysis balance. Eventually, we proposed hsa-miR-675-5p, hsa-miR-3614-5p, and hsa-miR-615-5p as potential regulators of the pathogenesis of PE, and constructed a miRNA-target gene network. Our study identifies possible candidate biomarkers for the diagnosis of PE, and introduces a new direction for further understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Hui Ning
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| | - Hong Tao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
30
|
Paul N, Sultana Z, Fisher JJ, Maiti K, Smith R. Extracellular vesicles- crucial players in human pregnancy. Placenta 2023; 140:30-38. [PMID: 37531747 DOI: 10.1016/j.placenta.2023.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) are lipid-bilayer enclosed membrane vesicles released by cells in physiological and pathological states. EVs are generated and released through a variety of pathways and mediate cellular communication by carrying and transferring signals to recipient cells. EVs are specifically loaded with proteins, nucleic acids (RNAs and DNA), enzymes and lipids, and carry a range of surface proteins and adhesion molecules. EVs contribute to intercellular signalling, development, metabolism, tissue homeostasis, antigen presentation, gene expression and immune regulation. EVs have been categorised into three different subgroups based on their size: exosomes (30-150 nm), microvesicles (100-1000 nm) and apoptotic bodies (1-5 μm). The status of the cells of origin of EVs influences their biology, heterogeneity and functions. EVs, especially exosomes, have been studied for their potential roles in feto-maternal communication and impacts on normal pregnancy and pregnancy disorders. This review presents an overview of EVs, emphasising exosomes and microvesicles in a general context, and then focusing on the roles of EVs in human pregnancy and their potential as diagnostics for adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Nilanjana Paul
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Zakia Sultana
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | - Joshua J Fisher
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| | | | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, School of Medicine and Public Health, University of Newcastle, New Lambton Heights, New South Wales, 2305, Australia.
| |
Collapse
|
31
|
Nguyen CM, Sallam M, Islam MS, Clack K, Soda N, Nguyen NT, Shiddiky MJA. Placental Exosomes as Biomarkers for Maternal Diseases: Current Advances in Isolation, Characterization, and Detection. ACS Sens 2023. [PMID: 37449399 DOI: 10.1021/acssensors.3c00689] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Serving as the interface between fetal and maternal circulation, the placenta plays a critical role in fetal growth and development. Placental exosomes are small membrane-bound extracellular vesicles released by the placenta during pregnancy. They contain a variety of biomolecules, including lipids, proteins, and nucleic acids, which can potentially be biomarkers of maternal diseases. An increasing number of studies have demonstrated the utility of placental exosomes for the diagnosis and monitoring of pathological conditions such as pre-eclampsia and gestational diabetes. This suggests that placental exosomes may serve as new biomarkers in liquid biopsy analysis. This review provides an overview of the current understanding of the biological function of placental exosomes and their potential as biomarkers of maternal diseases. Additionally, this review highlights current barriers and the way forward for standardization and validation of known techniques for exosome isolation, characterization, and detection. Finally, microfluidic devices for exosome research are discussed.
Collapse
Affiliation(s)
- Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Mohamed Sallam
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Md Sajedul Islam
- School of Medicine and Dentistry, Griffith University, Gold Coast Campus, Southport, QLD 4222, Australia
| | - Kimberley Clack
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan Campus, Nathan, QLD 4111, Australia
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| |
Collapse
|
32
|
Elhag DA, Al Khodor S. Exploring the potential of microRNA as a diagnostic tool for gestational diabetes. J Transl Med 2023; 21:392. [PMID: 37330548 PMCID: PMC10276491 DOI: 10.1186/s12967-023-04269-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating host gene expression. Recent studies have indicated a role of miRNAs in the pathogenesis of gestational diabetes mellitus (GDM), a common pregnancy-related disorder characterized by impaired glucose metabolism. Aberrant expression of miRNAs has been observed in the placenta and/or maternal blood of GDM patients, suggesting their potential use as biomarkers for early diagnosis and prognosis. Additionally, several miRNAs have been shown to modulate key signaling pathways involved in glucose homeostasis, insulin sensitivity, and inflammation, providing insights into the pathophysiology of GDM. This review summarizes the current knowledge on the dynamics of miRNA in pregnancy, their role in GDM as well as their potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Duaa Ahmed Elhag
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Maternal and Child Health Division, Research Branch, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
33
|
Huang CC, Hsueh YW, Chang CW, Hsu HC, Yang TC, Lin WC, Chang HM. Establishment of the fetal-maternal interface: developmental events in human implantation and placentation. Front Cell Dev Biol 2023; 11:1200330. [PMID: 37266451 PMCID: PMC10230101 DOI: 10.3389/fcell.2023.1200330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
Early pregnancy is a complex and well-orchestrated differentiation process that involves all the cellular elements of the fetal-maternal interface. Aberrant trophoblast-decidual interactions can lead to miscarriage and disorders that occur later in pregnancy, including preeclampsia, intrauterine fetal growth restriction, and preterm labor. A great deal of research on the regulation of implantation and placentation has been performed in a wide range of species. However, there is significant species variation regarding trophoblast differentiation as well as decidual-specific gene expression and regulation. Most of the relevant information has been obtained from studies using mouse models. A comprehensive understanding of the physiology and pathology of human implantation and placentation has only recently been obtained because of emerging advanced technologies. With the derivation of human trophoblast stem cells, 3D-organoid cultures, and single-cell analyses of differentiated cells, cell type-specific transcript profiles and functions were generated, and each exhibited a unique signature. Additionally, through integrative transcriptomic information, researchers can uncover the cellular dysfunction of embryonic and placental cells in peri-implantation embryos and the early pathological placenta. In fact, the clinical utility of fetal-maternal cellular trafficking has been applied for the noninvasive prenatal diagnosis of aneuploidies and the prediction of pregnancy complications. Furthermore, recent studies have proposed a viable path toward the development of therapeutic strategies targeting placenta-enriched molecules for placental dysfunction and diseases.
Collapse
|
34
|
Sha M, Zhang S, Beejadhursing R, Sun Y, Qin Y, Chen S, Li W. Extracellular vesicles derived from hypoxic HTR-8/SVneo trophoblast inhibit endothelial cell functions through the miR-150-3p /CHPF pathway. Placenta 2023; 138:21-32. [PMID: 37156185 DOI: 10.1016/j.placenta.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/21/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Endothelial dysfunction is one of the basic pathological changes in pre-eclampsia. Extracellular vesicles (EVs) can transport miRNAs expressed by placental trophoblast cells into endothelial cells. The aim of this study was to explore the differential effects of EVs induced by hypoxic trophoblasts (1%HTR-8-EV) and those derived from normoxic trophoblasts (20%HTR-8-EV) on the regulation of endothelial cell functions. METHODS Normoxia and hypoxia were preconditioned to induce trophoblast cells-derived EVs. The effect of EVs, miRNA, target gene, and their interactions on endothelial cell proliferation, migration, and angiogenesis were determined. Quantitative analysis of miR-150-3p and CHPF were verified by qRT-PCR and western blotting. The binding relationship among EVs pathway was demonstrated by luciferase reporter assay. RESULTS Compared with 20%HTR-8-EV, 1%HTR-8-EV had a suppressive effect on proliferation, migration, and angiogenesis of endothelial cells. The results of miRNA sequencing showed the vital role of miR-150-3p in trophoblast-to-endothelium communication. 1%HTR-8-EV carrying miR-150-3p could move into endothelial cells and target chondroitin polymerizing factor (CHPF) gene. MiR-150-3p inhibited endothelial cell functions by regulating CHPF. In patient-derived placental vascular tissues, there was a similar negative correlating between miR-150-3p and CHPF. DISCUSSION Our findings indicate that extracellular vesicles miR-150-3p derived from hypoxic trophoblasts inhibits endothelial cells proliferation, migration, and angiogenesis by modulating CHPF, illuminating a novel mechanism of hypoxic trophoblasts regulation of endothelial cells and their potential role in PE pathogenesis.
Collapse
Affiliation(s)
- Menghan Sha
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shunran Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rajluxmee Beejadhursing
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanan Sun
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Qin
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Suhua Chen
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wei Li
- Department of Obstetrics and Gynecology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
35
|
Rosario FJ, Chopra A, Biggar K, Powell TL, Gupta MB, Jansson T. Placental Remote Control of Fetal Metabolism: Trophoblast mTOR Signaling Regulates Liver IGFBP-1 Phosphorylation and IGF-1 Bioavailability. Int J Mol Sci 2023; 24:7273. [PMID: 37108437 PMCID: PMC10138459 DOI: 10.3390/ijms24087273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The mechanisms mediating the restricted growth in intrauterine growth restriction (IUGR) remain to be fully established. Mechanistic target of rapamycin (mTOR) signaling functions as a placental nutrient sensor, indirectly influencing fetal growth by regulating placental function. Increased secretion and the phosphorylation of fetal liver IGFBP-1 are known to markedly decrease the bioavailability of IGF-1, a major fetal growth factor. We hypothesized that an inhibition of trophoblast mTOR increases liver IGFBP-1 secretion and phosphorylation. We collected conditioned media (CM) from cultured primary human trophoblast (PHT) cells with a silenced RAPTOR (specific inhibition of mTOR Complex 1), RICTOR (inhibition of mTOR Complex 2), or DEPTOR (activates both mTOR Complexes). Subsequently, HepG2 cells, a well-established model for human fetal hepatocytes, were cultured in CM from PHT cells, and IGFBP-1 secretion and phosphorylation were determined. CM from PHT cells with either mTORC1 or mTORC2 inhibition caused the marked hyperphosphorylation of IGFBP-1 in HepG2 cells as determined by 2D-immunoblotting while Parallel Reaction Monitoring-Mass Spectrometry (PRM-MS) identified increased dually phosphorylated Ser169 + Ser174. Furthermore, using the same samples, PRM-MS identified multiple CK2 peptides coimmunoprecipitated with IGFBP-1 and greater CK2 autophosphorylation, indicating the activation of CK2, a key enzyme mediating IGFBP-1 phosphorylation. Increased IGFBP-1 phosphorylation inhibited IGF-1 function, as determined by the reduced IGF-1R autophosphorylation. Conversely, CM from PHT cells with mTOR activation decreased IGFBP-1 phosphorylation. CM from non-trophoblast cells with mTORC1 or mTORC2 inhibition had no effect on HepG2 IGFBP-1 phosphorylation. Placental mTOR signaling may regulate fetal growth by the remote control of fetal liver IGFBP-1 phosphorylation.
Collapse
Affiliation(s)
- Fredrick J. Rosario
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anand Chopra
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Theresa L. Powell
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Madhulika B. Gupta
- Department of Biochemistry, University of Western Ontario, London, ON N6A 3K7, Canada
- Department of Pediatrics, University of Western Ontario, London, ON N6A 3K7, Canada
- Children’s Health Research Institute, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
36
|
Wu S, Li Q, Liu X, Huang H, Wang G, Zhang C, Meng Y, Yang W. Placental exosomal miR-125b triggered endothelial barrier injury in preeclampsia. Placenta 2023; 137:31-37. [PMID: 37054628 DOI: 10.1016/j.placenta.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/12/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is an elusive life-threatening complication of pregnancy, and maternal endothelial dysfunction induced by components from the impaired placenta is a key hallmark of PE. Placenta-derived exosomes in maternal circulation have been correlated with risk of PE, however, the role of exosomes in PE remains to be determined. We hypothesized that placenta-released exosomes link the placental abnormalities with maternal endothelial dysfunction in PE. METHODS Circulating exosomes were collected from plasma samples of preeclamptic patients and normal pregnancies. Endothelial barrier function was examined by transendothelial electrical resistance (TEER) and cell permeability to FITC-dextran assays in human umbilical vein endothelial cells (HUVECs). miR-125b and VE-cadherin gene expression in exosomes and endothelial cells were assessed by qPCR and Western, and the possible post-transcriptional regulation of miR-125b on VE-cadherin was detected by luciferase assay. RESULTS We isolated placenta-derived exosomes in the maternal circulation and found that placenta-derived exosomes from preeclamptic patients (PE-exo) leads to endothelial barrier dysfunction. We then identified decreased expression of VE-cadherin in endothelial cells contribute to the breakdown of the endothelial barrier. Further investigations revealed increased exosomal miR-125b in PE-exo directly inhibited VE-cadherin in HUVECs, thereby mediating the adverse effect of PE-exo on endothelial barrier function. DISCUSSION Placental exosomes link impaired placentation and endothelial dysfunction, thus providing new insight into the pathophysiology of preeclampsia. Exosomal miRNAs derived from placenta contribute to the endothelial dysfunction in PE and could be a promising therapeutic target for PE.
Collapse
Affiliation(s)
- Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| | - Qinghua Li
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; School of Public Health, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Xinlu Liu
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Haiqin Huang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Guohui Wang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Cuijuan Zhang
- Department of Obstetrics, Affiliated Hospital of Weifang Medical University, Weifang, 261031, Shandong, China
| | - Yuhan Meng
- Center for Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, 261042, Shandong, China
| | - Weiwei Yang
- School of Biosciences, Weifang Medical University, Weifang, 261053, Shandong, China.
| |
Collapse
|
37
|
Abeysinghe P, Turner N, Mosaad E, Logan J, Mitchell MD. Dynamics of inflammatory cytokine expression in bovine endometrial cells exposed to cow blood plasma small extracellular vesicles (sEV) may reflect high fertility. Sci Rep 2023; 13:5425. [PMID: 37012302 PMCID: PMC10070242 DOI: 10.1038/s41598-023-32045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aberrant inflammation in the endometrium impairs reproduction and leads to poor fertility. Small extracellular vesicles (sEV) are nanoparticles 30-200 nm in-size and contain transferable bioactive molecules that reflect the parent cell. Holstein-Friesian dairy cows with divergent genetic merit, high- (n = 10) and low-fertile (n = 10), were identified based on fertility breeding value (FBV), cow ovulation synchronization and postpartum anovulatory intervals (PPAI). In this study, we evaluated the effects of sEVs enriched from plasma of high-fertile (HF-EXO) and low-fertile (LF-EXO) dairy cows on inflammatory mediator expression by bovine endometrial epithelial (bEEL) and stromal (bCSC) cells. Exposure to HF-EXO in bCSC and bEEL cells yielded lower expression of PTGS1 and PTGS2 compared to the control. In bCSC cells exposed to HF-EXO, pro-inflammatory cytokine IL1-α was downregulated compared to the untreated control, IL-12α and IL-8 were downregulated compared to the LF-EXO treatment. Our findings demonstrate that sEVs interact with both endometrial epithelial and stromal cells to initiate differential gene expression, specifically genes relate to inflammation. Therefore, even subtle changes on the inflammatory gene cascade in the endometrium via sEV may affect reproductive performance and/or outcomes. Further, sEV from high-fertile animals acts in a unique direction to deactivate prostaglandin synthases in both bCSC and bEEL cells and deactivate pro-inflammatory cytokines in the endometrial stroma. The results suggest that circulating sEV may serve as a potential biomarker of fertility.
Collapse
Affiliation(s)
- Pevindu Abeysinghe
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia.
| | - Natalie Turner
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Eman Mosaad
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Jayden Logan
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Murray D Mitchell
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
38
|
Pourakbari R, Parhizkar F, Soltani-Zangbar MS, Samadi P, Zamani M, Aghebati-Maleki L, Motavalli R, Mahmoodpoor A, Jadidi-Niaragh F, Yousefi B, Kafil HS, Hojjat-Farsangi M, Danaii S, Yousefi M. Preeclampsia-Derived Exosomes Imbalance the Activity of Th17 and Treg in PBMCs from Healthy Pregnant Women. Reprod Sci 2023; 30:1186-1197. [PMID: 36155892 DOI: 10.1007/s43032-022-01059-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/04/2022] [Indexed: 10/14/2022]
Abstract
The disturbance of maternofetal immune tolerance is identified as one of the important issues in the pathology of preeclampsia (PE). PE exosomes are believed to possess significant roles in immune abnormalities. In this study, to assess the possible effects of PE exosomes in the pathophysiology of preeclampsia patients, exosomes were isolated from the serum of PE patients and incubated with peripheral blood mononuclear cells (PBMCs) of healthy pregnant women. Also, exosomes from healthy pregnant women were utilized as the control. Th17/Treg ratio in PE and healthy pregnant women and the effects of PE exosomes on expression level of Th17 and Treg transcription factors, as well as their related cytokines in PBMCs of healthy pregnant women, were evaluated. A significant decrease in Treg cell number and increase in Th17 cells and Th17/Treg ratio were observed in PE patients. Following PE-exosome intervention, a significant increase in mRNA expression level of RORγt, IL-17, IL-23, IL-1β, and IL-6, and significant decrease in IL-10 and TGFβ were evident. On the other hand, no significant difference in FoxP3 level was detected. Additionally, increased IL-6, IL-17, IL-23, and IL-1β levels and decreased IL-10 level in the supernatant of cultured PBMCs from healthy pregnant women following PE-exosome intervention were exhibited. However, TGF-β level did not change significantly. Based on our findings, PE exosomes are able to alter the activity of Th17 and Treg cells as well as their related gene expression and cytokine profiles. These findings support the probable role of PE exosomes in PE pathogenesis.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parisa Samadi
- Hematology Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Anesthesiology Research Team, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Bahman Yousefi
- Molecular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Shahla Danaii
- Gynecology Department, ACECR ART Centre, Eastern Azerbaijan Branch of ACECR, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Zhafir Asyura MMA, Komariah M, Amirah S, Faisal EG, Maulana S, Platini H, Pahria T. Analysis of Varying MicroRNAs as a Novel Biomarker for Early Diagnosis of Preeclampsia: A Scoping Systematic Review of the Observational Study. Int J Prev Med 2023; 14:36. [PMID: 37351051 PMCID: PMC10284242 DOI: 10.4103/ijpvm.ijpvm_156_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/03/2022] [Indexed: 06/24/2023] Open
Abstract
Background Preeclampsia (PE) is a pregnancy-related syndrome with moderate mortality. Early diagnosis of the condition remains difficult, with the current diagnostic modalities being ineffective. The varying microRNAs (miRNAs) as a novel biomarker pose an alternative solution with their potential to be reviewed. Methods This study follows the Preferred Reporting Item for Systematic Review and Meta-Analysis Extended for Scoping Review (PRISMA-ScR). PubMed/MEDLINE, CENTRAL/Cochrane, ProQuest, Science Direct, and Wiley Online Library were used for this review. We only include observational studies. A critical appraisal was assessed in this study using QUADAS-2. Results We retrieved 30 observational studies fulfilling the set criteria. Data extracted were synthesized qualitatively based on miRNAs that are more prominent and their area-under-the-curve (AUC) values. In total, 109 distinct dysregulated miRNAs were identified in comparison to healthy controls, with 10 of them (mir-518b, mirR-155, mirR-155-5p, miR-122-5p, miR-517-5p, miR-520a-5p, miR-525-5p, miR-320a, miR-210, and miR-210-3p) being identified in two or more studies. A brief look at the results shows that 49 miRNAs are downregulated and 74 miRNAs are upregulated, though the fold change of the dysregulation in all studies is not available due to some studies opting for a visual representation of the differences using whisker plots, bar charts, and heat map diagrams to visualize the difference from the reference control. Conclusions This study has analyzed the potential of varying miRNAs as potential diagnostic biomarkers and how they might be used in the future. Despite this, potent miRNAs identified should be more emphasized in future research to determine their applicability and connection with the pathogenesis.
Collapse
Affiliation(s)
| | - Maria Komariah
- Department of Fundamental in Nursing, Faculty of Nursing, Universitas Padjadjaran, Indonesia
| | - Shakira Amirah
- Undergraduate Medical Education, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Emir G. Faisal
- Undergraduate Medical Education, Faculty of Medicine, Universitas Indonesia, Indonesia
| | - Sidik Maulana
- Professional Nursing Program, Faculty of Nursing, Universitas Padjadjaran, Indonesia
| | - Hesti Platini
- Department of Medical-surgical Nursing, Faculty of Nursing, Universitas Padjadjaran, Indonesia
| | - Tuti Pahria
- Department of Medical-surgical Nursing, Faculty of Nursing, Universitas Padjadjaran, Indonesia
| |
Collapse
|
40
|
Chaemsaithong P, Luewan S, Taweevisit M, Chiangjong W, Pongchaikul P, Thorner PS, Tongsong T, Chutipongtanate S. Placenta-Derived Extracellular Vesicles in Pregnancy Complications and Prospects on a Liquid Biopsy for Hemoglobin Bart's Disease. Int J Mol Sci 2023; 24:5658. [PMID: 36982732 PMCID: PMC10055877 DOI: 10.3390/ijms24065658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-scaled vesicles released from all cell types into extracellular fluids and specifically contain signature molecules of the original cells and tissues, including the placenta. Placenta-derived EVs can be detected in maternal circulation at as early as six weeks of gestation, and their release can be triggered by the oxygen level and glucose concentration. Placental-associated complications such as preeclampsia, fetal growth restriction, and gestational diabetes have alterations in placenta-derived EVs in maternal plasma, and this can be used as a liquid biopsy for the diagnosis, prediction, and monitoring of such pregnancy complications. Alpha-thalassemia major ("homozygous alpha-thalassemia-1") or hemoglobin Bart's disease is the most severe form of thalassemia disease, and this condition is lethal for the fetus. Women with Bart's hydrops fetalis demonstrate signs of placental hypoxia and placentomegaly, thereby placenta-derived EVs provide an opportunity for a non-invasive liquid biopsy of this lethal condition. In this article, we introduced clinical features and current diagnostic markers of Bart's hydrops fetalis, extensively summarize the characteristics and biology of placenta-derived EVs, and discuss the challenges and opportunities of placenta-derived EVs as part of diagnostic tests for placental complications focusing on Bart's hydrop fetalis.
Collapse
Affiliation(s)
- Piya Chaemsaithong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suchaya Luewan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Mana Taweevisit
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok 10330, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Pisut Pongchaikul
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool CH64 7TE, UK
| | - Paul Scott Thorner
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S1A8, Canada
| | - Theera Tongsong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiangmai University, Chiangmai 50200, Thailand
| | - Somchai Chutipongtanate
- Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
41
|
Reappraisal of evolving methods in non-invasive prenatal screening: Discovery, biology and clinical utility. Heliyon 2023; 9:e13923. [PMID: 36879971 PMCID: PMC9984859 DOI: 10.1016/j.heliyon.2023.e13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Non-invasive prenatal screening (NIPS) offers an opportunity to screen or determine features associated with the fetus. Earlier, prenatal testing was done with cytogenetic procedures like karyotyping or fluorescence in-situ hybridization, which necessitated invasive methods such as fetal blood sampling, chorionic villus sampling or amniocentesis. Over the last two decades, there has been a paradigm shift away from invasive prenatal diagnostic methods to non-invasive ones. NIPS tests heavily rely on cell-free fetal DNA (cffDNA). This DNA is released into the maternal circulation by placenta. Like cffDNA, fetal cells such as nucleated red blood cells, placental trophoblasts, leukocytes, and exosomes or fetal RNA circulating in maternal plasma, have enormous potential in non-invasive prenatal testing, but their use is still limited due to a number of limitations. Non-invasive approaches currently use circulating fetal DNA to assess the fetal genetic milieu. Methods with an acceptable detection rate and specificity such as sequencing, methylation, or PCR, have recently gained popularity in NIPS. Now that NIPS has established clinical significance in prenatal screening and diagnosis, it is critical to gain insights into and comprehend the genesis of NIPS de novo. The current review reappraises the development and emergence of non-invasive prenatal screen/test approaches, as well as their clinical application, with a focus, on the scope, benefits, and limitations.
Collapse
|
42
|
McCartney SA, Kolarova T, Kanaan SB, Chae A, Laughney CI, Nelson JL, Gammill HS, Shree R. Increased fetal microchimerism in immune and stem cell subsets in preeclampsia. Am J Reprod Immunol 2023; 89:e13666. [PMID: 36482289 PMCID: PMC10413445 DOI: 10.1111/aji.13666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
PROBLEM Preeclampsia (PE) is associated with an increased risk of maternal cardiovascular disease (CVD), however, it is unclear whether this is due to shared underlying physiology or changes which occur during the disease process. Fetal microchimerism (FMc) within the maternal circulation can durably persist decades after pregnancy, is known to occur at greater frequency in PE, and can potentially affect local and systemic immune programming, thus changes in cellular FMc may provide a mechanism for long-term health outcomes associated with PE. METHOD OF STUDY We investigated whether PE is associated with alterations in FMc immune and stem cell populations. We analyzed maternal peripheral blood mononuclear cells (PBMC) from PE cases (n = 16) and matched controls from normal pregnancies (n = 16), from which immune and stem cell subsets were isolated by flow cytometry. Genomic DNA was extracted from total PMBC and individual cell subsets, and FMc frequency was quantified by quantitative polymerase chain reaction assays targeting a fetal-specific non-shared polymorphism identified from family genotyping. RESULTS There was a significant increase in FMc concentration in immune cell subsets in PE cases compared to controls, predominantly in B cell, and NK cell lymphocyte populations. There was no significant difference in FMc frequency or concentration within the stem cell population between PE and controls. CONCLUSIONS The altered concentrations of immune cells within FMc in the maternal blood provides a potential mechanism for the inflammation which occurs during PE to induce long-lasting changes to the maternal immune system and may potentially promote chronic maternal disease.
Collapse
Affiliation(s)
- Stephen A McCartney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Teodora Kolarova
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Sami B Kanaan
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Angel Chae
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Caitlin I Laughney
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - J Lee Nelson
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Hilary S Gammill
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Raj Shree
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
43
|
Poh QH, Rai A, Salamonsen LA, Greening DW. Omics insights into extracellular vesicles in embryo implantation and their therapeutic utility. Proteomics 2023; 23:e2200107. [PMID: 36591946 DOI: 10.1002/pmic.202200107] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.
Collapse
Affiliation(s)
- Qi Hui Poh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Lois A Salamonsen
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Medicine, Monash University, Clayton, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.,Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
44
|
Chen P, Gu M, Wan S, Jiang X, Zhang F, Li Y, Zhou Q, Lu Y, Li L, Wang X. Gestational Diabetes Mellitus Impedes Fetal Lung Development Through Exosome-Dependent Crosstalk Between Trophoblasts and Lung Epithelial Cells. Int J Nanomedicine 2023; 18:641-657. [PMID: 36789391 PMCID: PMC9922507 DOI: 10.2147/ijn.s396194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background Fetal lung underdevelopment (FLUD) is associated with neonatal and childhood severe respiratory diseases, among which gestational diabetes mellitus (GDM) play crucial roles as revealed by recent prevalence studies, yet mechanism underlying GDM-induced FLUD, especially the role of trophoblasts, is not all known. Methods From the perspective of trophoblast-derived exosomes, we established in vitro, ex vivo, in vivo and GDM trophoblast models. Utilizing placenta-derived exosomes (NUB-exos and GDMUB-exos) isolated from normal and GDM umbilical cord blood plasma and trophoblast-derived exosomes (NC-exos and HG-exos) isolated from HTR8/SVneo trophoblasts medium with/without high glucose treatment, we examined their effects on fetal lung development and biological functions. Results We found that, compared with the NUB-exos group, the exosome concentration increased in GDMUB-exos group, and the content of exosomes also changed evidenced by 61 dysregulated miRNAs. After applying these exosomes to A549 alveolar type II epithelial cells, the proliferation and biological functions were suppressed while the proportion of apoptotic cells was increased as compared to the control. In ex vivo studies, we found that GDMUB-exos showed significant suppression on the growth of the fetal lung explants, where the number of terminal buds and the area of explant surface decreased and shrank. Besides, the expression of Fgf10, Vegfa, Flt-1, Kdr and surfactant proteins A, B, C, and D was downregulated in GDMUB-exos group, whilst Sox9 was upregulated. For in vivo studies, we found significant suppression of fetal lung development in GDMUB-exos group. Importantly, we found consistent alterations when we used NC-exos and HG-exos, suggesting a dominant role of trophoblasts in placenta-derived exosome-induced FLUD. Conclusion In conclusion, GDM can adversely affect trophoblasts and alter exosome contents, causing crosstalk disorder between trophoblasts and fetal lung epithelial cells and finally leading to FLUD. Findings of this study will shine insight into the theoretical explanation for the pathogenesis of FLUD.
Collapse
Affiliation(s)
- Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Xiaotong Jiang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yuchen Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China,Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People’s Republic of China,Correspondence: Lei Li; Xietong Wang, Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China, Tel +8615168889200; +8615168888928, Email ;
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital, Shandong University, Jinan, People’s Republic of China,Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China,Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, People’s Republic of China,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, People’s Republic of China
| |
Collapse
|
45
|
Redline RW, Roberts DJ, Parast MM, Ernst LM, Morgan TK, Greene MF, Gyamfi-Bannerman C, Louis JM, Maltepe E, Mestan KK, Romero R, Stone J. Placental pathology is necessary to understand common pregnancy complications and achieve an improved taxonomy of obstetrical disease. Am J Obstet Gynecol 2023; 228:187-202. [PMID: 35973475 PMCID: PMC10337668 DOI: 10.1016/j.ajog.2022.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The importance of a fully functioning placenta for a good pregnancy outcome is unquestioned. Loss of function can lead to pregnancy complications and is often detected by a thorough placental pathologic examination. Placental pathology has advanced the science and practice of obstetrics and neonatal-perinatal medicine by classifying diseases according to underlying biology and specific patterns of injury. Many past obstacles have limited the incorporation of placental findings into both clinical studies and day-to-day practice. Limitations have included variability in the nomenclature used to describe placental lesions, a shortage of perinatal pathologists fully competent to analyze placental specimens, and a troubling lack of understanding of placental diagnoses by clinicians. However, the potential use of placental pathology for phenotypic classification, improved understanding of the biology of adverse pregnancy outcomes, the development of treatment and prevention, and patient counseling has never been greater. This review, written partly in response to a recent critique published in a major obstetrics-gynecology journal, reexamines the role of placental pathology by reviewing current concepts of biology; explaining the most recent terminology; emphasizing the usefulness of specific diagnoses for obstetrician-gynecologists, neonatologists, and patients; previewing upcoming changes in recommendations for placental submission; and suggesting future improvements. These improvements should include further consideration of overall healthcare costs, cost-effectiveness, the clinical value added of placental assessment, improvements in placental pathology education and practice, and leveraging of placental pathology to identify new biomarkers of disease and evaluate novel therapies tailored to specific clinicopathologic phenotypes of both women and infants.
Collapse
Affiliation(s)
- Raymond W Redline
- Department of Pathology and Reproductive Biology, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center and Cleveland, OH.
| | - Drucilla J Roberts
- Department of Pathology, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| | - Mana M Parast
- Department of Pathology, Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA
| | - Linda M Ernst
- Department of Pathology and Laboratory Medicine, NorthShore University HealthSystem, Evanston, IL
| | - Terry K Morgan
- Department of Pathology and Obstetrics and Gynecology, Center for Developmental Health, Oregon Health Sciences University, Portland, OR
| | - Michael F Greene
- Department of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School and Massachusetts General Hospital, Boston, MA
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA
| | - Judette M Louis
- Department of Obstetrics and Gynecology, Morsani College of Medicine, University South Florida, Tampa, FL
| | - Emin Maltepe
- Department of Pediatrics, University California, San Francisco, San Francisco, CA
| | - Karen K Mestan
- Department of Pediatrics and Neonatology, University of California, San Diego, School of Medicine and Rady Children's Hospital, San Diego, CA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, Maryland, Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI
| | - Joanne Stone
- Raquel and Jaime Gilinski Department of Obstetrics, Gynecology, and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
46
|
Jalaludin I, Nguyen HQ, Jang KS, Lee J, Lubman DM, Kim J. Matrix-assisted laser desorption/ionization-Fourier-transform ion cyclotron resonance-mass spectrometry analysis of exosomal lipids from human serum. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9427. [PMID: 36321680 PMCID: PMC9757854 DOI: 10.1002/rcm.9427] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Exosomes contain biomarkers such as proteins and lipids that help in understanding normal physiology and diseases. Lipids, in particular, are infrequently studied using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) for biomarker discovery. In this study, MALDI was equipped with a high-resolution MS to investigate exosomal lipids from human serum. METHODS Exosomal lipids were profiled using MALDI with Fourier-transform ion cyclotron resonance (FTICR)-MS. Four matrices (i.e., α-cyano-4-hydroxycinnamic acid [CHCA], 2,5-dihydroxybenzoic acid, sinapinic acid, and graphene oxide [GO]) and three sample preparation methods (i.e., dried droplet, thin layer, and two layer) were compared for the number of lipid species detected and the relative abundance of each lipid from human serum and human serum exosomes. RESULTS In sum, 172 and 89 lipid species were identified from human serum and human serum exosomes, respectively, using all the methods. The highest number of exosome lipid species, 69, was detected using the CHCA matrix, whereas only 8 exosome lipid species were identified using the GO matrix. Among the identified lipid species, phosphatidylcholine was identified most frequently, probably due to the use of a positive ion mode. CONCLUSIONS Exosomes and human serum showed comparable lipid profiles as determined using MALDI-FTICR-MS. These findings provide a new perspective on exosomal lipidomics analysis and may serve as a foundation for future lipidomics-based biomarker research using MALDI-FTICR-MS.
Collapse
Affiliation(s)
- Iqbal Jalaludin
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Huu-Quang Nguyen
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Kyoung-Soon Jang
- Biomedical Omics Center, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, Republic of Korea
| | - David M Lubman
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University, Daejeon, Republic of Korea
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
47
|
Li Z, Tao M, Huang M, Pan W, Huang Q, Wang P, Zhang Y, Situ B, Zheng L. Quantification of placental extracellular vesicles in different pregnancy status via single particle analysis method. Clin Chim Acta 2023; 539:266-273. [PMID: 36587781 DOI: 10.1016/j.cca.2022.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND The nano-sized, lipid bilayer-delimited placental extracellular vesicles (PEVs) released by the placenta are now regarded as important mediators involved in various physiological and pathological processes of pregnant women. The number and contents of PEVs are significantly altered in preeclampsia and are considered as potential biomarkers. However, the distribution pattern of PEVs in the maternal circulation in different pregnancy status is still unclear for the limitation of the traditional method with low sensitivity. METHODS In this work, we recruited 561 pregnant women with different pregnancy status and investigated the distribution pattern of PEVs in the maternal circulation based on a single extracellular vesicle analysis method and placental alkaline phosphatase (PLAP), a placenta-specific marker. RESULTS The concentration of PEVs in pregnant women increased with the progression of gestational age, while the ratio of PEVs decreased to about 10% in the third trimester. Surprisingly, the PLAP+ EVs also presented in the plasma of non-pregnant women and normal male about 5%. The change in the ratio of PEVs can reflect the pregnancy status and also had a better diagnostic value in severe preeclampsia (AUC = 0.7811). CONCLUSIONS Our study not only reveals the distribution pattern of PEVs, but also identifies the diagnostic potential of PEVs as biomarkers.
Collapse
Affiliation(s)
- Zixiong Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Maliang Tao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weilun Pan
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qiuyu Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Pingping Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ye Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Bo Situ
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Fasoulakis Z, Koutras A, Ntounis T, Antsaklis P, Theodora M, Valsamaki A, Daskalakis G, Kontomanolis EN. Inflammatory Molecules Responsible for Length Shortening and Preterm Birth. Cells 2023; 12:cells12020209. [PMID: 36672145 PMCID: PMC9856720 DOI: 10.3390/cells12020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
It is estimated that inflammation at the placental-maternal interface is directly responsible for or contributes to the development of 50% of all premature deliveries. Chorioamnionitis, also known as the premature rupture of the amniotic membrane in the mother, is the root cause of persistent inflammation that preterm newborns experience. Beyond contributing to the onset of early labor, inflammation is a critical element in advancing several conditions in neonates, including necrotizing enterocolitis, retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage, retinopathy of prematurity and periventricular leukomalacia. Notably, the immune systems of preterm infants are not fully developed; immune defense mechanisms and immunosuppression (tolerance) have a delicate balance that is easily upset in this patient category. As a result, premature infants are exposed to different antigens from elements such as hospital-specific microbes, artificial devices, medications, food antigens and hypoxia/hyperoxia. This has detrimental implications for preterm deliveries of less than 28 weeks because they have not yet evolved the mechanisms to tolerate maternal and self-antigens.
Collapse
Affiliation(s)
- Zacharias Fasoulakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
- Correspondence:
| | - Antonios Koutras
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Thomas Ntounis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Panos Antsaklis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Marianna Theodora
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Asimina Valsamaki
- Department of Internal Medicine, Koutlimbaneio and Triantafylleio General Hospital of Larissa, 41221 Larissa, Greece
| | - George Daskalakis
- 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital Alexandra, 11528 Athens, Greece
| | - Emmanuel N. Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
49
|
Basile M, Centurione L, Passaretta F, Stati G, Soritau O, Susman S, Gindraux F, Silini A, Parolini O, Di Pietro R. Mapping of the Human Amniotic Membrane: In Situ Detection of Microvesicles Secreted by Amniotic Epithelial Cells. Cell Transplant 2023; 32:9636897231166209. [PMID: 37077027 PMCID: PMC10126782 DOI: 10.1177/09636897231166209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
The potential clinical applications of human amniotic membrane (hAM) and human amniotic epithelial cells (hAECs) in the field of regenerative medicine have been known in literature since long. However, it has yet to be elucidated whether hAM contains different anatomical regions with different plasticity and differentiation potential. Recently, for the first time, we highlighted many differences in terms of morphology, marker expression, and differentiation capabilities among four distinct anatomical regions of hAM, demonstrating peculiar functional features in hAEC populations. The aim of this study was to investigate in situ the ultrastructure of the four different regions of hAM by means of transmission electron microscopy (TEM) to deeply understand their peculiar characteristics and to investigate the presence and localization of secretory products because to our knowledge, there are no similar studies in the literature. The results of this study confirm our previous observations of hAM heterogeneity and highlight for the first time that hAM can produce extracellular vesicles (EVs) in a heterogeneous manner. These findings should be considered to increase efficiency of hAM applications within a therapeutic context.
Collapse
Affiliation(s)
- Mariangela Basile
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| | - Lucia Centurione
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Francesca Passaretta
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| | - Olga Soritau
- The Oncology Institute “Prof. Dr. Ion Chiricuta,” Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences-Histology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pathology, IMOGEN Research Center, Cluj-Napoca, Romania
| | - Florelle Gindraux
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU Besançon, Besançon, France
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, Besançon, France
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
50
|
Li N, Gu Y, Tang J, Li Y, Chen D, Xu Z. Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia. Methods Mol Biol 2023; 2695:263-277. [PMID: 37450125 DOI: 10.1007/978-1-0716-3346-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. The early prediction or accurate diagnosis of PE is a concern of researchers. Liquid biopsy can be analyzed for cell-free nucleic acids and exosomes. Because circulating non-coding RNAs (ncRNAs) and peripheral blood exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of research on early predictive and diagnostic biomarkers for preeclampsia. In this review, we focus on recent studies addressing the roles of circulating ncRNAs and exosomes in PE, with particular attention paid to the potential application value of placenta-derived exosomes and circulating ncRNAs as PE-specific biomarkers.
Collapse
Affiliation(s)
- Na Li
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Ying Gu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Daozhen Chen
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| |
Collapse
|