1
|
Knight K, Breedlove S, Obisesan T, Egnot M, Daneshdoost N, King G, Meyn L, Gall K, Moalli P. Vaginal host response to polycarbonate urethane, an alternative material for the repair of pelvic organ prolapse. Acta Biomater 2024; 189:298-310. [PMID: 39362452 DOI: 10.1016/j.actbio.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
Complications following surgical repair of pelvic organ prolapse (POP) with polypropylene mesh (PPM) are common. Recent data attributes complications, in part, to stiffness mismatches between the vagina and PPM. We developed a 3D printed elastomeric membrane (EM) from a softer polymer, polycarbonate urethane (PCU). EMs were manufactured with more material given the low inherent material strength of PCU. We hypothesized that the EMs would be associated with an improved host response as compared to PPM. A secondary goal was to optimize the material distribution (fiber width and device thickness) within EMs, in regards to the host response. EM constructs (2 × 1 cm2) with varied polymer stiffness, fiber width, and device thickness were implanted onto the vagina of New Zealand white rabbits for 12 weeks and compared to similarly sized PPMs. Sham implanted animals served as controls. Mixed effects generalized linear models were used to compare the effect of construct type accounting for differences in independent variables. EMs had an overall superior host response compared to PPM as evidenced by preservation of vaginal smooth muscle morphology (p-values<0.01), decreased total cellular response to construct fibers (p-values<0.001), and a reduced percent of macrophages (p-values<0.02) independent of how the material was distributed. Both PPM and EMs negatively impacted vaginal contractility and glycosaminoglycan (GAG) content relative to Sham (all p-values<0.001) with EMs having less of an impact on GAGs (p-values<0.003). The results suggest that softer PCU EMs made with more material are well tolerated by the vagina and comprises a future material for POP repair devices. STATEMENT OF SIGNIFICANCE: Prolapse is a debilitating condition in which loss of support to the vagina causes it and the organs supported by it to descend from their normal position in the pelvis. Surgical solutions to rebuild support involves the use of polypropylene mesh which is orders of magnitude stiffer than the vagina. This mismatch results in complications including exposure of the mesh into the vagina and pain. To provide an innovative solution for women, we have developed an elastomeric membrane from a soft polymer that matches the stiffness of the vagina. Here, we show in a rabbit animal model that this device incorporates better into the vagina and is associated with an overall improved host response as compared to polypropylene mesh.
Collapse
Affiliation(s)
- Katrina Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States.
| | - Sophya Breedlove
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Temitope Obisesan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Morgan Egnot
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Niusha Daneshdoost
- Departments of Mechanical Engineering and Material Science, Duke University, Durham, NC, United States
| | - Gabrielle King
- Magee-Womens Research Institute, Pittsburgh, PA, United States
| | - Leslie Meyn
- Magee-Womens Research Institute, Pittsburgh, PA, United States; Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ken Gall
- Departments of Mechanical Engineering and Material Science, Duke University, Durham, NC, United States
| | - Pamela Moalli
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Magee-Womens Research Institute, Pittsburgh, PA, United States; Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Guo T, Hu X, Du Z, Wang X, Lang J, Liu J, Xu H, Sun Z. Modification of transvaginal polypropylene mesh with co-axis electrospun nanofibrous membrane to alleviate complications following surgical implantation. J Nanobiotechnology 2024; 22:598. [PMID: 39363196 PMCID: PMC11447934 DOI: 10.1186/s12951-024-02872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Surgeries for treating pelvic organ prolapse involving the utilization of synthetic mesh have been associated with complications such as mesh erosion, postoperative pain, and dyspareunia. This work aimed to reduce the surgical implantation-associated complications by nanofibrous membranes on the surface of the polypropylene mesh. The nanofiber of the nanofibrous membrane, which was fabricated by co-axial electrospinning, was composed of polyurethane as fiber core and gelatin as the fiber out layer. The biocompatibility of the modified mesh was evaluated in vitro by cell proliferation assay, immunofluorescence stain, hematoxylin-eosin (HE) staining, and mRNA sequencing. Polypropylene mesh and modified mesh were implanted in a rat pelvic organ prolapse model. Mesh-associated complications were documented. HE and Picro-Sirius red staining, immunohistochemistry, and western blotting were conducted to assess the interactions between the modified mesh and vaginal tissues. RESULTS The modified mesh significantly enhanced the proliferation of fibroblasts and exerted a positive regulatory effect on the extracellular matrix anabolism in vitro. When evaluated in vivo, no instances of mesh exposure were observed in the modified mesh group. The modified mesh maintained a relatively stable histological position without penetrating the muscle layer or breaching the epidermis. The collagen content in the vaginal wall of rats with modified mesh was significantly higher, and the collagen I/III ratio was lower, indicating better tissue elasticity. The expression of metalloproteinase was decreased while the expression levels of tissue inhibitor of metalloproteinase were increased in the modified mesh group, suggesting an inhibition of collagen catabolism. The expression of TGF-β1 and the phosphorylation levels of Smad3, p38 and ERK1/2 were significantly increased in the modified mesh group. NM significantly improved the biocompatibility of PP mesh, as evidenced by a reduction in macrophage count, decreased expression levels of TNF-α, and an increase in microvascular density. CONCLUSIONS The nanofibrous membrane-coated PP mesh effectively reduced the surgical implantation complications by inhibiting the catabolism of collagen in tissues and improving the biocampibility of PP mesh. The incorporation of co-axial fibers composed of polyurethane and gelatin with polypropylene mesh holds promise for the development of enhanced surgical materials for pelvic organ prolapse in clinical applications.
Collapse
Affiliation(s)
- Tao Guo
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Xuechun Hu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhe Du
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Xiuqi Wang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Institutes of Health Science, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, 300192, China.
| | - Zhijing Sun
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Obstetric & Gynecologic Diseases, No. 1 Shuaifuyuan, Dongcheng District, Beijing, China.
| |
Collapse
|
3
|
Artsen AM, Liang R, Meyn L, Bradley MS, Moalli PA. Dysregulated wound healing in the pathogenesis of urogynecologic mesh complications. Sci Rep 2023; 13:21437. [PMID: 38052928 PMCID: PMC10698181 DOI: 10.1038/s41598-023-48388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
To test the hypothesis that dysregulated wound healing is associated with Urogynecologic mesh complications, we collected vaginal cell secretions using vaginal swabs after polypropylene mesh implantation in patients with (N = 39) and without (N = 40) complication. A customized multiplex immunoassay measured markers of inflammation (MCP-1, IGFBP-1, IL-2, IL-10, IL-17, PDGF-BB, bFGF, IL-1b, IL-6, IL-12p70, TNF-α), neuroinflammation (IL-1RA, TGF-β, IL-15, IL-18, IL-3, M-CSF), angiogenesis (VEGF), and matrix proteins (fibronectin, tenasin c, thrombospondin-2, lumican) between groups. Patients with complications were younger, heavier, implanted with mesh longer, and more likely to be ever smokers. A 5 kg/m2 BMI increase and ever-smoking were associated with a 2.4-fold and sixfold increased risk of complication, respectively. Patients with the highest tertile of bFGF, fibronectin, thrombospondin-2, TNF-β, or VEGF had an odds ratio (OR) of 11.8 for having a mesh complication while ≥ 3 elevated had an OR of 237 while controlling for age, BMI, and smoking. The highest tertile of bFGF, thrombospondin-2, and fibronectin together perfectly indicated a complication (P < 0.0001). A receiver-operator curve for high bFGF, thrombospondin-2, and fibronectin showed excellent discrimination between complications and controls (AUC 0.87). These data provide evidence of dysregulated wound healing in mesh complications. Modifiable factors provide potential targets for patient counseling and interventions.
Collapse
Affiliation(s)
- Amanda M Artsen
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA.
| | - Rui Liang
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Leslie Meyn
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Megan S Bradley
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| | - Pamela A Moalli
- Department of Obstetrics, Gynecology and Reproductive Sciences at Magee Womens Hospital, Magee-Womens Research Institute, University of Pittsburgh, 204 Craft Avenue 312A, Lab A320, Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Chen J, Tang X, Wang Z, Perez A, Yao B, Huang K, Zhang Y, King MW. Techniques for navigating postsurgical adhesions: Insights into mechanisms and future directions. Bioeng Transl Med 2023; 8:e10565. [PMID: 38023705 PMCID: PMC10658569 DOI: 10.1002/btm2.10565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 12/01/2023] Open
Abstract
Postsurgical adhesions are a common complication of surgical procedures that can lead to postoperative pain, bowel obstruction, infertility, as well as complications with future procedures. Several agents have been developed to prevent adhesion formation, such as barriers, anti-inflammatory and fibrinolytic agents. The Food and Drug Administration (FDA) has approved the use of physical barrier agents, but they have been associated with conflicting clinical studies and controversy in the clinical utilization of anti-adhesion barriers. In this review, we summarize the human anatomy of the peritoneum, the pathophysiology of adhesion formation, the current prevention agents, as well as the current research progress on adhesion prevention. The early cellular events starting with injured mesothelial cells and incorporating macrophage response have recently been found to be associated with adhesion formation. This may provide the key component for developing future adhesion prevention methods. The current use of physical barriers to separate tissues, such as Seprafilm®, composed of hyaluronic acid and carboxymethylcellulose, can only reduce the risk of adhesion formation at the end stage. Other anti-inflammatory or fibrinolytic agents for preventing adhesions have only been studied within the context of current research models, which is limited by the lack of in-vitro model systems as well as in-depth study of in-vivo models to evaluate the efficiency of anti-adhesion agents. In addition, we explore emerging therapies, such as gene therapy and stem cell-based approaches, that may offer new strategies for preventing adhesion formation. In conclusion, anti-adhesion agents represent a promising approach for reducing the burden of adhesion-related complications in surgical patients. Further research is needed to optimize their use and develop new therapies for this challenging clinical problem.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Xiaoqi Tang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Ziyu Wang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Arielle Perez
- UNC School of Medicine Department of SurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Benjamin Yao
- Montefiore Medical Center Department of Obstetrics & Gynecology & Women's Health ServicesMontefiore Medical CenterBronxNew YorkUSA
| | - Ke Huang
- Joint Department of Biomedical EngineeringNorth Carolina State University & University of North Carolina at Chapel HillRaleighNorth CarolinaUSA
- Department of Molecular Biomedical SciencesNorth Carolina State UniversityRaleighNorth CarolinaUnited States
| | - Yang Zhang
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Martin W. King
- Department of Textile Engineering, Chemistry and ScienceNorth Carolina State UniversityRaleighNorth CarolinaUSA
- College of Textiles, Donghua UniversityShanghaiSongjiangChina
| |
Collapse
|
6
|
Knight KM. Biomaterials Interventions for Pelvic Organ Prolapse. JPHYS MATERIALS 2023; 6:19-21. [PMID: 36883191 PMCID: PMC9986830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Katrina M Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Knight KM, King GE, Palcsey SL, Suda A, Liang R, Moalli PA. Mesh Deformation: a mechanism underlying polypropylene prolapse mesh complications in vivo. Acta Biomater 2022; 148:323-335. [PMID: 35671876 DOI: 10.1016/j.actbio.2022.05.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/12/2022] [Accepted: 05/31/2022] [Indexed: 12/12/2022]
Abstract
Polypropylene meshes used in pelvic organ prolapse (POP) repair are hampered by complications. Most POP meshes are highly unstable after tensioning ex vivo, as evidenced by marked deformations (pore collapse and wrinkling) that result in altered structural properties and material burden. By intentionally introducing collapsed pores and wrinkles into a mesh that normally has open pores and remains relatively flat after implantation, we reproduce mesh complications in vivo. To do this, meshes were implanted onto the vagina of rhesus macaques in nondeformed (flat) vs deformed (pore collapse +/- wrinkles) configurations and placed on tension. Twelve weeks later, animals with deformed meshes had two complications, 1) mesh exposure through the vaginal epithelium, and 2) myofibroblast proliferation with fibrosis - a mechanism of pain. The overarching response to deformed mesh was vaginal thinning associated with accelerated apoptosis, reduced collagen content, increased proteolysis, deterioration of mechanical integrity, and loss of contractile function consistent with stress shielding - a precursor to mesh exposure. Regional differences were observed, however, with some areas demonstrating myofibroblast proliferation and matrix deposition. Variable mechanical cues imposed by deformed meshes likely induce these two disparate responses. Utilizing meshes associated with uniform stresses on the vagina by remaining flat with open pores after tensioning is critical to improving outcomes. STATEMENT OF SIGNIFICANCE: Pain and exposure are the two most reported complications associated with the use of polypropylene mesh in urogynecologic procedures. Most meshes have unstable geometries as evidenced by pore collapse and wrinkling after tensioning ex vivo, recapitulating what is observed in meshes excised from women with complications in vivo. We demonstrate that collapsed pores and wrinkling results in two distinct responses 1) mesh exposure associated with tissue degradation and atrophy and 2) myofibroblast proliferation and matrix deposition consistent with fibrosis, a tissue response associated with pain. In conclusion, mesh deformation leads to areas of tissue degradation and myofibroblast proliferation, the likely mechanisms of mesh exposure and pain, respectively. These data corroborate that mesh implantation in a flat configuration with open pores is a critical factor for reducing complications in mesh-augmented surgeries.
Collapse
Affiliation(s)
- Katrina M Knight
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Magee-Womens Research Institute, Pittsburgh, PA.
| | | | | | - Amanda Suda
- School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Rui Liang
- Magee-Womens Research Institute, Pittsburgh, PA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Pamela A Moalli
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA; Division of Urogynecology and Reconstructive Pelvic Surgery, Magee-Womens Hospital of the University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
8
|
Deblaere S, Hauspy J, Hansen K. Mesh exposure following minimally invasive sacrocolpopexy: a narrative review. Int Urogynecol J 2022; 33:2713-2725. [DOI: 10.1007/s00192-021-04998-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022]
|
9
|
Abhari RE, Izett-Kay ML, Morris HL, Cartwright R, Snelling SJB. Host-biomaterial interactions in mesh complications after pelvic floor reconstructive surgery. Nat Rev Urol 2021; 18:725-738. [PMID: 34545239 DOI: 10.1038/s41585-021-00511-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.
Collapse
Affiliation(s)
- Roxanna E Abhari
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.
| | - Matthew L Izett-Kay
- Department of Urogynaecology, Oxford University Hospitals NHS Trust, Oxford, UK.,Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Hayley L Morris
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK
| | - Rufus Cartwright
- Department of Urogynaecology, London North West Hospitals NHS Trust, London, UK.,Department of Epidemiology & Biostatistics, Imperial College London, London, UK
| | - Sarah J B Snelling
- Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
10
|
Exosome-Induced Vaginal Tissue Regeneration in a Porcine Mesh Exposure Model. Female Pelvic Med Reconstr Surg 2021; 27:609-615. [PMID: 34554143 DOI: 10.1097/spv.0000000000001005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES The purpose of this study was to explore the utility of an injectable purified exosome product derived from human apheresis blood to (1) augment surgical closure of vaginal mesh exposures, and (2) serve as a stand-alone therapy for vaginal mesh exposure. METHODS Sixteen polypropylene meshes (1×1-3×3 cm) were implanted in the vaginas of 7 Yorkshire-crossed pigs by urogynecologic surgeons (day 0). On day 7, group 1 underwent surgical intervention via vaginal tissue suture reclosure with (n=2 pigs, n=4 meshes) or without (n=2 pigs, n=4 meshes) exosome injection; group 2 underwent medical intervention with an exosome injection (n=3, n=8 meshes). One animal in group 2 was given oral 2'-deoxy-5-ethynyluridine to track cellular regeneration. Euthansia occurred at 5 weeks. RESULTS Mesh exposures treated with surgical closure alone experienced reexposure of the mesh. Exosome treatment with or without surgical closure resulted in partial to full mesh exposure resolution up to 3×3 cm. Exosome-treated tissues had significantly thicker regenerated epithelial tissue (208 μm exosomes-only and 217 μm surgery+exosomes, versus 80 μm for surgery-only; P < 0.05); evaluation of 2'-deoxy-5-ethynyluridine confirmed de novo regeneration throughout the epithelium and underlying tissues. Capillary density was significantly higher in the surgery+exosomes group (P = 0.03). Surgery-only tissues had a higher inflammatory and fibrosis response as compared with exosome-treated tissues. CONCLUSIONS In this pilot study, exosome treatment augmented healing in the setting of vaginal mesh exposure, reducing the incidence of mesh reexposure after suture closure and decreasing the area of mesh exposure through de novo tissue regeneration after exosome injection only. Further study of varied local tissue conditions and mesh configurations is warranted.
Collapse
|
11
|
Characterization of innate and adaptive immune cells involved in the foreign body reaction to polypropylene meshes in the human abdomen. Hernia 2021; 26:309-323. [PMID: 33788008 PMCID: PMC8881270 DOI: 10.1007/s10029-021-02396-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 12/25/2022]
Abstract
Background Polypropylene (PP) mesh is widely used to reinforce tissues. The foreign body reaction (FBR) to the implant is dominated by innate immune cells, especially macrophages. However, considerable numbers of adaptive immune cells, namely T cells, have also been regularly observed, which appear to play a crucial role in the long-term host response. Methods This study investigated the FBR to seven human PP meshes, which were removed from the abdomen for recurrence after a median of one year. Using immunofluorescence microscopy, the FBR was examined for various innate (CD11b+ myeloid, CD68+ macrophages, CD56+ NK) and adaptive immune cells (CD3+ T, CD4+ T-helper, CD8+ cytotoxic, FoxP3+ T-regulatory, CD20+ B) as well as “conventional” immune cells (defined as cells expressing their specific immune cell marker without co-expressing CD68). Results T-helper cells (19%) and regulatory T-cells (25%) were present at comparable rates to macrophages, and clustered significantly toward the mesh fibers. For all cell types the lowest proportions of “conventional” cells (< 60%) were observed at the mesh–tissue interface, but increased considerably at about 50–100 µm, indicating reduced stimulation with rising distance to the mesh fibers. Conclusion Both innate and adaptive immune cells participate in the chronic FBR to PP meshes with T cells and macrophages being the predominant cell types, respectively. In concordance with the previous data, many cells presented a “hybrid” pattern near the mesh fibers. The complexity of the immune reaction seen within the foreign body granuloma may explain why approaches focusing on specific cell types have not been very successful in reducing the chronic FBR. Supplementary Information The online version contains supplementary material available at 10.1007/s10029-021-02396-7.
Collapse
|
12
|
T regulatory cells and TGF-β1: Predictors of the host response in mesh complications. Acta Biomater 2020; 115:127-135. [PMID: 32771596 DOI: 10.1016/j.actbio.2020.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Polypropylene mesh is frequently used in urogynecology procedures; however, pain and mesh exposure into the vagina occur in ~10% of cases. Mesh-induced pain, which occurs with or without exposure, persists after removal in 50% of cases. Chronic pain history predicts poor response to mesh removal but only a fraction have this diagnosis. We hypothesize that mesh induced pain is correlated with fibrosis and failure to improve with a heightened inflammatory and fibrotic host response. Women undergoing mesh removal were offered participation in a mesh biorepository. Standardized questionnaires including visual analog scale (VAS) pelvic pain scores were completed at enrollment and 6 months after removal. Responders were considered those with ≥13 mm VAS improvement. 30 mesh-tissue explants were randomly selected for analysis. Samples were labeled for CD8, CD4 (Th) and FoxP3 (Tregs). Peri-fiber collagen deposition (fibrosis) was measured using a customized semi-quantitative assay. Concentrations of TGF-b1, bFGF, MCP-1, PDGF-BB, and IGFBP-1 in tissue were determined by immunoassay and compared to vaginal control biopsies with pathway analysis. VAS pain scores were correlated with degree of histologic fibrosis. Responders had more Tregs (7.8 vs 0.3 per mm2, p = 0.036) and patients were 1.6 times as likely to be a responder for every additional Treg/mm2 (p = 0.05). Pro-fibrotic TGF-β1 was doubled in nonresponders (p = 0.032). On pathway analysis, decreased bFGF and increased PDGF-BB provide a possible mechanism for upregulation of TGF-β1. In conclusion, fibrosis is a plausible mechanism of pain complications and the adaptive immune response likely contributes to mitigation/prevention of complications and recovery in affected patients. STATEMENT OF SIGNIFICANCE: Polypropylene mesh improves anatomical outcomes in urogynecologic procedures, but is associated with complications, including pain and exposure through the vaginal epithelium. Mesh-induced pain is difficult to treat, and it is unclear why only half of women experience pain improvement after mesh removal. In this study, patient pain correlated with the presence of fibrosis and women with more T regulatory cells and lower TGF-β1 were more likely to have pain improvement following mesh removal. These findings implicate fibrosis as a mechanism of pain complications and suggest that the adaptive immune response may be responsible for prevention of complication and recovery. This improved understanding of how mesh can lead to pain moves us closer to the ultimate goal of preventing mesh complications.
Collapse
|
13
|
Paul K, Darzi S, Werkmeister JA, Gargett CE, Mukherjee S. Emerging Nano/Micro-Structured Degradable Polymeric Meshes for Pelvic Floor Reconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1120. [PMID: 32517067 PMCID: PMC7353440 DOI: 10.3390/nano10061120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Pelvic organ prolapse (POP) is a hidden women's health disorder that impacts 1 in 4 women across all age groups. Surgical intervention has been the only treatment option, often involving non-degradable meshes, with variable results. However, recent reports have highlighted the adverse effects of meshes in the long term, which involve unacceptable rates of erosion, chronic infection and severe pain related to mesh shrinkage. Therefore, there is an urgent unmet need to fabricate of new class of biocompatible meshes for the treatment of POP. This review focuses on the causes for the downfall of commercial meshes, and discusses the use of emerging technologies such as electrospinning and 3D printing to design new meshes. Furthermore, we discuss the impact and advantage of nano-/microstructured alternative meshes over commercial meshes with respect to their tissue integration performance. Considering the key challenges of current meshes, we discuss the potential of cell-based tissue engineering strategies to augment the new class of meshes to improve biocompatibility and immunomodulation. Finally, this review highlights the future direction in designing the new class of mesh to overcome the hurdles of foreign body rejection faced by the traditional meshes, in order to have safe and effective treatment for women in the long term.
Collapse
Affiliation(s)
- Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (K.P.); (S.D.); (J.A.W.); (C.E.G.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|
14
|
Klinge U, Dievernich A, Tolba R, Klosterhalfen B, Davies L. CD68+ macrophages as crucial components of the foreign body reaction demonstrate an unconventional pattern of functional markers quantified by analysis with double fluorescence staining. J Biomed Mater Res B Appl Biomater 2020; 108:3134-3146. [PMID: 32475069 DOI: 10.1002/jbm.b.34639] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/20/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
Implants like meshes for the reinforcement of tissues implement the formation of a persistent inflammation with an ambient fibrotic reaction. In the inflammatory infiltrate several distinct cell types have been identified, but CD68+ macrophages are supposed to be most important. To investigate the collaboration among the various cell types within the infiltrate we performed at explanted meshes from humans double fluorescence staining with CD68 as a constant marker and a variety of other antibodies as the second marker. The list of second markers includes lymphocytes (CD3, CD4, CD8, CD16, CD56, FoxP3, and CD11b) stem cells (CD34), leucocytes (CD45, CD15), macrophages (CD86, CD105, CD163, and CD206); deposition of EC matrix (collagen-I, collagen-III, MMP2, and MMP8); Ki67 as a marker for proliferation; and the tyrosine-protein kinase receptor AXL. The present study demonstrates within the inflammatory infiltrate the abundant capability of CD68+ cells to co-express a huge variety of other markers, including those of lymphocytes, varying between 5 and 83% of investigated cells. The observation of co-staining was not restricted to a specific polymer but was seen with polypropylene fibers as well as with fibers made of polyvinylidene fluoride, although with differences in co-expression rates. The persisting variability of these cells without the functional reduction toward differentiated mature cell types may favor the lack of healing at the interface of meshes.
Collapse
Affiliation(s)
- Uwe Klinge
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Axel Dievernich
- Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Luke Davies
- Division of Infection and Immunity, Cardiff University, Cardiff, UK
| |
Collapse
|
15
|
Whooley J, Cunnane EM, Do Amaral R, Joyce M, MacCraith E, Flood HD, O'Brien FJ, Davis NF. Stress Urinary Incontinence and Pelvic Organ Prolapse: Biologic Graft Materials Revisited. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:475-483. [PMID: 32192400 DOI: 10.1089/ten.teb.2020.0024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Symptomatic stress urinary incontinence (SUI) and pelvic organ prolapse (POP) refractory to conservative management with pelvic floor muscle training or vaginal pessaries may warrant surgical intervention with different forms of biologic or synthetic material. However, in recent years, several global regulatory agencies have issued health warnings and recalled several mesh products due to an increase in complications such as mesh erosion, infection, chronic pain, and perioperative bleeding. At present, current surgical treatment strategies for SUI and POP are aimed at developing biological graft materials with similar mechanical properties to established synthetic meshes, but with improved tissue integration and minimal host response. This narrative review aims to highlight recent studies related to the development of biomimetic and biologic graft materials as alternatives to traditional synthetic materials for SUI/POP repair in female patients. We also investigate complications and technical limitations associated with synthetic mesh and biological biomaterials in conventional SUI and POP surgery. Our findings demonstrate that newly developed biologic grafts have a lower incidence of adverse events compared to synthetic biomaterials. However there remains a significant disparity between success in preclinical trials and long-term clinical translation. Further characterization on the optimal structural, integrative, and mechanical properties of biological grafts is required before they can be reliably introduced into clinical practice for SUI and POP surgery. Impact statement Our review article aims to outline the clinical history of developments and controversies associated with the use of synthetic mesh materials in the surgical treatment of stress urinary incontinence and pelvic organ prolapse, as well as highlighting recent advancements in the area of biological graft materials and their potential importance in an area that remains an enduring issue for patients and clinicians alike. This article aims to provide a concise summary of previous controversies in the field of urinary incontinence, while evaluating the future of potential biomaterials in this field.
Collapse
Affiliation(s)
- Jack Whooley
- Department of Urology and Transplant Surgery, Beaumont Hospital, Co Dublin, Ireland
| | - Eoghan M Cunnane
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Ronaldo Do Amaral
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Michael Joyce
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Eoin MacCraith
- Department of Urology and Transplant Surgery, Beaumont Hospital, Co Dublin, Ireland
| | - Hugh D Flood
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Niall F Davis
- Department of Urology and Transplant Surgery, Beaumont Hospital, Co Dublin, Ireland.,Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
16
|
Mukherjee S, Darzi S, Paul K, Cousins FL, Werkmeister JA, Gargett CE. Electrospun Nanofiber Meshes With Endometrial MSCs Modulate Foreign Body Response by Increased Angiogenesis, Matrix Synthesis, and Anti-Inflammatory Gene Expression in Mice: Implication in Pelvic Floor. Front Pharmacol 2020; 11:353. [PMID: 32265721 PMCID: PMC7107042 DOI: 10.3389/fphar.2020.00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/09/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Transvaginal meshes for the treatment of Pelvic Organ Prolapse (POP) have been associated with severe adverse events and have been banned for clinical use in many countries. We recently reported the design of degradable poly L-lactic acid-co-poly ε-caprolactone nanofibrous mesh (P nanomesh) bioengineered with endometrial mesenchymal stem/stromal cells (eMSC) for POP repair. We showed that such bioengineered meshes had high tissue integration as well as immunomodulatory effects in vivo. This study aimed to determine the key molecular players enabling eMSC-based foreign body response modulation. Methods SUSD2+ eMSC were purified from single cell suspensions obtained from endometrial biopsies from cycling women by magnetic bead sorting. Electrospun P nanomeshes with and without eMSC were implanted in a NSG mouse skin wound repair model for 1 and 6 weeks. Quantitative PCR was used to assess the expression of extracellular matrix (ECM), cell adhesion, angiogenesis and inflammation genes as log2 fold changes compared to sham controls. Histology and immunostaining were used to visualize the ECM, blood vessels, and multinucleated foreign body giant cells around implants. Results Bioengineered P nanomesh/eMSC constructs explanted after 6 weeks showed significant increase in 35 genes associated with ECM, ECM regulation, cell adhesion angiogenesis, and immune response in comparison to P nanomesh alone. In the absence of eMSC, acute inflammatory genes were significantly elevated at 1 week. However, in the presence of eMSC, there was an increased expression of anti-inflammatory genes including Mrc1 and Arg1 by 6 weeks. There was formation of multinucleated foreign body giant cells around both implants at 6 weeks that expressed CD206, a M2 macrophage marker. Conclusion This study reveals that eMSC modulate the foreign body response to degradable P nanomeshes in vivo by altering the expression profile of mouse genes. eMSC reduce acute inflammatory and increase ECM synthesis, angiogenesis and anti-inflammatory gene expression at 6 weeks while forming newly synthesized collagen within the nanomeshes and neo-vasculature in close proximity. From a tissue engineering perspective, this is a hallmark of a highly successful implant, suggesting significant potential as alternative surgical constructs for the treatment of POP.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Fiona L Cousins
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
17
|
Gargett CE, Gurung S, Darzi S, Werkmeister JA, Mukherjee S. Tissue engineering approaches for treating pelvic organ prolapse using a novel source of stem/stromal cells and new materials. Curr Opin Urol 2020; 29:450-457. [PMID: 31008783 DOI: 10.1097/mou.0000000000000634] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW Nondegradable transvaginal polypropylene meshes for treating pelvic organ prolapse (POP) are now generally unavailable or banned. In this review, we summarize recent developments using tissue engineering approaches combining alternate degradable scaffolds with a novel source of mesenchymal stem/stromal cells from human endometrium (eMSC). RECENT FINDINGS Tissue engineering constructs comprising immunomodulatory, reparative eMSC and biomimetic materials with nanoarchitecture are a promising approach for vaginal repair and improving outcomes of POP surgery. Culture expansion of eMSC that maintains them (and other MSC) in the undifferentiated state has been achieved using a small molecule transforming growth factor-β receptor inhibitor, A83-01. The mechanism of action of A83-01 has been determined and its suitability for translation into the clinic explored. Novel blends of electrospun synthetic and natural polymers combined with eMSC shows this approach promotes host cell infiltration and slows biomaterial degradation that has potential to strengthen the vaginal wall during healing. Improving the preclinical ovine transvaginal surgical model by adapting the human clinical POP-Quantification system for selection of multiparous ewes with vaginal wall weakness enables assessment of this autologous eMSC/nanobiomaterial construct. SUMMARY A tissue engineering approach using autologous eMSC with degradable nanobiomaterials offers a new approach for treating women with POP.
Collapse
Affiliation(s)
- Caroline E Gargett
- The Ritchie Centre.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Shanti Gurung
- Centre for Reproductive Health, Hudson institute of Medical Research
| | - Saeedeh Darzi
- The Ritchie Centre.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
18
|
Artsen AM, Rytel M, Liang R, King GE, Meyn L, Abramowitch SD, Moalli PA. Mesh induced fibrosis: The protective role of T regulatory cells. Acta Biomater 2019; 96:203-210. [PMID: 31326666 DOI: 10.1016/j.actbio.2019.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
Abstract
Polypropylene mesh is widely used in urogynecologic surgery, but complications rates (pain and exposure) approach 10%. Emerging evidence implicates the adaptive immune system in regulating the foreign body response to mesh, particularly regulatory T cells (Tregs), which modify macrophage differentiation and down-regulate CD8+ effector T cells. We hypothesize that Tregs protect against a profibrotic response, a likely mechanism of pain complications. Here, thin sections of mesh-tissue complexes removed for the primary complaint of pain (N = 14) or exposure (N = 15) were labeled for CD8, CD4 (Th), and FoxP3 (Tregs) via immunofluorescence. The same sections were analyzed for localized collagen deposition via a customized semi-quantitative assessment (0.25 mm2 grid) after trichrome staining. TGF-β1 concentrations were determined by enzyme-linked immunosorbent assay. Fewer Treg and CD4+ cells were found in fibrotic areas versus non-fibrotic areas (503 and 550/cm2 fewer, respectively, both P < 0.001). TGF-β1 was higher in mesh samples compared to autologous control biopsies. TGF-β 1 inversely correlated with age, r -0.636(p = 0.008). No differences were found in T cell subgroups or fibrotic indices between pain and exposure groups. A moderate inverse relationship was found between TGF-β1 and Tregs (r -0.402, P = 0.009). Tregs were present up to 12 years after mesh implantation, challenging the assumption that the adaptive immune response to a foreign body is transient. In conclusion, the inverse relationship between fibrosis and Tregs, and TGF-β1 and Tregs points to a protective role of these cells. Similar immunologic responses in patients with pain and exposure suggest these complications exist along a spectrum. STATEMENT OF SIGNIFICANCE: The use of polypropylene mesh has been associated with improved outcomes in urogynecologic surgery, but is associated with significant complications, including pain and exposure through the vaginal epithelium. The host immune response features a prolonged inflammatory reaction containing innate immune cells and T lymphocytes clustered in capsules around the mesh fibers. This study uncovers the inverse relationship between T regulatory cells and the extent of fibrosis around the mesh, suggesting an anti-fibrotic effect. In addition, concentrations of T regulatory and T effector cells and levels of fibrosis connect these two most common complications into one mechanistic pathway. These new insights into the immune response to implanted mesh are an important step in understanding the causes of these surgical complications.
Collapse
|
19
|
Knight KM, Artsen AM, Routzong MR, King GE, Abramowitch SD, Moalli PA. New Zealand white rabbit: a novel model for prolapse mesh implantation via a lumbar colpopexy. Int Urogynecol J 2019; 31:91-99. [PMID: 31418044 DOI: 10.1007/s00192-019-04071-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/24/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION AND HYPOTHESIS New Zealand white rabbits are an inexpensive large-animal model. This study explored the rabbit as a model for mesh-augmented colpopexy using the intra-abdominal vagina. We hypothesized that polypropylene mesh would negatively impact rabbit vaginal smooth muscle (VSM) morphology and contractile function, similar to the nonhuman primate (NHP)-the established model for prolapse mesh evaluation. METHODS Restorelle was implanted onto the vagina of ten rabbits via lumbar colpopexy after a hysterectomy. Ten rabbits served as sham. Twelve weeks post-implantation, the vagina was excised and VSM morphology and vaginal contractility were assessed. Outcome measures were compared using independent samples t and Mann-Whitney U tests with a Bonferroni correction, where appropriate. Results from the rabbits were compared with published NHP data. RESULTS Animals had similar age, parity and BMI. VSM was 18% thinner after Restorelle implantation, P = 0.027. Vaginal contractility was 43% decreased in response to 120 mM KCl (P = 0.003), similar to the 46% reduction observed in the NHP vagina implanted with Restorelle (P = 0.027). Three meshes wrinkled in vivo, resulting in dramatic thinning of the underlying vagina in the area of the mesh causing a mesh exposure. CONCLUSIONS Polypropylene mesh negatively impacts VSM morphology and vaginal contractility in the rabbit, similar to the NHP, suggesting that the rabbit may serve as an alternative large-animal model. The vaginal thinning and appearance of a mesh exposure in the area of a mesh wrinkle suggest the rabbit may also serve as a model for understanding the pathophysiology of mesh exposure.
Collapse
Affiliation(s)
- Katrina M Knight
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Magee-Womens Research Institute, 204 Craft Avenue, Lab A320, Pittsburgh, PA, 15213, USA.
| | - Amanda M Artsen
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences at Magee Womens Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Megan R Routzong
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielle E King
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences at Magee Womens Hospital, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven D Abramowitch
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences at Magee Womens Hospital, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pamela A Moalli
- Magee-Womens Research Institute, Department of Obstetrics and Gynecology and Reproductive Sciences at Magee Womens Hospital, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Mukherjee S, Darzi S, Rosamilia A, Kadam V, Truong Y, Werkmeister JA, Gargett CE. Blended Nanostructured Degradable Mesh with Endometrial Mesenchymal Stem Cells Promotes Tissue Integration and Anti-Inflammatory Response in Vivo for Pelvic Floor Application. Biomacromolecules 2018; 20:454-468. [DOI: 10.1021/acs.biomac.8b01661] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
| | - Anna Rosamilia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- Pelvic Floor Disorders Unit, Monash Health, Clayton 3168, Australia
| | - Vinod Kadam
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Yen Truong
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Jerome A. Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
- CSIRO Manufacturing, Clayton 3168, Australia
| | - Caroline E. Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3168, Australia
| |
Collapse
|