Prasad K, Rubin J, Mitra A, Lewis M, Theis N, Muldoon B, Iyengar S, Cape J. Structural covariance networks in schizophrenia: A systematic review Part II.
Schizophr Res 2022;
239:176-191. [PMID:
34902650 PMCID:
PMC8785680 DOI:
10.1016/j.schres.2021.11.036]
[Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND
Examination of structural covariance network (SCN) is gaining prominence among the strategies to delineate dysconnectivity that case-control morphometric comparisons cannot address. Part II of this review extends on the part I of the review that included SCN studies using statistical approaches by examining SCN studies applying graph theoretic approaches to elucidate network properties in schizophrenia. This review also includes SCN studies using graph theoretic or statistical approaches on persons at-risk for schizophrenia.
METHODS
A systematic literature search was conducted for peer-reviewed publications using different keywords and keyword combinations for schizophrenia and risk for schizophrenia. Thirteen studies on schizophrenia and five on persons at risk for schizophrenia met the criteria.
RESULTS
A variety of findings from over the last 1½ decades showing qualitative and quantitative differences in the global and local structural connectome in schizophrenia are described. These observations include altered hub patterns, disrupted network topology and hierarchical organization of the brain, and impaired connections that may be localized to default mode, executive control, and dorsal attention networks. Some of these connectomic alterations were observed in persons at-risk for schizophrenia before the onset of the illness.
CONCLUSIONS
Observed disruptions may reduce network efficiency and capacity to integrate information. Further, global connectomic changes were not schizophrenia-specific but local network changes were. Existing studies have used different atlases for brain parcellation, examined different morphometric features, and patients at different stages of illness making it difficult to conduct meta-analysis. Future studies should harmonize such methodological differences to facilitate meta-analysis and also elucidate causal underpinnings of dysconnectivity.
Collapse