1
|
Zhang M, Wang J, Zhang Z, Guo Y, Lou X, Zhang L. Diverse roles of UBE2S in cancer and therapy resistance: Biological functions and mechanisms. Heliyon 2024; 10:e24465. [PMID: 38312603 PMCID: PMC10834827 DOI: 10.1016/j.heliyon.2024.e24465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
The Ubiquitin Conjugating Enzyme E2 S (UBE2S), was initially identified as a crucial member in controlling substrate ubiquitination during the late promotion of the complex's function. In recent years, UBE2S has emerged as a significant epigenetic modification in various diseases, including myocardial ischemia, viral hepatitis, and notably, cancer. Mounting evidence suggests that UBE2S plays a pivotal role in several human malignancies including breast cancer, lung cancer, hepatocellular carcinoma and etc. However, a comprehensive review of UBE2S in human tumor research remains absent. Therefore, this paper aims to fill this gap. This review provides a comprehensive analysis of the structural characteristics of UBE2S and its potential utility as a biomarker in diverse cancer types. Additionally, the role of UBE2S in conferring resistance to tumor treatment is examined. The findings suggest that UBE2S holds promise as a diagnostic and therapeutic target in multiple malignancies, thereby offering novel avenues for cancer therapy.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Zidi Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou 450003, China
| | - Xueling Lou
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| | - Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou 450052, China
| |
Collapse
|
2
|
Zhang M, Wang J, Guo Y, Yue H, Zhang L. Activation of PI3K/AKT/mTOR signaling axis by UBE2S inhibits autophagy leading to cisplatin resistance in ovarian cancer. J Ovarian Res 2023; 16:240. [PMID: 38115063 PMCID: PMC10729389 DOI: 10.1186/s13048-023-01314-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Epithelial ovarian cancer (OC) is the fourth leading cause of cancer-related deaths in women, with a 5-year survival rate of 30%-50%. Platinum resistance is the chief culprit for the high recurrence and mortality rates. Several studies confirm that the metabolic regulation of ubiquitinating enzymes plays a vital role in platinum resistance in OC. METHODS In this study, we selected ubiquitin-conjugating enzyme E2S (UBE2S) as the candidate gene for validation. The levels of UBE2S expression were investigated using TCGA, GTEx, UALCAN, and HPA databases. In addition, the correlation between UBE2S and platinum resistance in OC was analyzed using data from TCGA. Cisplatin-resistant OC cell lines were generated and UBE2S was knocked down; the transfection efficiency was verified. Subsequently, the effects of knockdown of UBE2S on the proliferation and migration of cisplatin-resistant OC cells were examined through the CCK8, Ki-67 immunofluorescence, clone formation, wound healing, and transwell assays. In addition, the UBE2S gene was also validated in vivo by xenograft models in nude mice. Finally, the relationship between the UBE2S gene and autophagy and the possible underlying regulatory mechanism was preliminarily investigated through MDC and GFP-LC3-B autophagy detection and western blotting experiments. Most importantly, experimental validation of mTOR agonist reversion (the rescuse experiments) was also performed. RESULTS UBE2S was highly expressed in OC at both nucleic acid and protein levels. The results of immunohistochemistry showed that the level of UBE2S expression in platinum-resistant samples was significantly higher relative to the platinum-sensitive samples. By cell transfection experiments, knocking down of the UBE2S gene was found to inhibit the proliferation and migration of cisplatin-resistant OC cells. Moreover, the UBE2S gene could inhibit autophagy by activating the PI3K/AKT/mTOR signaling pathway to induce cisplatin resistance in OC in vivo and in vitro. CONCLUSION In conclusion, we discovered a novel oncogene, UBE2S, which was associated with platinum response in OC, and examined its key role through bioinformatics and preliminary experiments. The findings may open up a new avenue for the evaluation and treatment of OC patients at high risk of cisplatin resistance.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100000, China
| | - Yan Guo
- Department of Oncology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China.
| | - Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No. 7 Weiwu Street, Zhengzhou, 450003, China.
| | - Lindong Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, 7 Rehabilitation Front Street, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Wu J, Xu X, Wu S, Shi W, Zhang G, Cao Y, Wang Z, Wu J, Jiang C. UBE2S promotes malignant properties via VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and decreases sensitivity to sorafenib in hepatocellular carcinoma. Cancer Med 2023; 12:18078-18097. [PMID: 37563971 PMCID: PMC10523983 DOI: 10.1002/cam4.6431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Ubiquitin-conjugating enzyme E2S (UBE2S), an E2 enzyme, is associated with the development of various tumors and exerts oncogenic activities. UBE2S is overexpressed in tumors, including hepatocellular carcinoma (HCC). However, the key molecular mechanisms of UBE2S in HCC still need additional research. The aim of this study was to explore the role of UBE2S in HCC. METHODS The expression levels of UBE2S in HCC tissues and cells were detected by western blot analysis, quantitative real-time polymerase chain reaction analysis (qRT-PCR), and immunohistochemistry (IHC). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, colony formation assay transwell assay, and animal models were used to detect the proliferation and migration ability of HCC cells. Western blot analysis, qRT-PCR, immunofluorescence, small-interfering RNA (siRNA), and plasmid transfection and coimmunoprecipitation (Co-IP) assays were performed to detect the interaction among UBE2S, von Hippel-Lindau (VHL), hypoxia-inducible factor 1-alpha (HIF-1α), Janus kinase-2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). RESULTS In this study, we found that high UBE2S expression was associated with poor prognosis in HCC patients. In addition, UBE2S expression was upregulated in HCC tissues and cell lines. Knockdown of UBE2S inhibited the proliferation and migration of HCC cells in vitro and in vivo by directly interacting with VHL to downregulate the HIF-1α and JAK2/STAT3 signaling pathways. Accordingly, overexpression of UBE2S significantly enhanced the proliferation and migration of HCC cells in vitro via VHL to upregulate HIF-1α and JAK2/STAT3 signaling pathways. Furthermore, we found that downregulation of UBE2S expression enhanced the sensitivity of HCC cells to sorafenib in vivo and in vitro. CONCLUSION UBE2S enhances malignant properties via the VHL/HIF-1α and VHL/JAK2/STAT3 signaling pathways and reduces sensitivity to sorafenib in HCC. The findings of this study may open a new approach for HCC diagnosis and provide a potential option for the treatment of HCC.
Collapse
Affiliation(s)
- Junyi Wu
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinanShandongChina
- Shengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Xiangjie Xu
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsuChina
| | - Shasha Wu
- Department of Clinical Medicine and RehabilitationJiangsu College of NursingHuai'anJiangsuChina
| | - Weiwei Shi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| | - Guang Zhang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| | - Yin Cao
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| | - Zhongxia Wang
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinanShandongChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong LaboratoryShounuo City Light West BlockJinanShandongChina
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western MedicineNanjing University of Chinese MedicineNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing University, Nanjing UniversityNanjingJiangsuChina
| |
Collapse
|
4
|
Yue H, Wang J, Hou S, Zhang M. As a potential predictor of pan-cancer, UBE2S is related to tumor-associated macrophage infiltration. Future Oncol 2023; 19:1973-1990. [PMID: 37791471 DOI: 10.2217/fon-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Background: At the pan-cancer level, exploring the expression and prognostic significance of a gene, such as UBE2S, will help to gain insight into the role of the gene and its feasibility for cancer screening, prognosis assessment and even gene therapy. Methods: The Cancer Genome Atlas, Human Protein Atlas, Kaplan-Meier, Tumor Immunology Estimation Resource and other databases were used to analyze the expression of UBE2S at the pan-cancer level, its prognosis and the role of the immune microenvironment. Immunohistochemistry samples of tumor tissue collected in our clinic were taken as verification. Results: UBE2S is significantly overexpressed in pan-cancer and is closely associated with malignant clinical features, poor prognosis and tumor-associated macrophages. Conclusion: UBE2S may be a potential diagnostic and prognostic marker for pan-cancer and is associated with tumor-associated macrophages.
Collapse
Affiliation(s)
- Haodi Yue
- Department of Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Jialin Wang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 1000053, China
| | - Siyu Hou
- Department of Gynecology, Shijitan Hospital, Capital Medical University, Beijing, 1000038, China
| | - Mengjun Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
5
|
Hitefield NL, Mackay S, Hays LE, Chen S, Oduor IO, Troyer DA, Nyalwidhe JO. Differential Activation of NRF2 Signaling Pathway in Renal-Cell Carcinoma Caki Cell Lines. Biomedicines 2023; 11:biomedicines11041010. [PMID: 37189628 DOI: 10.3390/biomedicines11041010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Renal-cell carcinoma (RCC) is a heterogeneous disease consisting of several subtypes based on specific genomic profiles and histological and clinical characteristics. The subtype with the highest prevalence is clear-cell RCC (ccRCC), next is papillary RCC (pRCC), and then chromophobe RCC (chRCC). The ccRCC cell lines are further subdivided into prognostic expression-based subtypes ccA or ccB. This heterogeneity necessitates the development, availability, and utilization of cell line models with the correct disease phenotypic characteristics for RCC research. In this study, we focused on characterizing proteomic differences between the Caki-1 and Caki-2 cell lines that are commonly used in ccRCC research. Both cells are primarily defined as human ccRCC cell lines. Caki-1 cell lines are metastatic, harboring wild-type VHL, whereas Caki-2 are considered as the primary ccRCC cell lines expressing wild-type von Hippel–Lindau protein (pVHL). Here, we performed a comprehensive comparative proteomic analysis of Caki-1 and Caki-2 cells using tandem mass-tag reagents together with liquid chromatography mass spectrometry (LC/MS) for the identification and quantitation of proteins in the two cell lines. Differential regulation of a subset of the proteins identified was validated using orthogonal methods including western blot, q-PCR, and immunofluorescence assays. Integrative bioinformatic analysis identifies the activation/inhibition of specific molecular pathways, upstream regulators, and causal networks that are uniquely regulated and associated with the two cell lines and RCC subtypes, and potentially the disease stage. Altogether, we have identified multiple molecular pathways, including NRF2 signaling, which is the most significantly activated pathway in Caki-2 versus Caki-1 cells. Some of the differentially regulated molecules and signaling pathways could serve as potential diagnostic and prognostic biomarkers and therapeutic targets amongst ccRCC subtypes.
Collapse
|
6
|
Zhang M, Liu Y, Yin Y, Sun Z, Wang Y, Zhang Z, Li F, Chen X. UBE2S promotes the development of ovarian cancer by promoting PI3K/AKT/mTOR signaling pathway to regulate cell cycle and apoptosis. Mol Med 2022; 28:62. [PMID: 35658829 PMCID: PMC9166599 DOI: 10.1186/s10020-022-00489-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ovarian cancer is one of the important factors that seriously threaten women's health and its morbidity and mortality ranks eighth among female cancers in the world. It is critical to identify potential and promising biomarkers for prognostic evaluation and molecular therapy of OV. Ubiquitin-conjugating enzyme E2S (UBE2S), a potential oncogene, regulates the malignant progression of various tumors; however, its role in OV is still unclear. Methods The expression and prognostic significance of UBE2S at the pan-cancer level were investigated through high-throughput gene expression analysis and clinical prognostic data from TCGA, GEPIA, and GEO databases. 181 patients with OV were included in this study. Cell culture and cell transfection were performed on OV cell lines (SKOV3 and A2780) and a normal ovarian cell line (IOSE80). The expression level and prognostic significance of UBE2S in OV were verified by western blot, immunohistochemistry, and Kaplan–Meier survival analysis. Through cell transfection, CCK-8, Ki-67 immunofluorescence, wound healing, Transwell, clonogenic, and flow cytometry assays, the effect and detailed mechanism of UBE2S knockdown on the malignant biological behavior of OV cells were explored. Results UBE2S exhibited abnormally high expression at the pan-cancer level. The results of RT-qPCR and Western blotting indicated that UBE2S was significantly overexpressed in ovarian cancer cell lines compared with normal cell lines (P < 0.05). Kaplan–Meier survival analysis and Immunohistochemistry indicated that overexpression of UBE2S was related to poor prognosis of OV (HR > 1, P < 0.05). Results of in vitro experiments indicated that UBE2S gene knockdown might inhibit the proliferation, invasion, and prognosis of OV cells by inhibiting the PI3K/AKT/mTOR signaling pathway, thereby blocking the cell cycle and promoting apoptosis (P < 0.05). Conclusion UBE2S is a potential oncogene strongly associated with a poor prognosis of OV patients. Knockdown of UBE2S could block the cell cycle and promote apoptosis by inhibiting the PI3K/AKT/mTOR pathway and ultimately inhibit the proliferation, migration and prognosis of ovarian cancer, which suggested that UBE2S might be used for molecular therapy and prognostic evaluation of ovarian cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00489-2.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yuan Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yue Yin
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Zhenxing Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Yan Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Zexue Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Fei Li
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China
| | - Xiuwei Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, 6 Baojian Rd, Harbin, 150040, China.
| |
Collapse
|
7
|
Ho JY, Lu HY, Cheng HH, Kuo YC, Lee YLA, Cheng CH. UBE2S activates NF-κB signaling by binding with IκBα and promotes metastasis of lung adenocarcinoma cells. Cell Oncol (Dordr) 2021; 44:1325-1338. [PMID: 34582005 DOI: 10.1007/s13402-021-00639-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Nuclear factor (NF)-κB signaling in cancer cells has been reported to be involved in tumorigenesis. Phosphorylation and degradation of inhibitor of NF-κBα (IκBα) is a canonical pathway of NF-κB signaling. Here, we aimed to identify and characterize noncanonical activation of NF-κB signaling by ubiquitin-conjugating enzyme E2S (UBE2S) in lung adenocarcinoma cells. METHODS TCGA and the Human Atlas Protein Database were used to analyze the survival rate of lung adenocarcinoma patients in conjunction with UBE2S expression. In addition, PC9, H460, H441 and A549 lung adenocarcinoma cells were used in this study. PC9 and H460 cells were selected for further analysis because they expressed different UBE2S protein levels. Specific IKK inhibitors, PS1145 and SC514, were used to assess IκBα phosphorylation. Western blot analysis was used to assess protein levels in PC9 and H460 cells. A scratch wound-healing assay was used to analyze the migrative abilities of PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells were used to analyze their effects on downstream protein levels. Immunoprecipitation, immunofluorescent staining, glutathione S transferase (GST) pull-down and in vitro binding assays were used to analyze the interaction between UBE2S and IκBα. A luciferase assay was used to analyze activation of NF-κB signaling regulated by UBE2S. An in vivo zebrafish xenograft model was used to assess metastasis of PC9 cells regulated by UBE2S. RESULTS We found that UBE2S expression in lung adenocarcinoma patients was negatively related to survival rate. The protein level of UBE2S was higher in PC9 cells than in H460 cells, which was opposite to that observed for IκBα. PC9 cells showed a higher UBE2S expression and migrative ability than H460 cells. Phosphorylation of IκBα was not changed by treatment with the IKK-specific inhibitors PS1145 and SC514 in PC9 and H460 cells. Overexpression and knockdown of UBE2S in H460 and PC9 cells revealed that the protein levels of IκBα were inversely regulated. Immunoprecipitation, immunofluorescent staining, GST pull-down and in vitro binding assays revealed direct binding of UBE2S with IκBα. Nuclear P65 protein levels and luciferase assays showed that NF-κB signaling was regulated by UBE2S. The expression of epithelial-to-mesenchymal (EMT) markers and the migrative ability of lung adenocarcinoma cells were also regulated by UBE2S. A zebrafish xenograft tumor model showed a reduction in the metastasis of PC9 cells that was induced by UBE2S knockdown. CONCLUSIONS Higher UBE2S expression in lung adenocarcinomas may lead to increased binding with IκBα to activate NF-κB signaling and promote adenocarcinoma cell metastasis. UBE2S may serve as a potential therapeutic target for lung adenocarcinomas.
Collapse
Affiliation(s)
- Jhih-Yun Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Hsin-Ying Lu
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Wan Fang Hospital, Taipei Medical University, 11031, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, 11031, Taipei, Taiwan
| | - Hsing-Hsien Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan
| | - Yu-Chieh Kuo
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Yu-Lin Amy Lee
- Departments of Medicine and Pediatrics, Duke University Hospital, Durham, NC, 27704, USA
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, 11031, Taipei, Taiwan.
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, 11031, Taipei, Taiwan.
| |
Collapse
|
8
|
Gui L, Zhang S, Xu Y, Zhang H, Zhu Y, Kong L. UBE2S promotes cell chemoresistance through PTEN-AKT signaling in hepatocellular carcinoma. Cell Death Dis 2021; 7:357. [PMID: 34785642 PMCID: PMC8595659 DOI: 10.1038/s41420-021-00750-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 12/24/2022]
Abstract
Ubiquitination displays a crucial role in various biological functions, such as protein degradation, signal transduction, and cellular homeostasis. Accumulating evidence has indicated that ubiquitination is essential in cancer progression. Ubiquitin-conjugating enzyme E2S (UBE2S) is a member of ubiquitin-conjugating enzyme family of the ubiquitin system and its role in hepatocellular cancer (HCC) is largely unknown. We investigated the role of UBE2S in HCC and found UBE2S upregulation is relevant with large tumor size, recurrence, and advanced TNM stage, serving as an independent risk factor of overall survival (OS) and disease-free survival (DFS) for HCC patients. We conducted in vitro experiments and found that in HCC cells, UBE2S overexpression increases the resistance to 5-FU and oxaliplatin, while UBE2S knockdown achieves an opposite effect. UBE2S is transcriptionally activated by the binding of FOXM1 to UBE2S promoter, which induces its upregulation and reduces PTEN protein level by promoting PTEN ubiquitination at Lys60 and Lys327 and facilitating AKT phosphorylation. The promotional effect of FOXM1-UBE2S axis on HCC cell chemoresistance is attenuated by allosteric AKT inhibitor, MK2206. In conclusion, our results reveal that UBE2S is a prognostic biomarker for HCC patients, and the FOXM1-UBE2S-PTEN-p-AKT signaling axis might be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Liang Gui
- grid.452509.f0000 0004 1764 4566Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009 Nanjing, Jiangsu China
| | - Sicai Zhang
- grid.452509.f0000 0004 1764 4566Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009 Nanjing, Jiangsu China
| | - Yongzi Xu
- grid.452509.f0000 0004 1764 4566Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009 Nanjing, Jiangsu China
| | - Hongwei Zhang
- grid.452509.f0000 0004 1764 4566Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009 Nanjing, Jiangsu China
| | - Ying Zhu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 210009, Nanjing, Jiangsu, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, 210029, Nanjing, Jiangsu Province, China.
| |
Collapse
|
9
|
Hu L, Cheng X, Binder Z, Han Z, Yin Y, O'Rourke DM, Wang S, Feng Y, Weng C, Wu A, Lin Z. Molecular and Clinical Characterization of UBE2S in Glioma as a Biomarker for Poor Prognosis and Resistance to Chemo-Radiotherapy. Front Oncol 2021; 11:640910. [PMID: 34123793 PMCID: PMC8190380 DOI: 10.3389/fonc.2021.640910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 05/07/2021] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma is the most common and lethal brain cancer globally. Clinically, this cancer has heterogenous molecular and clinical characteristics. Studies have shown that UBE2S is highly expressed in many cancers. But its expression profile in glioma, and the correlation with clinical outcomes is unknown. RNA sequencing data of glioma samples was downloaded from the Chinese Glioma Genome Atlas and The Cancer Genome Atlas. A total of 114 cases of glioma tissue samples (WHO grades II-IV) were used to conduct protein expression assays. The molecular and biological characteristics of UBE2S, and its prognostic value were analyzed. The results showed that high UBE2S expression was associated with a higher grade of glioma and PTEN mutations. In addition, UBE2S affected the degree of malignancy of glioma and the development of chemo-radiotherapy resistance. It was also found to be an independent predictor of worse survival of LGG patients. Furthermore, we identified five UBE2S ubiquitination sites and found that UBE2S was associated with Akt phosphorylation in malignant glioblastoma. The results also revealed that UBE2S expression was negatively correlated with 1p19q loss and IDH1 mutation; positively correlated with epidermal growth factor receptor amplification and PTEN mutation. This study demonstrates that UBE2S expression strongly correlates with glioma malignancy and resistance to chemo-radiotherapy. It is also a crucial biomarker of poor prognosis.
Collapse
Affiliation(s)
- Li Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xingbo Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zev Binder
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Zhibin Han
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yibo Yin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sida Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yumeng Feng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhiguo Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Guo H, Li Y, Liu Y, Chen L, Gao Z, Zhang L, Zhou N, Guo H, Shi B. Prognostic Role of the Ubiquitin Proteasome System in Clear Cell Renal Cell Carcinoma: A Bioinformatic Perspective. J Cancer 2021; 12:4134-4147. [PMID: 34093816 PMCID: PMC8176417 DOI: 10.7150/jca.53760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 04/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumor of the urinary system. The ubiquitin proteasome system (UPS) plays an important role in the generation, metabolism and survival of tumor. We are aimed to make a comprehensive exploration of the UPS's role in ccRCC with bioinformatic tools, which may contribute to the understanding of UPS in ccRCC, and give insight for further research. Methods: The UPS-related genes (UPSs) were collected by an integrative approach. The expression and clinical data were downloaded from TCGA database. R soft was used to perform the differentially expressed UPSs analysis, functional enrichment analysis. We also estimated prognostic value of each UPS with the help of GEPIA database. Two predicting models were constructed with the differentially expressed UPSs and prognosis-related genes, respectively. The correlations of risk score with clinical characteristics were also evaluated. Data of GSE29609 cohort were obtained from GEO database to validate the prognostic models. Results: We finally identified 91 differentially expressed UPSs, 48 prognosis related genes among them, and constructed a prognostic model with 18 UPSs successfully, the AUC was 0.760. With the help of GEPIA, we found 391 prognosis-related UPSs, accounting for 57.84% of all UPSs. Another prognostic model was constructed with 28 prognosis-related genes of them, and with a better AUC of 0.825. Additionally, our models can also stratify patients into high and low risk groups accurately in GSE29609 cohort. Similar prognostic values of our models were observed in the validated GSE29609 cohort. Conclusions: UPS is dysregulated in ccRCC. UPS related genes have significant prognostic value in ccRCC. Models constructed with UPSs are effective and applicable. An abnormal ubiquitin proteasome system should play an important role in ccRCC and be worthy of further study.
Collapse
Affiliation(s)
- Hongda Guo
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Yan Li
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Zhengdong Gao
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Lekai Zhang
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Nan Zhou
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Hu Guo
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| | - Benkang Shi
- Department of Urology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, P.R. China
| |
Collapse
|
11
|
Liess AKL, Kucerova A, Schweimer K, Schlesinger D, Dybkov O, Urlaub H, Mansfeld J, Lorenz S. Dimerization regulates the human APC/C-associated ubiquitin-conjugating enzyme UBE2S. Sci Signal 2020; 13:eaba8208. [PMID: 33082289 PMCID: PMC7613103 DOI: 10.1126/scisignal.aba8208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
At the heart of protein ubiquitination cascades, ubiquitin-conjugating enzymes (E2s) form reactive ubiquitin-thioester intermediates to enable efficient transfer of ubiquitin to cellular substrates. The precise regulation of E2s is thus crucial for cellular homeostasis, and their deregulation is frequently associated with tumorigenesis. In addition to driving substrate ubiquitination together with ubiquitin ligases (E3s), many E2s can also autoubiquitinate, thereby promoting their own proteasomal turnover. To investigate the mechanisms that balance these disparate activities, we dissected the regulatory dynamics of UBE2S, a human APC/C-associated E2 that ensures the faithful ubiquitination of cell cycle regulators during mitosis. We uncovered a dimeric state of UBE2S that confers autoinhibition by blocking a catalytically critical ubiquitin binding site. Dimerization is stimulated by the lysine-rich carboxyl-terminal extension of UBE2S that is also required for the recruitment of this E2 to the APC/C and is autoubiquitinated as substrate abundance becomes limiting. Consistent with this mechanism, we found that dimerization-deficient UBE2S turned over more rapidly in cells and did not promote mitotic slippage during prolonged drug-induced mitotic arrest. We propose that dimerization attenuates the autoubiquitination-induced turnover of UBE2S when the APC/C is not fully active. More broadly, our data illustrate how the use of mutually exclusive macromolecular interfaces enables modulation of both the activities and the abundance of E2s in cells to facilitate precise ubiquitin signaling.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Dörte Schlesinger
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
- Bioanalytics Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
- Institute of Cancer Research, London SW7 3RP, UK
| | - Sonja Lorenz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
12
|
Chen X, Wang C, Yang P, Shi L, Wang H. Ube2s-stabilized β-catenin protects against myocardial ischemia/reperfusion injury by activating HIF-1α signaling. Aging (Albany NY) 2020; 12:5716-5732. [PMID: 32250966 PMCID: PMC7185123 DOI: 10.18632/aging.102960] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 02/22/2020] [Indexed: 04/12/2023]
Abstract
The activation of hypoxia-inducible factor (HIF) is an important event for mediating the adaptive response to myocardial ischemia/reperfusion (MI/R) injury. The ubiquitin-conjugating enzyme E2S (Ube2s) catalyzes ubiquitin conjugation to target proteins. Here, we report the positive regulation of HIF-1α signaling by Ube2s via stabilizing β-catenin, by which Ube2s acts to protect against MI/R injury. We show that Ube2s expression is upregulated in the hearts of mice subjected to MI/R injury. Functionally, Ube2s depletion exacerbates and its overexpression ameliorates MI/R injury. In addition, Ube2s augments the activation of HIF-1α and reduces myocardial apoptosis. Moreover, Ube2s induces the accumulation of β-Catenin through increasing its stabilization. Importantly, β-Catenin knockdown abrogates Ube2s-augmented HIF-1α activation, and meanwhile, diminishes the protective effect of Ube2s on MI/R injury, thus establishing a causal link between Ube2s-stabilized β-catenin and HIF-1α-mediated myocardial protection. Altogether, this study identifies the Ube2s/β-catenin/HIF-1α axis as a novel protective regulator involved in MI/R injury, and also implies that it might represent a potential therapeutic target for ameliorating MI/R injury.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Chiyao Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Pei Yang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Lei Shi
- Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| | - Haiyan Wang
- Department of Cardiology, The Second Affiliated Hospital of Air Force Medical University, Xi’an, China
| |
Collapse
|
13
|
Liess AKL, Kucerova A, Schweimer K, Yu L, Roumeliotis TI, Diebold M, Dybkov O, Sotriffer C, Urlaub H, Choudhary JS, Mansfeld J, Lorenz S. Autoinhibition Mechanism of the Ubiquitin-Conjugating Enzyme UBE2S by Autoubiquitination. Structure 2019; 27:1195-1210.e7. [PMID: 31230944 DOI: 10.1016/j.str.2019.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Ubiquitin-conjugating enzymes (E2s) govern key aspects of ubiquitin signaling. Emerging evidence suggests that the activities of E2s are modulated by posttranslational modifications; the structural underpinnings, however, are largely unclear. Here, we unravel the structural basis and mechanistic consequences of a conserved autoubiquitination event near the catalytic center of E2s, using the human anaphase-promoting complex/cyclosome-associated UBE2S as a model system. Crystal structures we determined of the catalytic ubiquitin carrier protein domain combined with MD simulations reveal that the active-site region is malleable, which permits an adjacent ubiquitin acceptor site, Lys+5, to be ubiquitinated intramolecularly. We demonstrate by NMR that the Lys+5-linked ubiquitin inhibits UBE2S by obstructing its reloading with ubiquitin. By immunoprecipitation, quantitative mass spectrometry, and siRNA-and-rescue experiments we show that Lys+5 ubiquitination of UBE2S decreases during mitotic exit but does not influence proteasomal turnover of this E2. These findings suggest that UBE2S activity underlies inherent regulation during the cell cycle.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Lu Yu
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | | | - Mathias Diebold
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Christoph Sotriffer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Henning Urlaub
- Group for Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany; Proteomics Service Facility, Georg-August-Universität, Göttingen, 37077 Göttingen, Germany
| | - Jyoti S Choudhary
- Functional Proteomics Group, The Institute of Cancer Research, London SW3 6JB, UK
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Sonja Lorenz
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
14
|
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitination process, is involved in development of various cancers. However, its role in lung adenocarcinoma, has not been well elucidated. In this report, we attempted to investigate expression and function of UBE2S in lung adenocarcinoma. Up-regulation of UBE2S at mRNA, and protein level, was observed in human cancer tissues and lung adenocarcinoma cells. Higher UBE2S expression correlated with poorer prognosis of lung adenocarcinoma patients. UBE2S expression was efficiently suppressed by lentivirus-mediated shRNA strategy in A549 cells, and UBE2S silencing led to reduced cell proliferation, colony formation, and enhanced apoptosis. Inverse results were observed, in UBE2S over-expressed H1299 cells. Microarray analysis indicated that a large number of genes were regulated by UBE2S, and p53 signaling pathway may be critical, to the role of UBE2S in cancer development. Together, UBE2S could be a potential target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhi Liu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021; Affiliated Hospital of Inner Mongolia University for the Nationalities, Tongliao 028000, China
| | - Lijun Xu
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
15
|
Lin M, Lei T, Zheng J, Chen S, Du L, Xie H. UBE2S mediates tumor progression via SOX6/β-Catenin signaling in endometrial cancer. Int J Biochem Cell Biol 2019; 109:17-22. [PMID: 30690078 DOI: 10.1016/j.biocel.2019.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of ubiquitin-conjugating enzyme E2S (UBE2S) contributes to tumor progression. However, its clinical significance and biological function in endometrial cancer (EMC) remain unclear. Here, we show that UBE2S is upregulated in EMC and exhibits oncogenic activities via activation of SOX6/β-Catenin signaling. High expression of UBE2S is significantly associated with poor prognosis in two independent cohorts consisting of a total of 773 patients with EMC. in vitro studies demonstrate that ectopic expression of UBE2S promotes cell proliferation and migration, whereas knockdown of UBE2S results in opposite phenotypes. Overexpression of UBE2S in EMC cells enhances the nuclear translocation of β-Catenin, and subsequently induces the expression of c-Myc and Cyclin D1. Inhibition of β-Catenin by XAV-939 markedly attenuates UBE2S-promoted cell growth. Mechanistically, UBE2S suppresses the expression of SOX6 to trigger β-Catenin signaling. Re-expression of SOX6 in UBE2S-expressing EMC cells abolishes the nuclear localization of β-Catenin. Collectively, these data suggest UBE2S may serve as a promising prognostic factor and function as an oncogene in EMC. The newly identified UBE2S/SOX6/β-Catenin axis represents a new potential therapeutic target for EMC intervention.
Collapse
Affiliation(s)
- Meifang Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ting Lei
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ju Zheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuqin Chen
- Department of Gynecology & Obstetrics, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Liu Du
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Hongning Xie
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
16
|
Hepatitis C Virus Downregulates Ubiquitin-Conjugating Enzyme E2S Expression To Prevent Proteasomal Degradation of NS5A, Leading to Host Cells More Sensitive to DNA Damage. J Virol 2019; 93:JVI.01240-18. [PMID: 30381483 DOI: 10.1128/jvi.01240-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) infection may cause chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV exploits cellular machineries to establish persistent infection. We demonstrate here that ubiquitin-conjugating enzyme E2S (UBE2S), a member of the ubiquitin-conjugating enzyme family (E2s), was downregulated by endoplasmic reticulum stress caused by HCV in Huh7 cells. UBE2S interacted with domain I of HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. Overexpression of UBE2S suppressed viral propagation, while depletion of UBE2S expression increased viral infectivity. Enzymatically inactive UBE2S C95A mutant exerted no antiviral activity, suggesting that ubiquitin-conjugating enzymatic activity was required for the suppressive role of UBE2S. Chromatin ubiquitination plays a crucial role in the DNA damage response. We showed that the levels of UBE2S and Lys11 chains bound to the chromatin were markedly decreased in the context of HCV replication, rendering HCV-infected cells more sensitive to DNA damage. These data suggest that HCV counteracts antiviral activity of UBE2S to optimize viral propagation and may contribute to HCV-induced liver pathogenesis.IMPORTANCE Protein homeostasis is essential to normal cell function. HCV infection disturbs the protein homeostasis in the host cells. Therefore, host cells exert an anti-HCV activity in order to maintain normal cellular metabolism. We showed that UBE2S interacted with HCV NS5A and degraded NS5A protein through the Lys11-linked proteasome-dependent pathway. However, HCV has evolved to overcome host antiviral activity. We demonstrated that the UBE2S expression level was suppressed in HCV-infected cells. Since UBE2S is an ubiquitin-conjugating enzyme and this enzyme activity is involved in DNA damage repair, HCV-infected cells are more sensitive to DNA damage, and thus UBE2S may contribute to viral oncogenesis.
Collapse
|
17
|
Ma Y, Li K, Li S, Liang B, Liu Q, Mo Z. Prognostic value of ubiquitin-conjugating enzyme E2 S overexpression in hepatocellular carcinoma. Int J Biol Macromol 2018; 119:225-231. [PMID: 30041036 DOI: 10.1016/j.ijbiomac.2018.07.136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/23/2022]
Abstract
Previous study has shown that ubiquitin-conjugating enzyme E2 S (UBE2S) is highly expressed in various human cancers. In order to study the clinical value and potential function of UBE2S in hepatocellular carcinoma (HCC), three datasets from the Oncomine database and RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed. UBE2S expression was found to be significantly higher in HCC samples, which was supported with qPCR validation. Both Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses demonstrated that UBE2S co-expressed genes were involved in cell cycle and DNA replication. Survival analysis showed a significant reduction in overall survival of patients with high UBE2S expression from both the GSE14520 cohort and TCGA Liver hepatocellular carcinoma (LIHC) cohort. Furthermore, Gene set enrichment analysis (GSEA) revealed that high UBE2S expression in HCC patients is associated with increased expression in gene sets associated with decreased survival, increased metastasis and increased recurrence. Finally, qPCR results showed that UBE2S overexpression has diagnostic value in distinguishing between HCC and non-cancerous liver tissue, as the area under the curve (AUC) was 0.8095, and overexpression of UBE2S was significantly associated with decreased overall survival and disease-free survival in HCC patients. In conclusion, UBE2S may hold prognostic value in the treatment of HCC.
Collapse
Affiliation(s)
- Yili Ma
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Kangzhi Li
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Sijing Li
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Bin Liang
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China
| | - Qiliang Liu
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China.
| | - Zhijing Mo
- College of Biotechnology, Guilin Medical University, Guilin 541100, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
18
|
Pan YH, Yang M, Liu LP, Wu DC, Li MY, Su SG. UBE2S enhances the ubiquitination of p53 and exerts oncogenic activities in hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 503:895-902. [PMID: 29928880 DOI: 10.1016/j.bbrc.2018.06.093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S) plays pivotal roles in the progression of human cancers. However, its clinical significance and role in hepatocellular carcinoma (HCC) remain unknown. Here, we show that UBE2S is upregulated in HCC and exhibits oncogenic activities via enhancing the ubiquitination of p53. Increased expression of UBE2S was significantly correlated with higher serum AFP level, higher pathological grade, advanced TNM stage, larger tumor size, vascular invasion and unfavorable patient survivals in two independent cohorts containing a total of 845 patients with HCC. Multivariate analyses by cox regression model suggested UBE2S as an independent factor for overall survival. In vitro experiments demonstrated that UBE2S overexpression promoted, whereas UBE2S knockdown suppressed cell proliferation and migration via modulation of p53 signaling pathway. Ectopic expression of UBE2S upregulated the expression of p53 and its downstream effectors, such as p21 and Cyclin D1. Mechanistically, UBE2S enhanced the ubiquitination of p53 protein to facilitate its degradation in HCC cells. Re-expression of p53 partially attenuated the UBE2S-promoted malignant phenotypes. Collectively, our study provides compelling evidence that UBE2S is a potential prognostic factor and functions as an oncogene in HCC.
Collapse
Affiliation(s)
- Ying-Hua Pan
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mei Yang
- Department of Gastroenterology, Dongguan Third People's Hospital, Dongguan, China
| | - Li-Ping Liu
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Dan-Chun Wu
- Department of Rheumatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming-Yue Li
- Department of Hepatobiliary and Pancreatic Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, China
| | - Shu-Guang Su
- Department of Pathology, The Affiliated Hexian Memorial Hospital of Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Li Z, Wang Y, Li Y, Yin W, Mo L, Qian X, Zhang Y, Wang G, Bu F, Zhang Z, Ren X, Zhu B, Niu C, Xiao W, Zhang W. Ube2s stabilizes β-Catenin through K11-linked polyubiquitination to promote mesendoderm specification and colorectal cancer development. Cell Death Dis 2018; 9:456. [PMID: 29674637 PMCID: PMC5908793 DOI: 10.1038/s41419-018-0451-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 01/01/2023]
Abstract
The canonical Wnt/β-Catenin signaling pathway is widely involved in regulating diverse biological processes. Dysregulation of the pathway results in severe consequences, such as developmental defects and malignant cancers. Here, we identified Ube2s as a novel activator of the Wnt/β-Catenin signaling pathway. It modified β-Catenin at K19 via K11-linked polyubiquitin chain. This modification resulted in an antagonistic effect against the destruction complex/β-TrCP cascade-orchestrated β-Catenin degradation. As a result, the stability of β-Catenin was enhanced, thus promoting its cellular accumulation. Importantly, Ube2s-promoted β-Catenin accumulation partially released the dependence on exogenous molecules for the process of embryonic stem (ES) cell differentiation into mesoendoderm lineages. Moreover, we demonstrated that UBE2S plays a critical role in determining the malignancy properties of human colorectal cancer (CRC) cells in vitro and in vivo. The findings in this study extend our mechanistic understanding of the mesoendodermal cell fate commitment, and provide UBE2S as a putative target for human CRC therapy.
Collapse
Affiliation(s)
- Zhaoyan Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yan Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yadan Li
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Wanqi Yin
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Libin Mo
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xianghao Qian
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yiran Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Guifen Wang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Fan Bu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiling Zhang
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaofang Ren
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Baochang Zhu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Chang Niu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
20
|
Lin TH, Hsu WH, Tsai PH, Huang YT, Lin CW, Chen KC, Tsai IH, Kandaswami CC, Huang CJ, Chang GD, Lee MT, Cheng CH. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct 2017; 8:1558-1568. [PMID: 28277581 DOI: 10.1039/c6fo00551a] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported that the dietary flavonoids, luteolin and quercetin, might inhibit the invasiveness of cervical cancer by reversing epithelial-mesenchymal transition (EMT) signaling. However, the regulatory mechanism exerted by luteolin and quercetin is still unclear. This study analyzed the invasiveness activation by ubiquitin E2S ligase (UBE2S) through EMT signaling and inhibition by luteolin and quercetin. We found that UBE2S expression was significantly higher in highly invasive A431 subgroup III (A431-III) than A431-parental (A431-P) cells. UBE2S small interfering (si)RNA knockdown and overexpression experiments showed that UBE2S increased the migratory and invasive abilities of cancer cells through EMT signaling. Luteolin and quercetin significantly inhibited UBE2S expression. UBE2S showed a negative correlation with von Hippel-Lindau (VHL) and a positive correlation with hypoxia-induced factor (Hif)-1α. Our findings suggest that high UBE2S in malignant cancers contributes to cell motility through EMT signaling and is reversed by luteolin and quercetin. UBE2S might contribute to Hif-1α signaling in cervical cancer. These results show the metastatic inhibition of cervical cancer by luteolin and quercetin through reducing UBE2S expression, and provide a functional role for UBE2S in the motility of cervical cancer. UBE2S could be a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Tsung-Han Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang X, Zhao F, Zhang S, Song Y. Ectopic High Expression of E2-EPF Ubiquitin Carrier Protein Indicates a More Unfavorable Prognosis in Brain Glioma. Genet Test Mol Biomarkers 2017; 21:242-247. [PMID: 28384045 DOI: 10.1089/gtmb.2016.0281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Xiaohui Zhang
- Pathology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fangbo Zhao
- School of Material Science and Chemical Engineering, Harbin Engineering University, Harbin, China
| | - Shujun Zhang
- Pathology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yichun Song
- Pathology Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Yoshimura S, Kasamatsu A, Nakashima D, Iyoda M, Kasama H, Saito T, Takahara T, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K. UBE2S associated with OSCC proliferation by promotion of P21 degradation via the ubiquitin-proteasome system. Biochem Biophys Res Commun 2017; 485:820-825. [PMID: 28257844 DOI: 10.1016/j.bbrc.2017.02.138] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/12/2022]
Abstract
Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitin-proteasome system, is highly expressed in several types of cancers; however, its roles in oral squamous cell carcinoma (OSCC) have not yet been well elucidated. The purpose of this study was to clarify the functional activities of UBE2S in OSCCs. We analyzed the expression levels of UBE2S in nine OSCC cell lines and primary OSCC tissues by quantitative reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry (IHC). The correlations between UBE2S expression and clinical classifications of OSCCs were analyzed using the IHC scoring system. We also used UBE2S knockdown OSCC cells for functional assays (proliferation assay, flow cytometry, and Western blotting). UBE2S was overexpressed in OSCCs in vitro and in vivo and was correlated significantly (P < 0.05) with the primary tumoral size. The cellular growth was decreased and the cell-cycle was arrested in the G2/M phase in the UBE2S knockdown (shUBE2S) cells. The expression level of P21, a target of the ubiquitin-proteasome system, was increased in the shUBE2S cells because of lower anaphase activity that promotes complex subunit 3 (APC3), an E3 ubiquitin ligase, compared with shMock cells. These findings might promote the understanding of the relationship between UBE2S overexpression and oral cancer proliferation, indicating that UBE2S would be a potential biomarker of and therapeutic target in OSCCs.
Collapse
Affiliation(s)
- Shusaku Yoshimura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Dai Nakashima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Manabu Iyoda
- Division of Oral Surgery, Chiba Rosai Hospital, Chiba, Japan
| | - Hiroki Kasama
- Division of Oral Surgery, Chiba Rosai Hospital, Chiba, Japan
| | - Tomoaki Saito
- Division of Oral Surgery, Chiba Rosai Hospital, Chiba, Japan
| | - Toshikazu Takahara
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yosuke Endo-Sakamoto
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Masashi Shiiba
- Department of Medical Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| |
Collapse
|
23
|
Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Mol Cancer 2016; 15:83. [PMID: 27993170 PMCID: PMC5168717 DOI: 10.1186/s12943-016-0565-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/30/2016] [Indexed: 01/08/2023] Open
Abstract
Cell lines are still a tool of choice for many fields of biomedical research, including oncology. Although cancer is a very complex disease, many discoveries have been made using monocultures of established cell lines. Therefore, the proper use of in vitro models is crucial to enhance our understanding of cancer. Therapeutics against renal cell cancer (RCC) are also screened with the use of cell lines. Multiple RCC in vitro cultures are available, allowing in vivo heterogeneity in the laboratory, but at the same time, these can be a source of errors. In this review, we tried to sum up the data on the RCC cell lines used currently. An increasing amount of data on RCC shed new light on the molecular background of the disease; however, it revealed how much still needs to be done. As new types of RCC are being distinguished, novel cell lines and the re-exploration of old ones seems to be indispensable to create effective in vitro tools for drug screening and more.
Collapse
Affiliation(s)
- Klaudia K Brodaczewska
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Cezary Szczylik
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland
| | - Michal Fiedorowicz
- Department of Experimental Pharmacology, Polish Academy of Science Medical Research Centre, Warsaw, Poland
| | - Camillo Porta
- Department of Medical Oncology, IRCCS San Matteo University Hospital Foundation, Pavia, Italy
| | - Anna M Czarnecka
- Department of Oncology with Laboratory of Molecular Oncology, Military Institute of Medicine, Szaserow 128, 04-141, Warsaw, Poland.
| |
Collapse
|
24
|
Hu L, Li X, Liu Q, Xu J, Ge H, Wang Z, Wang H, Wang Z, Shi C, Xu X, Huang J, Lin Z, Pieper RO, Weng C. UBE2S, a novel substrate of Akt1, associates with Ku70 and regulates DNA repair and glioblastoma multiforme resistance to chemotherapy. Oncogene 2016; 36:1145-1156. [PMID: 27593939 DOI: 10.1038/onc.2016.281] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/17/2016] [Accepted: 06/28/2016] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain cancer in adults. However, the molecular events underlying carcinogenesis and their interplay remain elusive. Here, we report that the stability of Ubiquitin-conjugating enzyme E2S (UBE2S) is regulated by the PTEN/Akt pathway and that its degradation depends on the ubiquitin-proteasome system. Mechanistically, Akt1 physically interacted with and phosphorylated UBE2S at Thr 152, enhancing its stability by inhibiting proteasomal degradation. Additionally, accumulated UBE2S was found to be associated with the components of the non-homologous end-joining (NHEJ) complex and participated in the NHEJ-mediated DNA repair process. The association of Ku70 with UBE2S was enhanced, and the complex was recruited to double-stranded break (DSB) sites in response to etoposide treatment. Furthermore, knockdown of UBE2S expression inhibited NHEJ-mediated DSB repair and rendered glioblastoma cells more sensitive to chemotherapy. Overall, our findings provide a novel drug target that may serve as the rationale for the development of a new therapeutic approach.
Collapse
Affiliation(s)
- L Hu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Li
- Department of Neurosurgery, Liaocheng People's Hospital of Shandong University, Liaocheng, China
| | - Q Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - H Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Department of Epidemiology and Biostatistics, Harbin Medical University, Harbin, China
| | - H Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Z Wang
- Saint-Antoine Research Centre, University Pierre and Marie CURIE, Paris, France
| | - C Shi
- Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - X Xu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - J Huang
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Z Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - R O Pieper
- Department of Neurological Surgery, University of California, San Francisco, USA
| | - C Weng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
25
|
Park KS, Kim JH, Shin HW, Chung KS, Im DS, Lim JH, Jung CR. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis. BMC Cancer 2015; 15:800. [PMID: 26503325 PMCID: PMC4624580 DOI: 10.1186/s12885-015-1786-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/06/2015] [Indexed: 12/02/2022] Open
Abstract
Background Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. Method The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticacner effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Results Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. Conclusion These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1786-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyeong-Su Park
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea. .,EQUISnZAROO R&D center, Gyeonggi-do, Republic of Korea.
| | - Ju Hee Kim
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea. .,University of Science and Technology, Daejeon, Republic of Korea.
| | - Hee Won Shin
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea. .,University of Science and Technology, Daejeon, Republic of Korea.
| | - Kyung-Sook Chung
- Genome research center, KRIBB, Daejeon, Republic of Korea. .,University of Science and Technology, Daejeon, Republic of Korea.
| | - Dong-Soo Im
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea.
| | - Jung Hwa Lim
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea.
| | - Cho-Rok Jung
- Gene Therapy Research Unit, KRIBB, Daejeon, Republic of Korea. .,University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Fernandes DS, Lopes JM. Pathology, therapy and prognosis of papillary renal carcinoma. Future Oncol 2015; 11:121-32. [PMID: 25572787 DOI: 10.2217/fon.14.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Papillary renal cell carcinoma (pRCC) accounts for approximately 10% of renal parenchymal tumors. There are two pRCC subtypes reported in several studies, but at present, there is limited molecular evidence to validate this pRCC subtyping in the daily routine. The utility of subtyping pRCC is based on reports describing that pRCC subtype is an independent predictor of outcome, with type 1 tumors showing significantly better survival than type 2 tumors. In this article, we summarize the relevant knowledge on pRCC regarding tumor features: clinical presentation, histopathology, electron microscopy, immunohistochemistry, cytogenetics, genetic/molecular and prognosis. We present an overview of the currently available pRCC treatment options and some of the new promising agents.
Collapse
|
27
|
Ayesha AK, Hyodo T, Asano E, Sato N, Mansour MA, Ito S, Hamaguchi M, Senga T. UBE2S is associated with malignant characteristics of breast cancer cells. Tumour Biol 2015; 37:763-72. [DOI: 10.1007/s13277-015-3863-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023] Open
|
28
|
Hamilton MJ, Lee M, Le Roch KG. The ubiquitin system: an essential component to unlocking the secrets of malaria parasite biology. MOLECULAR BIOSYSTEMS 2014; 10:715-23. [PMID: 24481176 PMCID: PMC3990246 DOI: 10.1039/c3mb70506d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exploration of the ubiquitin system in eukaryotes has shown that the chemical modification of proteins by ubiquitin, known as ubiquitylation, is an incredibly important post-translational event that is crucial to numerous cellular processes. Ubiquitylation is carried out by a series of enzymes that specifically target proteins to either change their activity or their location or earmark them for degradation. Using a wide range of genome-wide approaches, the ubiquitin system has been shown to be of particular importance in the survival and propagation of the human malaria parasites. In this review, we highlight our current understanding of the ubiquitin system in Plasmodium, and discuss its possible role in the development of drug resistant malaria strains.
Collapse
Affiliation(s)
- Michael J Hamilton
- Department of Cell Biology and Neuroscience, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, 900 University Avenue, Riverside, CA 92521, USA.
| | | | | |
Collapse
|
29
|
David JM, Owens TA, Inge LJ, Bremner RM, Rajasekaran AK. Gramicidin A Blocks Tumor Growth and Angiogenesis through Inhibition of Hypoxia-Inducible Factor in Renal Cell Carcinoma. Mol Cancer Ther 2014; 13:788-99. [DOI: 10.1158/1535-7163.mct-13-0891] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Wake NC, Ricketts CJ, Morris MR, Prigmore E, Gribble SM, Skytte AB, Brown M, Clarke N, Banks RE, Hodgson S, Turnell AS, Maher ER, Woodward ER. UBE2QL1 is disrupted by a constitutional translocation associated with renal tumor predisposition and is a novel candidate renal tumor suppressor gene. Hum Mutat 2013; 34:1650-61. [PMID: 24000165 PMCID: PMC4028990 DOI: 10.1002/humu.22433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/23/2013] [Indexed: 11/08/2022]
Abstract
Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gene.
Collapse
MESH Headings
- Adult
- Base Sequence
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Chromosome Breakpoints
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 5
- DNA Methylation
- Epigenesis, Genetic
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Molecular Sequence Data
- Protein Binding
- Protein Transport
- Translocation, Genetic
- Ubiquitin-Conjugating Enzymes/chemistry
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Naomi C Wake
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Christopher J Ricketts
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Mark R Morris
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- University of Wolverhampton, Wulfruna StreetWolverhampton, UK
| | - Elena Prigmore
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | - Susan M Gribble
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome CampusHinxton, Cambridge, UK
| | | | - Michael Brown
- Genito Urinary Cancer Research Group, School of Cancer and Enabling Sciences, Paterson Institute for Cancer Research, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation TrustManchester, UK
| | - Noel Clarke
- Genito Urinary Cancer Research Group, School of Cancer and Enabling Sciences, Paterson Institute for Cancer Research, The University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation TrustManchester, UK
| | - Rosamonde E Banks
- Cancer Research UK Clinical Centre, St. James's University HospitalLeeds, UK
| | - Shirley Hodgson
- South West Thames Regional Genetics Service, St. George's Medical School, University of LondonLondon, UK
| | - Andrew S Turnell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
| | - Eamonn R Maher
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- West Midlands Regional Genetics Service, Birmingham Women's HospitalEdgbaston, Birmingham, UK
- Academic Department of Medical Genetics, Addenbrooke's Treatment Centre, Hills RoadCambridge, UK
| | - Emma R Woodward
- Centre for Rare Diseases and Personalised Medicine, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of BirminghamBirmingham, UK
- West Midlands Regional Genetics Service, Birmingham Women's HospitalEdgbaston, Birmingham, UK
| |
Collapse
|
31
|
LIANG JING, NISHI HIROTAKA, BIAN MEILU, HIGUMA CHINATSU, SASAKI TORU, ITO HIROE, ISAKA KEIICHI. The ubiquitin-conjugating enzyme E2-EPF is overexpressed in cervical cancer and associates with tumor growth. Oncol Rep 2012; 28:1519-25. [DOI: 10.3892/or.2012.1949] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/11/2012] [Indexed: 11/05/2022] Open
|
32
|
Daniel CR, Cross AJ, Graubard BI, Park Y, Ward MH, Rothman N, Hollenbeck AR, Chow WH, Sinha R. Large prospective investigation of meat intake, related mutagens, and risk of renal cell carcinoma. Am J Clin Nutr 2012; 95:155-62. [PMID: 22170360 PMCID: PMC3238458 DOI: 10.3945/ajcn.111.019364] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The evidence for meat intake and renal cell carcinoma (RCC) risk is inconsistent. Mutagens related to meat cooking and processing, and variation by RCC subtype may be important to consider. OBJECTIVE In a large US cohort, we prospectively investigated intake of meat and meat-related compounds in relation to risk of RCC, as well as clear cell and papillary RCC histologic subtypes. DESIGN Study participants (492,186) completed a detailed dietary assessment linked to a database of heme iron, heterocyclic amines (HCA), polycyclic aromatic hydrocarbons (PAHs), nitrate, and nitrite concentrations in cooked and processed meats. Over 9 (mean) y of follow-up, we identified 1814 cases of RCC (498 clear cell and 115 papillary adenocarcinomas). HRs and 95% CIs were estimated within quintiles by using multivariable Cox proportional hazards regression. RESULTS Red meat intake [62.7 g (quintile 5) compared with 9.8 g (quintile 1) per 1000 kcal (median)] was associated with a tendency toward an increased risk of RCC [HR: 1.19; 95% CI: 1.01, 1.40; P-trend = 0.06] and a 2-fold increased risk of papillary RCC [P-trend = 0.002]. Intakes of benzo(a)pyrene (BaP), a marker of PAHs, and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP), an HCA, were associated with a significant 20-30% elevated risk of RCC and a 2-fold increased risk of papillary RCC. No associations were observed for the clear cell subtype. CONCLUSIONS Red meat intake may increase the risk of RCC through mechanisms related to the cooking compounds BaP and PhIP. Our findings for RCC appeared to be driven by strong associations with the rarer papillary histologic variant. This study is registered at clinicaltrials.gov as NCT00340015.
Collapse
Affiliation(s)
- Carrie R Daniel
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Rockville, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bremm A, Komander D. Emerging roles for Lys11-linked polyubiquitin in cellular regulation. Trends Biochem Sci 2011; 36:355-63. [PMID: 21641804 DOI: 10.1016/j.tibs.2011.04.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Polyubiquitin chains are assembled via one of seven lysine (Lys) residues or the N terminus. The cellular roles of Lys48- and Lys63-linked polyubiquitin have been extensively studied; however, the cellular functions of Lys11-linked chains are less well understood. Recent insights into Lys11-linked ubiquitin chains have revealed their important function in cell cycle control. Additionally, Lys11 linkages have been identified in the context of mixed chains in many other cellular pathways. In this review, we introduce the specific enzymes that mediate Lys11-linked chain assembly and disassembly, and discuss the diverse cellular processes in which Lys11 linkages participate. Notably, mechanistic insights have revealed how the E2 ubiquitin-conjugating enzyme UBE2S achieves its Lys11 linkage specificity, and two structures of Lys11-linked polyubiquitin highlight the dynamic nature of this compact chain type.
Collapse
Affiliation(s)
- Anja Bremm
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | |
Collapse
|