1
|
Valladão SC, França AP, Pandolfo P, Dos Santos-Rodrigues A. Adenosinergic system and nucleoside transporters in attention deficit hyperactivity disorder: Current findings. Neurosci Biobehav Rev 2024; 164:105771. [PMID: 38880409 DOI: 10.1016/j.neubiorev.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder with high heterogeneity that can affect individuals of any age. It is characterized by three main symptoms: inattention, hyperactivity, and impulsivity. These neurobehavioral alterations and neurochemical and pharmacological findings are mainly attributed to unbalanced catecholaminergic signaling, especially involving dopaminergic pathways within prefrontal and striatal areas. Dopamine receptors and transporters are not solely implicated in this imbalance, as evidence indicates that the dopaminergic signaling is modulated by adenosine activity. To this extent, alterations in adenosinergic signaling are probably involved in ADHD. Here, we review the current knowledge about adenosine's role in the modulation of chemical, behavioral and cognitive parameters of ADHD, especially regarding dopaminergic signaling. Current literature usually links adenosine receptors signaling to the dopaminergic imbalance found in ADHD, but there is evidence that equilibrative nucleoside transporters (ENTs) could also be implicated as players in dopaminergic signaling alterations seen in ADHD, since their involvement in other neurobehavioral impairments.
Collapse
Affiliation(s)
- Sofia Corrêa Valladão
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Angela Patricia França
- Graduate Program in Neuroscience, Centre of Biological Sciences, Federal University of Santa Catarina (UFSC), Brazil; Graduate Program in Medical Sciences, Centre of Health Sciences, Federal University of Santa Catarina, Brazil.
| | - Pablo Pandolfo
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil; Graduate Program of Physiology and Pharmacology, Biomedical Institute, Universidade Federal Fluminense, Niterói, Brazil.
| | - Alexandre Dos Santos-Rodrigues
- Graduate Program of Neurosciences and Department of Neurobiology, Institute of Biology, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
2
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Vargas-Soria M, García-Alloza M, Corraliza-Gómez M. Effects of diabetes on microglial physiology: a systematic review of in vitro, preclinical and clinical studies. J Neuroinflammation 2023; 20:57. [PMID: 36869375 PMCID: PMC9983227 DOI: 10.1186/s12974-023-02740-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Diabetes mellitus is a heterogeneous chronic metabolic disorder characterized by the presence of hyperglycemia, commonly preceded by a prediabetic state. The excess of blood glucose can damage multiple organs, including the brain. In fact, cognitive decline and dementia are increasingly being recognized as important comorbidities of diabetes. Despite the largely consistent link between diabetes and dementia, the underlying causes of neurodegeneration in diabetic patients remain to be elucidated. A common factor for almost all neurological disorders is neuroinflammation, a complex inflammatory process in the central nervous system for the most part orchestrated by microglial cells, the main representatives of the immune system in the brain. In this context, our research question aimed to understand how diabetes affects brain and/or retinal microglia physiology. We conducted a systematic search in PubMed and Web of Science to identify research items addressing the effects of diabetes on microglial phenotypic modulation, including critical neuroinflammatory mediators and their pathways. The literature search yielded 1327 records, including 18 patents. Based on the title and abstracts, 830 papers were screened from which 250 primary research papers met the eligibility criteria (original research articles with patients or with a strict diabetes model without comorbidities, that included direct data about microglia in the brain or retina), and 17 additional research papers were included through forward and backward citations, resulting in a total of 267 primary research articles included in the scoping systematic review. We reviewed all primary publications investigating the effects of diabetes and/or its main pathophysiological traits on microglia, including in vitro studies, preclinical models of diabetes and clinical studies on diabetic patients. Although a strict classification of microglia remains elusive given their capacity to adapt to the environment and their morphological, ultrastructural and molecular dynamism, diabetes modulates microglial phenotypic states, triggering specific responses that include upregulation of activity markers (such as Iba1, CD11b, CD68, MHC-II and F4/80), morphological shift to amoeboid shape, secretion of a wide variety of cytokines and chemokines, metabolic reprogramming and generalized increase of oxidative stress. Pathways commonly activated by diabetes-related conditions include NF-κB, NLRP3 inflammasome, fractalkine/CX3CR1, MAPKs, AGEs/RAGE and Akt/mTOR. Altogether, the detailed portrait of complex interactions between diabetes and microglia physiology presented here can be regarded as an important starting point for future research focused on the microglia-metabolism interface.
Collapse
Affiliation(s)
- María Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Mónica García-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain.,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain
| | - Miriam Corraliza-Gómez
- Division of Physiology, School of Medicine, Universidad de Cadiz, Cadiz, Spain. .,Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), Cadiz, Spain.
| |
Collapse
|
4
|
Sanni O, Terre'Blanche G. Therapeutic potentials of agonist and antagonist of adenosine receptors in type 2 diabetes. Rev Endocr Metab Disord 2021; 22:1073-1090. [PMID: 34165671 DOI: 10.1007/s11154-021-09668-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes has been a global health challenge over the decades and is among the leading causes of death. Several treatment approaches have been developed, but more effective and new therapies are still needed. The role of adenosine in glucose and lipid homeostasis has offered a different therapeutic approach. Adenosine mediates its physiological role through the activation of adenosine receptors. These adenosine receptors have been implicated in glucose and lipid homeostasis. The ability of agonists and antagonists of adenosine receptors to activate or inhibit the adenosine signalling cascade and thereby affecting the balance of glucose and lipid homeostasis has challenged the studies of agonists and antagonists of adenosine receptors, both preclinical and clinical, as potential anti-diabetic drugs. This review provides a background on different anti-diabetic therapeutic approaches, outlining the role of adenosine receptors in glucose and lipid homeostasis, and mechanisms underlying the action of agonists/antagonists of adenosine receptors as a therapeutic potential towards type 2 diabetes.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, 2357, South Africa.
| | - G Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences. North-West University (NWU), Potchefstroom, 2357, South Africa
| |
Collapse
|
5
|
Sun D, Ko M, Shao H, Kaplan HJ. Adenosine receptor ligation tips the uveitogenic Th1 and Th17 balance towards the latter in experimental autoimmune uveitis-induced mouse. CURRENT RESEARCH IN IMMUNOLOGY 2021; 2:93-103. [PMID: 34825178 PMCID: PMC8612466 DOI: 10.1016/j.crimmu.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Various pathological conditions are accompanied by release of adenosine triphosphate (ATP) from the intracellular to the extracellular compartment, where it degrades into adenosine and modulates immune responses. Previous studies concluded that both ATP and its degradation product adenosine are important immune-regulatory molecules; ATP acted as a danger signal that promotes immune responses, but adenosine's effect was inhibitory. We show that adenosine receptor ligation plays an important role in balancing Th1 and Th17 pathogenic T cell responses in experimental autoimmune uveitis (EAU). While its effect on Th1 responses is inhibitory, its effect on Th17 responses is enhancing, thereby impacting the balance between Th1 and Th17 responses. Mechanistic studies showed that this effect is mediated via several immune cells, among which γδ T cell activation and dendritic cell differentiation are prominent; adenosine- and γδ-mediated immunoregulation synergistically impact each other's effect. Adenosine receptor ligation augments the activation of γδ T cells, which is an important promoter for Th17 responses and has a strong effect on dendritic cell (DC) differentiation, tipping the balance from generation of DCs that stimulate Th1 responses to those that stimulate Th17 responses. The knowledge acquired in this study should improve our understanding of the immune-regulatory effect of extracellular ATP-adenosine metabolism and improve treatment for autoimmune diseases caused by both Th1-and Th17-type pathogenic T cells.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
- Corresponding author. Department of Ophthalmology, University of California Los Angeles, Los Angeles, CA90033, USA.
| | - Minhee Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J. Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
6
|
Liu X, Xu B, Gao S. Spleen Tyrosine Kinase Mediates Microglial Activation in Mice With Diabetic Retinopathy. Transl Vis Sci Technol 2021; 10:20. [PMID: 34003998 PMCID: PMC8083065 DOI: 10.1167/tvst.10.4.20] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Diabetic retinopathy (DR) is a leading cause of blindness in developed countries, in which microglial activation is involved. However, the mechanism of microglial activation in DR remains largely unknown. Methods We used Cx3cr1CreERT2; Sykfl/fl mice to knockout microglial spleen tyrosine kinase (Syk) in the retina of mice (cKO mice) after streptozotocin injection to induce diabetes. We also isolated primary retinal microglia from wild-type and cKO mice, respectively, to explore the role of microglial Syk in DR. Results The deletion of microglial Syk in the retina of mice or in the primary retinal microglia inhibited microglial activation and inflammatory response, eventually leading to the improvement of DR by regulating the expressions of interferon regulatory factor 8 (Irf8) and Pu.1 both in vivo and in vitro. Conclusions The deletion of microglial Syk in the retina effectively ameliorated microglial activation-induced DR, suggesting the potential of microglial Syk as a therapeutic target for DR. Translational Relevance Microglial spleen tyrosine kinase might serve as a potential therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaozhe Liu
- Department of Ophthalmology, Gucheng County Hospital, Hengshui Gucheng, Hebei, China
| | - Bing Xu
- Department of ENT, Gucheng County Hospital, Hengshui Gucheng, Hebei, China
| | - Shihao Gao
- Department of Chest Surgery, Gucheng County Hospital, Hengshui Gucheng, Hebei, China
| |
Collapse
|
7
|
Ye SS, Tang Y, Song JT. ATP and Adenosine in the Retina and Retinal Diseases. Front Pharmacol 2021; 12:654445. [PMID: 34211393 PMCID: PMC8239296 DOI: 10.3389/fphar.2021.654445] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular ATP and its ultimate degradation product adenosine are potent extracellular signaling molecules that elicit a variety of pathophysiological pathways in retina through the activation of P2 and P1 purinoceptors, respectively. Excessive build-up of extracellular ATP accelerates pathologic responses in retinal diseases, whereas accumulation of adenosine protects retinal cells against degeneration or inflammation. This mini-review focuses on the roles of ATP and adenosine in three types of blinding diseases including age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR). Several agonists and antagonists of ATP receptors and adenosine receptors (ARs) have been developed for the potential treatment of glaucoma, DR and AMD: antagonists of P2X7 receptor (P2X7R) (BBG, MRS2540) prevent ATP-induced neuronal apoptosis in glaucoma, DR, and AMD; A1 receptor (A1R) agonists (INO-8875) lower intraocular pressure in glaucoma; A2A receptor (A2AR) agonists (CGS21680) or antagonists (SCH58261, ZM241385) reduce neuroinflammation in glaucoma, DR, and AMD; A3 receptor (A3R) agonists (2-Cl-lB-MECA, MRS3558) protect retinal ganglion cells (RGCs) from apoptosis in glaucoma.
Collapse
Affiliation(s)
- Shan-Shan Ye
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tang
- International Collaborative Centre on Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Jian-Tao Song
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Ko MK, Shao H, Kaplan HJ, Sun D. Timing Effect of Adenosine-Directed Immunomodulation on Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2021; 207:153-161. [PMID: 34127521 DOI: 10.4049/jimmunol.2100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Adenosine is an important regulatory molecule of the immune response. We have previously reported that treatment of experimental autoimmune uveitis (EAU)-prone mice with an adenosine-degrading enzyme (adenosine deaminase) prohibited EAU development by inhibiting Th17 pathogenic T cell responses. To further validate that the targeting of adenosine or adenosine receptors effectively modulates Th17 responses, we investigated the effect of adenosine receptor antagonists. In this study, we show that the A2AR antagonist SCH 58261 (SCH) effectively modulates aberrant Th17 responses in induced EAU. However, timing of the treatment is important. Whereas SCH inhibits EAU when administered during the active disease stage, it did not do so if administered during quiescent disease stages, thus implying that the existing immune status influences the therapeutic effect. Mechanistic studies showed that inhibition of γδ T cell activation is crucially involved in adenosine-based treatment. Adenosine is an important costimulator of γδ T cell activation, which is essential for promoting Th17 responses. During ongoing disease stages, adenosine synergizes with existing high levels of cytokines, leading to augmented γδ T cell activation and Th17 responses, but in quiescent disease stages, when existing cytokine levels are low, adenosine does not enhance γδ T cell activation. Our results demonstrated that blockade of the synergistic effect between adenosine and inflammatory cytokines at active disease stages can ameliorate high-degree γδ T cell activation and, thus, suppress Th17 pathogenic T cell responses.
Collapse
Affiliation(s)
- Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY; and
| | - Henry J Kaplan
- Saint Louis University Eye Institute, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO
| | - Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA;
| |
Collapse
|
9
|
Sun D, Ko MK, Shao H, Kaplan HJ. Augmented Th17-stimulating activity of BMDCs as a result of reciprocal interaction between γδ and dendritic cells. Mol Immunol 2021; 134:13-24. [PMID: 33689926 PMCID: PMC8629029 DOI: 10.1016/j.molimm.2021.02.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022]
Abstract
Our previous studies demonstrated that γδ T cells have a strong regulatory effect on Th17 autoimmune responses in experimental autoimmune uveitis (EAU). In the current study, we show that reciprocal interactions between mouse γδ T cells and dendritic cells (DCs) played a major role in γδ regulation of Th17 responses. Mouse bone marrow-derived dendritic cells (BMDCs) acquired an increased ability to enhance Th17 autoimmune responses after exposure to γδ T cells; meanwhile, after exposure, a significant portion of the BMDCs expressed CD73 - a molecule that is fundamental in the conversion of immunostimulatory ATP into immunosuppressive adenosine. Functional studies showed that CD73+ BMDCs were uniquely effective in stimulating the Th17 responses, as compared to CD73- BMDCs; and activated γδ T cells are much more effective than non-activated γδ T cells at inducing CD73+ BMDCs. As a result, activated γδ T cells acquired greater Th17-enhancing activity. Treatment of BMDCs with the CD73-specific antagonist APCP abolished the enhancing effect of the BMDCs. γδ T cells more effectively induced CD73+ BMDCs from the BMDCs that were pre-exposed to TLR ligands, and the response was further augmented by adenosine. Moreover, BMDCs acquired increased ability to stimulate γδ activation after pre-exposure to TLR ligands and adenosine. Our results demonstrated that both extra-cellular adenosine and TLR ligands are critical factors in augmented Th17 responses in this autoimmune disease, and the reciprocal interactions between γδ T cells and DCs play a major role in promoting Th17 responses.
Collapse
Affiliation(s)
- Deming Sun
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States.
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90033, United States
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY, 40202, United States
| | - Henry J Kaplan
- Saint Louis University (SLU) Eye Institute, SLU School of Medicine, Saint Louis, MO, 63104, United States
| |
Collapse
|
10
|
Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A 2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2021; 11:627838. [PMID: 33574762 PMCID: PMC7871008 DOI: 10.3389/fphar.2020.627838] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
This review presents an overview of cardiac A2A-adenosine receptors The localization of A2A-AR in the various cell types that encompass the heart and the role they play in force regulation in various mammalian species are depicted. The putative signal transduction systems of A2A-AR in cells in the living heart, as well as the known interactions of A2A-AR with membrane-bound receptors, will be addressed. The possible role that the receptors play in some relevant cardiac pathologies, such as persistent or transient ischemia, hypoxia, sepsis, hypertension, cardiac hypertrophy, and arrhythmias, will be reviewed. Moreover, the cardiac utility of A2A-AR as therapeutic targets for agonistic and antagonistic drugs will be discussed. Gaps in our knowledge about the cardiac function of A2A-AR and future research needs will be identified and formulated.
Collapse
Affiliation(s)
- P. Boknik
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - J. Eskandar
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Westfälische Wilhelms-Universität, Münster, Germany
| | - B. Hofmann
- Cardiac Surgery, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - N. Zimmermann
- Bundesinstitut für Arzneimittel und Medizinprodukte, Bonn, Germany
| | - J. Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - U. Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| |
Collapse
|
11
|
Lyu Q, Peng L, Hong X, Fan T, Li J, Cui Y, Zhang H, Zhao J. Smart nano-micro platforms for ophthalmological applications: The state-of-the-art and future perspectives. Biomaterials 2021; 270:120682. [PMID: 33529961 DOI: 10.1016/j.biomaterials.2021.120682] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
Smart nano-micro platforms have been extensively applied for diverse biomedical applications, mostly focusing on cancer therapy. In comparison with conventional nanotechnology, the smart nano-micro matrix can exhibit specific response to exogenous or endogenous triggers, and thus can achieve multiple functions e.g. site-specific drug delivery, bio-imaging and detection of bio-molecules. These intriguing techniques have expanded into ophthalmology in recent years, yet few works have been summarized in this field. In this work, we provide the state-of-the-art of diverse nano-micro platforms based on both the conventional materials (e.g. natural or synthetic polymers, lipid nanomaterials, metal and metal oxide nanoparticles) and emerging nanomaterials (e.g. up-conversion nanoparticles, quantum dots and carbon materials) in ophthalmology, with some smart nano/micro platformers highlighted. The common ocular diseases studied in the field of nano-micro systems are firstly introduced, and their therapeutic method and the related drawback in clinic treatment are presented. The recent progress of different materials for diverse ocular applications is then demonstrated, with the representative nano- and micro-systems highlighted in detail. At last, an in-depth discussion on the clinical translation challenges faced in this field and the future direction are provided. This review would allow the researchers to design more smart nanomedicines in a more rational manner for specific ophthalmology applications.
Collapse
Affiliation(s)
- Qinghua Lyu
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ling Peng
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Xiangqian Hong
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Taojian Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Jingying Li
- Department of Ophthalmology, Peking University Shenzhen Hospital, Shenzhen, 518000, PR China
| | - Yubo Cui
- Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| | - Jun Zhao
- Shenzhen Eye Hospital, School of Ophthalmology & Optometry Affiliated to Shenzhen University, Shenzhen, 518040, PR China; Department of Ophthalmology, Shenzhen People's Hospital (The Second Clinical Medical College,Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, PR China.
| |
Collapse
|
12
|
Yumnamcha T, Guerra M, Singh LP, Ibrahim AS. Metabolic Dysregulation and Neurovascular Dysfunction in Diabetic Retinopathy. Antioxidants (Basel) 2020; 9:E1244. [PMID: 33302369 PMCID: PMC7762582 DOI: 10.3390/antiox9121244] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy is a major cause of ocular complications in patients with type 1 and type 2 diabetes in developed countries. Due to the continued increase in the number of people with obesity and diabetes in the United States of America and globally, the incidence of diabetic retinopathy is expected to increase significantly in the coming years. Diabetic retinopathy is widely accepted as a combination of neurodegenerative and microvascular changes; however, which change occurs first is not yet understood. Although the pathogenesis of diabetic retinopathy is very complex, regulated by numerous signaling pathways and cellular processes, maintaining glucose homeostasis is still an essential component for normal physiological functioning of retinal cells. The maintenance of glucose homeostasis is finely regulated by coordinated interplay between glycolysis, Krebs cycle, and oxidative phosphorylation. Glycolysis is the most conserved metabolic pathway in biology and is tightly regulated to maintain a steady-state concentration of glycolytic intermediates; this regulation is called scheduled or regulated glycolysis. However, an abnormal increase in glycolytic flux generates large amounts of intermediate metabolites that can be shunted into different damaging pathways including the polyol pathway, hexosamine pathway, diacylglycerol-dependent activation of the protein kinase C pathway, and Amadori/advanced glycation end products (AGEs) pathway. In addition, disrupting the balance between glycolysis and oxidative phosphorylation leads to other biochemical and molecular changes observed in diabetic retinopathy including endoplasmic reticulum-mitochondria miscommunication and mitophagy dysregulation. This review will focus on how dysregulation of glycolysis contributes to diabetic retinopathy.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Michael Guerra
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Lalit Pukhrambam Singh
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
| | - Ahmed S. Ibrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (M.G.); (L.P.S.)
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
13
|
Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite as a novel and efficient catalyst for the synthesis of 2-amino-4H-pyrans and spirochromenes. Sci Rep 2020; 10:14540. [PMID: 32884026 PMCID: PMC7471288 DOI: 10.1038/s41598-020-70738-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/14/2020] [Indexed: 11/30/2022] Open
Abstract
Silver nanoparticles-decorated Preyssler functionalized cellulose biocomposite (PC/AgNPs) was prepared and fully characterized by FTIR, UV–vis, SEM, and TEM techniques. The preparation of PC/AgNPs was studied systematically to optimize the processing parameters by Taguchi method using the amount of PC, reaction temperature, concentration of silver nitrate and pH of medium. Taguchi’s L9 orthogonal (4 parameters, 4 level) was used for the experimental design. The SEM analysis confirmed the presence of the Preyssler as a white cloud as well as spherical AgNPs on the surface of cellulose. The formation of AgNPs on the surface was observed by changing of the color from yellow to deep brown and confirmed by UV–vis spectroscopy. The best yield of AgNPs forming was obtained in pH 12.5 at 80 ºC in 20 min. TEM analysis confirmed the formation of spherical AgNPs with a size of 50 nm, at the 1% wt. loading of Preyssler. This easily prepared PC/AgNPs was successfully employed as an efficient, green, and reusable catalyst in the synthesis of a wide range of 2-amino-4H-pyran and functionalized spirochromene derivatives via a one-pot, multicomponent reaction. The chief merits realized for this protocol were the utilization of commercially available or easily accessible starting materials, operational simplicity, facile work-up procedure, obtaining of high to excellent yields of the products and being done under green conditions. The catalyst could be easily separated from the reaction mixture and reused several times without observing any appreciable loss in its efficiency.
Collapse
|
14
|
Zhang YS, Lee HE, Kwan CC, Schwartz GW, Fawzi AA. Caffeine Delays Retinal Neurovascular Coupling during Dark to Light Adaptation in Healthy Eyes Revealed by Optical Coherence Tomography Angiography. Invest Ophthalmol Vis Sci 2020; 61:37. [PMID: 32340030 PMCID: PMC7401906 DOI: 10.1167/iovs.61.4.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of this study was to investigate the acute effects of caffeine on retinal hemodynamics during dark to light adaptation using optical coherence tomography angiography (OCTA). Methods Thirteen healthy individuals (13 eyes) underwent OCTA imaging after dark adaptation and at repeated intervals during the transition to ambient light in two imaging sessions: control and after ingesting 200 mg of caffeine. We analyzed the parafoveal vessel density (VD) and adjusted flow index (AFI) of the superficial capillary plexus (SCP), middle capillary plexus (MCP), and deep capillary plexus (DCP), as well as the vessel length density (VLD) of the SCP. After adjusting for age, refractive error, and scan quality, we compared parameters between control and caffeine conditions. Results In the dark, MCP VD decreased significantly after caffeine (−2.63 ± 1.28%). During the transition to light, initially, DCP VD increased (12.55 ± 2.52%), whereas SCP VD decreased (−2.09 ± 0.91%) significantly with caffeine compared to control. By 15 minutes in light, DCP VD reversed and was significantly decreased (−5.45 ± 2.62%), whereas MCP VD increased (4.65 ± 1.74%). There were no differences in AFI or VLD. Conclusions We show that, overall, caffeine causes a trend of delayed vascular response in all three macular capillary plexuses in response to ambient light. Whereas the MCP is constricted in the dark, during the transition from dark to light, there is initially delay followed by prolonged constriction of the DCP and constriction followed by slow dilation of the SCP. We posit that these delayed vascular responses may present potential risk of capillary ischemia.
Collapse
|
15
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
16
|
Li J, Liu HQ, Li XB, Yu WJ, Wang T. Function of Adenosine 2A Receptor in High-Fat Diet-Induced Peripheral Neuropathy. J Diabetes Res 2020; 2020:7856503. [PMID: 32566683 PMCID: PMC7267854 DOI: 10.1155/2020/7856503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/18/2022] Open
Abstract
Peripheral diabetic neuropathy (DPN) is a complication observed in up to half of all patients with type 2 diabetes. DPN has also been shown to be associated with obesity. High-fat diet (HFD) affects glucose metabolism, and the impaired glucose tolerance can lead to type 2 diabetes. There is evidence to suggest a role of adenosine 2A receptors (A2ARs) and semaphorin 3A (Sema3a) signaling in DPN. The link between the expression of Sema3a and A2AR in DPN was hypothesized, but the underlying mechanisms remain poorly understood. In this study, we investigated the regulation of Sema3a by A2AR in the spinal cord and the functional implications thereof in DPN. We examined the expression of A2ARs and Sema3a, as well as Neuropilin 1 and Plexin A, the coreceptors of Sema3a, in the dorsal horn of the lumbar spinal cord of an animal model with HFD-induced diabetes. Our results demonstrate that HFD dysregulates the A2AR-mediated Sema3a expression, with functional implications for the type 2 diabetes-induced peripheral neuropathy. These observations could stimulate clinical studies to improve our understanding on the subject.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/etiology
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/etiology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diet, High-Fat
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Nerve Fibers/metabolism
- Nerve Fibers/pathology
- Receptor, Adenosine A2A/physiology
- Semaphorin-3A/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
Collapse
Affiliation(s)
- Ji Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Huan-Qiu Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Xin-Bai Li
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| | - Wen-Jun Yu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tao Wang
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Aires ID, Madeira MH, Boia R, Rodrigues-Neves AC, Martins JM, Ambrósio AF, Santiago AR. Intravitreal injection of adenosine A 2A receptor antagonist reduces neuroinflammation, vascular leakage and cell death in the retina of diabetic mice. Sci Rep 2019; 9:17207. [PMID: 31748653 PMCID: PMC6868354 DOI: 10.1038/s41598-019-53627-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy is a major complication of diabetes mellitus and a leading cause of blindness. The pathogenesis of diabetic retinopathy is accompanied by chronic low-grade inflammation. Evidence shows that the blockade of adenosine A2A receptors (A2AR) affords protection to the retina through the control of microglia-mediated neuroinflammation. Herein, we investigated the therapeutic potential of an antagonist of A2AR in a model of diabetic retinopathy. Type 1 diabetes was induced in 4–5 months old C57BL/6 J mice with a single intraperitoneal injection streptozotocin. Animals were treated one month after the onset of diabetes. The A2AR antagonist was delivered by intravitreal injection once a week for 4 weeks. Microglia reactivity and inflammatory mediators were increased in the retinas of diabetic animals. The treatment with the A2AR antagonist was able to control microglial reactivity and halt neuroinflammation. Furthermore, the A2AR antagonist rescued retinal vascular leakage, attenuated alterations in retinal thickness, decreased retinal cell death and the loss of retinal ganglion cells induced by diabetes. These results demonstrate that intravitreal injection of the A2AR antagonist controls inflammation, affords protection against cell loss and reduces vascular leakage associated with diabetes, which could be envisaged as a therapeutic approach for the early complications of diabetes in the retina.
Collapse
Affiliation(s)
- Inês Dinis Aires
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Maria Helena Madeira
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Raquel Boia
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Joana Margarida Martins
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - António Francisco Ambrósio
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Santiago
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,CNC.IBILI Consortium, University of Coimbra, Coimbra, Portugal. .,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
18
|
Li X, Liang D, Shao H, Born WK, Kaplan HJ, Sun D. Adenosine receptor activation in the Th17 autoimmune responses of experimental autoimmune uveitis. Cell Immunol 2019; 339:24-28. [DOI: 10.1016/j.cellimm.2018.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/07/2018] [Accepted: 09/18/2018] [Indexed: 01/16/2023]
|
19
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
21
|
Treatment with A 2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis 2017; 8:e3065. [PMID: 28981089 PMCID: PMC5680573 DOI: 10.1038/cddis.2017.451] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/27/2017] [Accepted: 07/02/2017] [Indexed: 01/04/2023]
Abstract
Transient retinal ischemia is a major complication of retinal degenerative diseases and contributes to visual impairment and blindness. Evidences indicate that microglia-mediated neuroinflammation has a key role in the neurodegenerative process, prompting the hypothesis that the control of microglia reactivity may afford neuroprotection to the retina against the damage induced by ischemia–reperfusion (I–R). The available therapeutic strategies for retinal degenerative diseases have limited potential, but the blockade of adenosine A2A receptor (A2AR) emerges as candidate strategy. Therefore, we evaluated the therapeutic potential of a selective A2AR antagonist (KW6002) against the damage elicited by I–R. The administration of KW6002 after I–R injury reduced microglia reactivity and inflammatory response and afforded protection to the retina. Moreover, we tested the ability of caffeine, an adenosine receptor antagonist, in mediating protection to the retina in the I–R injury model. We demonstrated that caffeine administration dually regulated microglia reactivity and cell death in the transient retinal ischemic model, depending on the reperfusion time. At 24 h of reperfusion, caffeine increased microglial reactivity, inflammatory response and cell death elicited by I–R. However, at 7 days of reperfusion, caffeine administration decreased microglia reactivity and reduced the levels of proinflammatory cytokines and cell death. Together, these results provide a novel evidence for the use of adenosine A2AR antagonists as potential therapy for retinal ischemic diseases and demonstrate the effect of caffeine on the regulation of microglia-mediated neuroinflammation in the transient ischemic model.
Collapse
|
22
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
23
|
Garcia-Morales V, Friedrich J, Jorna LM, Campos-Toimil M, Hammes HP, Schmidt M, Krenning G. The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetol 2017; 54:581-591. [PMID: 28353063 PMCID: PMC5429352 DOI: 10.1007/s00592-017-0985-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 03/16/2017] [Indexed: 01/08/2023]
Abstract
AIMS To investigate the consequences of oxidative stress and hypoxia on EPAC-1 expression during retinopathy. METHODS Oxygen-induced retinopathy was induced in mice and EPAC-1 expression investigated by immunofluorescence. In silico analyses were used to identify a link between EPAC-1 expression and microRNA-7-5p in endothelial cells and confirmed by western blot analyses on cells expressing microRNA-7-5p. In vitro, endothelial cells were either incubated at 2% oxygen or transfected with microRNA-7-5p, and the effects of these treatments on EPAC-1 expression, endothelial hyperpermeability and NO production were assessed. In the Ins2Akita mouse model, levels of EPAC-1 expression as well as microRNA-7-5p were assessed by qPCR. Endothelial nitric oxide synthase was assessed by immunoblotting in the Ins2Akita model. RESULTS Hypoxia induces the expression of microRNA-7-5p that translationally inhibits the expression of EPAC-1 in endothelial cells, resulting in hyperpermeability and the loss of eNOS activity. Activation of EPAC-1 by the cAMP analogue 8-pCPT-2'-O-Me-cAMP reduced the sensitivity of EPAC-1 to oxidative stress and restored the endothelial permeability to baseline levels. Additionally, 8-pCPT-2'-O-Me-cAMP rescued eNOS activity and NO production. In mouse models of retinopathy, i.e., oxygen-induced retinopathy and the spontaneous diabetic heterozygous Ins2Akita mice, EPAC-1 levels are decreased which is associated with an increase in microRNA-7-5p expression and reduced eNOS activity. CONCLUSION/INTERPRETATION In retinopathy, EPAC-1 expression is decreased in a microRNA-7-mediated manner, contributing to endothelial dysfunction. Pharmacological activation of remnant EPAC-1 rescues endothelial function. Collectively, these data indicate that EPAC-1 resembles an efficacious and druggable target molecule for the amelioration of (diabetic) retinopathy.
Collapse
Affiliation(s)
- Veronica Garcia-Morales
- Group of Research in Pharmacology of Chronic Diseases (CDPHARMA), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Julian Friedrich
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Lysanne M Jorna
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands
| | - Manuel Campos-Toimil
- Group of Research in Pharmacology of Chronic Diseases (CDPHARMA), Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Hans-Peter Hammes
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Section of Endocrinology, 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Martina Schmidt
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Guido Krenning
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University of Heidelberg, Heidelberg, Germany.
- International Research and Training Network on Diabetic Microvascular Complications (GRK1874/DIAMICOM), University Medical Center Groningen, Groningen, The Netherlands.
- Cardiovascular Regenerative Medicine (CAVAREM), Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
24
|
Chen JF, Zhang S, Zhou R, Lin Z, Cai X, Lin J, Huo Y, Liu X. Adenosine receptors and caffeine in retinopathy of prematurity. Mol Aspects Med 2017; 55:118-125. [PMID: 28088487 DOI: 10.1016/j.mam.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023]
Abstract
Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A1R, A2AR, A2BR) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China.
| | - Shuya Zhang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| | - Rong Zhou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohong Cai
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoling Liu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| |
Collapse
|
25
|
Ahmad S, ElSherbiny NM, Jamal MS, Alzahrani FA, Haque R, Khan R, Zaidi SK, AlQahtani MH, Liou GI, Bhatia K. Anti-inflammatory role of sesamin in STZ induced mice model of diabetic retinopathy. J Neuroimmunol 2016; 295-296:47-53. [DOI: 10.1016/j.jneuroim.2016.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 12/24/2022]
|
26
|
Zhang S, Li H, Li B, Zhong D, Gu X, Tang L, Wang Y, Wang C, Zhou R, Li Y, He Y, Chen M, Huo Y, Liu XL, Chen JF. Adenosine A1 Receptors Selectively Modulate Oxygen-Induced Retinopathy at the Hyperoxic and Hypoxic Phases by Distinct Cellular Mechanisms. Invest Ophthalmol Vis Sci 2016; 56:8108-19. [PMID: 26720463 DOI: 10.1167/iovs.15-17202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We critically evaluated the role of the adenosine A1 receptor (A1R) in normal development of retinal vasculature and pathogenesis of retinopathy of prematurity (ROP) by using the A1R knockout (KO) mice and oxygen-induced retinopathy (OIR) model. METHODS Mice deficient in A1Rs and their wild-type (WT) littermates were examined during normal postnatal development or after being subjected to 75% oxygen from postnatal day (P) 7 to P12 and to room air from P12 to P17 (OIR model of ROP). Retinal vascularization was examined by whole-mount fluorescence and cross-sectional hematoxylin-eosin staining. Cellular proliferation, astrocyte and microglial activation, and tip cell function were determined by isolectin staining and immunohistochemistry. Apoptosis was determined by TUNEL assay. RESULTS Genetic deletion of the A1R did not affect normal retinal vascularization during postnatal development with indistinguishable three-layer vascularization patterns in retina between WT and A1R KO mice. In the OIR model, genetic deletion of the A1R resulted in stage-specific effects: reduced hyperoxia-induced retinal vaso-obliteration at P12, but reduced avascular area and attenuated hypoxia-induced intraretinal revascularization without affecting intravitreal neovascularization at P17 and reduced avascular areas in retina at P21. These distinct effects of A1Rs on OIR were associated with A1R control of apoptosis mainly in inner and outer nuclear layers at the vaso-obliterative phase (P12) and the growth of endothelium tip cells at the vasoproliferative phase (P17), without modification of cellular proliferation, astrocytic activation, and tissue inflammation. CONCLUSIONS Adenosine A1 receptor activity is not required for normal postnatal development of retinal vasculature but selectively controls hyperoxia-induced vaso-obliteration and hypoxia-driven revascularization by distinct cellular mechanisms.
Collapse
Affiliation(s)
- Shuya Zhang
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyan Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingjuan Zhong
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuejiao Gu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Lingyun Tang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yanyan Wang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Cun Wang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Rong Zhou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yan Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mozi Chen
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States 4Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate S
| | - Xiao-Ling Liu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 5Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
27
|
Boia R, Ambrósio AF, Santiago AR. Therapeutic Opportunities for Caffeine and A 2A Receptor Antagonists in Retinal Diseases. Ophthalmic Res 2016; 55:212-8. [DOI: 10.1159/000443893] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/09/2016] [Indexed: 11/19/2022]
|
28
|
Liang D, Zuo A, Zhao R, Shao H, Kaplan HJ, Sun D. Regulation of Adenosine Deaminase on Induced Mouse Experimental Autoimmune Uveitis. THE JOURNAL OF IMMUNOLOGY 2016; 196:2646-54. [PMID: 26856700 DOI: 10.4049/jimmunol.1502294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/05/2016] [Indexed: 01/25/2023]
Abstract
Adenosine is an important regulator of the immune response, and adenosine deaminase (ADA) inhibits this regulatory effect by converting adenosine into functionally inactive molecules. Studies showed that adenosine receptor agonists can be anti- or proinflammatory. Clarification of the mechanisms that cause these opposing effects should provide a better guide for therapeutic intervention. In this study, we investigated the effect of ADA on the development of experimental autoimmune uveitis (EAU) induced by immunizing EAU-prone mice with a known uveitogenic peptide, IRBP1-20. Our results showed that the effective time to administer a single dose of ADA to suppress induction of EAU was 8-14 d postimmunization, shortly before EAU expression; however, ADA treatment at other time points exacerbated disease. ADA preferentially inhibited Th17 responses, and this effect was γδ T cell dependent. Our results demonstrated that the existing immune status strongly influences the anti- or proinflammatory effects of ADA. Our observations should help to improve the design of ADA- and adenosine receptor-targeted therapies.
Collapse
Affiliation(s)
- Dongchun Liang
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Aijun Zuo
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033
| | - Ronglan Zhao
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033; Department of Medical Laboratory, Key Laboratory of Clinical Laboratory Diagnostics, University of Shandong, Weifang Medical University, Weifang, Shandong 261053, China; and
| | - Hui Shao
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, Kentucky Lions Eye Center, University of Louisville, Louisville, KY 40202
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90033;
| |
Collapse
|
29
|
Vindeirinho J, Santiago AR, Cavadas C, Ambrósio AF, Santos PF. The Adenosinergic System in Diabetic Retinopathy. J Diabetes Res 2016; 2016:4270301. [PMID: 27034960 PMCID: PMC4789509 DOI: 10.1155/2016/4270301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
The neurodegenerative and inflammatory environment that is prevalent in the diabetic eye is a key player in the development and progression of diabetic retinopathy. The adenosinergic system is widely regarded as a significant modulator of neurotransmission and the inflammatory response, through the actions of the four types of adenosine receptors (A1R, A2AR, A2BR, and A3R), and thus could be revealed as a potential player in the events unfolding in the early stages of diabetic retinopathy. Herein, we review the studies that explore the impact of diabetic conditions on the retinal adenosinergic system, as well as the role of the said system in ameliorating or exacerbating those conditions. The experimental results described suggest that this system is heavily affected by diabetic conditions and that the modulation of its components could reveal potential therapeutic targets for the treatment of diabetic retinopathy, particularly in the early stages of the disease.
Collapse
Affiliation(s)
- J. Vindeirinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Interdisciplinary Research (III), University of Coimbra, 3030-789 Coimbra, Portugal
- CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
- *J. Vindeirinho:
| | - A. R. Santiago
- CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - C. Cavadas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - A. F. Ambrósio
- CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), 3000-548 Coimbra, Portugal
| | - P. F. Santos
- CNC.IBILI, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| |
Collapse
|
30
|
Ding HH, Ni WJ, Tang LQ, Wei W. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy. J Recept Signal Transduct Res 2015; 36:411-421. [PMID: 26675443 DOI: 10.3109/10799893.2015.1122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.
Collapse
Affiliation(s)
- Hai-Hua Ding
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China.,b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei-Jian Ni
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Li-Qin Tang
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei Wei
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| |
Collapse
|
31
|
Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF, Santiago AR. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation 2015; 12:115. [PMID: 26054642 PMCID: PMC4465153 DOI: 10.1186/s12974-015-0333-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a degenerative disease characterized by the loss of retinal ganglion cells (RGCs). There is clinical and experimental evidence that neuroinflammation is involved in the pathogenesis of glaucoma. Since the blockade of adenosine A2A receptor (A2AR) confers robust neuroprotection and controls microglia reactivity in the brain, we now investigated the ability of A2AR blockade to control the reactivity of microglia and neuroinflammation as well as RGC loss in retinal organotypic cultures exposed to elevated hydrostatic pressure (EHP) or lipopolysaccharide (LPS). METHODS Retinal organotypic cultures were either incubated with LPS (3 μg/mL), to elicit a pro-inflammatory response, or exposed to EHP (+70 mmHg), to mimic increased IOP, for 4 or 24 h, in the presence or absence of the A2AR antagonist SCH 58261 (50 nM). A2AR expression, microglial reactivity and neuroinflammatory response were evaluated by immunohistochemistry, quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). RGC loss was assessed by immunohistochemistry. In order to investigate the contribution of pro-inflammatory mediators to RGC loss, the organotypic retinal cultures were incubated with rabbit anti-tumour necrosis factor (TNF) (2 μg/mL) and goat anti-interleukin-1β (IL-1β) (1 μg/mL) antibodies. RESULTS We report that the A2AR antagonist (SCH 58261) prevented microglia reactivity, increase in pro-inflammatory mediators as well as RGC loss upon exposure to either LPS or EHP. Additionally, neutralization of TNF and IL-1β prevented RGC loss induced by LPS or EHP. CONCLUSIONS This work demonstrates that A2AR blockade confers neuroprotection to RGCs by controlling microglia-mediated retinal neuroinflammation and prompts the hypothesis that A2AR antagonists may be a novel therapeutic option to manage glaucomatous disorders.
Collapse
Affiliation(s)
- Maria H Madeira
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal.
| | - Raquel Boia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Francisco Q Gonçalves
- CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Rodrigo A Cunha
- CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,Association for Innovation and Biomedical Research on Light (AIBILI), 3000-548, Coimbra, Portugal.
| | - Ana Raquel Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,Association for Innovation and Biomedical Research on Light (AIBILI), 3000-548, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548, Coimbra, Portugal.
| |
Collapse
|
32
|
Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2015; 11:228-41. [PMID: 25687993 DOI: 10.1038/nrendo.2015.10] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine is a key extracellular signalling molecule that regulates several aspects of tissue function by activating four G-protein-coupled receptors, A1, A2A, A2B and A1 adenosine receptors. Accumulating evidence highlights a critical role for the adenosine system in the regulation of glucose homeostasis and the pathophysiology of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Although adenosine signalling is known to affect insulin secretion, new data indicate that adenosine signalling also contributes to the regulation of β-cell homeostasis and activity by controlling the proliferation and regeneration of these cells as well as the survival of β cells in inflammatory microenvironments. Furthermore, adenosine is emerging as a major regulator of insulin responsiveness by controlling insulin signalling in adipose tissue, muscle and liver; adenosine also indirectly mediates effects on inflammatory and/or immune cells in these tissues. This Review critically discusses the role of the adenosine-adenosine receptor system in regulating both the onset and progression of T1DM and T2DM, and the potential of pharmacological manipulation of the adenosinergic system as an approach to manage T1DM, T2DM and their associated complications.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| |
Collapse
|
33
|
Dos Santos-Rodrigues A, Pereira MR, Brito R, de Oliveira NA, Paes-de-Carvalho R. Adenosine transporters and receptors: key elements for retinal function and neuroprotection. VITAMINS AND HORMONES 2015; 98:487-523. [PMID: 25817878 DOI: 10.1016/bs.vh.2014.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases.
Collapse
Affiliation(s)
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nádia A de Oliveira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | |
Collapse
|
34
|
Ma K, Xu Y, Wang C, Li N, Li K, Zhang Y, Li X, Yang Q, Zhang H, Zhu X, Bai H, Ben J, Ding Q, Li K, Jiang Q, Xu Y, Chen Q. A cross talk between class A scavenger receptor and receptor for advanced glycation end-products contributes to diabetic retinopathy. Am J Physiol Endocrinol Metab 2014; 307:E1153-65. [PMID: 25352436 DOI: 10.1152/ajpendo.00378.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In response to hyperglycemia in patients with diabetes, many signaling pathways contribute to the pathogenesis of diabetic complications, including diabetic retinopathy (DR). Excessive production of inflammatory mediators plays an important role in this process. Amadori-glycated albumin, one of the major forms of advanced glycated end-products, has been implicated in DR by inducing inflammatory responses in microglia/macrophages. Our goal was to delineate the potential cross talk between class A scavenger receptor (SR-A) and the receptor for advanced glycated end-product (RAGE) in the context of DR. We show here that SR-A ablation caused an exacerbated form of DR in streptozotocin-injected C57BL/6J mice as evidenced by fundus imaging and electroretinography. Immunohistochemical staining and RT-PCR assay indicated that there was augmented activation of proinflammatory macrophages with upregulated synthesis of proinflammatory mediators in the retina in Sr-a(-/-) mice. Overexpression of SR-A suppressed RAGE-induced mitogen-activated protein kinase (MAPK) signaling, whereas RAGE activation in macrophages favored a proinflammatory (M1) phenotype in the absence of SR-A. Mechanistic analysis on bone marrow-derived macrophages and HEK293 cell line revealed that SR-A interacted with and inhibited the phosphorylation of mitogen-activated protein kinase kinase 7, the major kinase in the RAGE-MAPK-NF-κB signaling, thereby leading to diminished secretion of proinflammatory cytokines. Our findings suggest that the antagonism between SR-A and RAGE contributes to the pathogenesis of DR by nurturing a disease-prone macrophage phenotype. Therefore, specific agonist that boosts SR-A signaling could potentially provide benefits in the prevention and/or intervention of DR.
Collapse
Affiliation(s)
- Ke Ma
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Yiming Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Chenchen Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Nan Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Kexue Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Yan Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Xiaoyu Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qing Yang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Hanwen Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Xudong Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Hui Bai
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Jingjing Ben
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qingqing Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Keran Li
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Atherosclerosis Research Center, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
35
|
Ahmad S, Elsherbiny NM, Bhatia K, Elsherbini AM, Fulzele S, Liou GI. Inhibition of adenosine kinase attenuates inflammation and neurotoxicity in traumatic optic neuropathy. J Neuroimmunol 2014; 277:96-104. [PMID: 25457840 DOI: 10.1016/j.jneuroim.2014.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/03/2014] [Accepted: 10/15/2014] [Indexed: 12/20/2022]
Abstract
Traumatic optic neuropathy (TON) is associated with apoptosis of retinal ganglion cells. Local productions of reactive oxygen species and inflammatory mediators from activated microglial cells have been hypothesized to underlie apoptotic processes. We previously demonstrated that the anti-inflammatory effect of adenosine, through A2A receptor activation had profound protective influence against retinal injury in traumatic optic neuropathy. This protective effect is limited due to rapid cellular re-uptake of adenosine by equilibrative nucleotside transporter-1 (ENT1) or break down by adenosine kinase (AK), the key enzyme in adenosine clearance pathway. Further, the use of adenosine receptors agonists are limited by systemic side effects. Therefore, we seek to investigate the potential role of amplifying the endogenous ambient level of adenosine by pharmacological inhibition of AK. We tested our hypothesis by comparing TON-induced retinal injury in mice with and without ABT-702 treatment, a selective AK inhibitor (AKI). The retinal-protective effect of ABT-702 was demonstrated by significant reduction of Iba-1, ENT1, TNF-α, IL-6, and iNOS/nNOS protein or mRNA expression in TON as revealed by western blot and real time PCR. TON-induced superoxide anion generation and nitrotyrosine expression were reduced in ABT-702 treated mice retinal sections as determined by immunoflourescence. In addition, ABT-702 attenuated p-ERK1/2 and p-P38 activation in LPS induced activated mouse microglia cells. The results of the present investigation suggested that ABT-702 had a protective role against marked TON-induced retinal inflammation and damage by augmenting the endogenous therapeutic effects of site- and event-specific accumulation of extracellular adenosine.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | - Nehal M Elsherbiny
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Kanchan Bhatia
- Departmet of Biological Sciences, Rabigh College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ahmed M Elsherbini
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Georgia Regents University (GRU), Augusta, GA, USA
| | - Gregory I Liou
- Department of Ophthalmology, School of Medicine, Georgia Regents University (GRU), Augusta, GA, USA.
| |
Collapse
|
36
|
The role of microglia in diabetic retinopathy. J Ophthalmol 2014; 2014:705783. [PMID: 25258680 PMCID: PMC4166427 DOI: 10.1155/2014/705783] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that chronic inflammation plays a role in both the development and progression of diabetic retinopathy. There is also evidence that molecules produced as a result of hyperglycemia can activate microglia. However the exact contribution of microglia, the resident immune cells of the central nervous system, to retinal tissue damage during diabetes remains unclear. Current data suggest that dysregulated microglial responses are linked to their deleterious effects in several neurological diseases associated with chronic inflammation. As inflammatory cytokines and hyperglycemia disseminate through the diabetic retina, microglia can change to an activated state, increase in number, translocate through the retina, and themselves become the producers of inflammatory and apoptotic molecules or alternatively exert anti-inflammatory effects. In addition, microglial genetic variations may account for some of the individual differences commonly seen in patient's susceptibility to diabetic retinopathy.
Collapse
|
37
|
Li T, Hu J, Du S, Chen Y, Wang S, Wu Q. ERK1/2/COX-2/PGE2 signaling pathway mediates GPR91-dependent VEGF release in streptozotocin-induced diabetes. Mol Vis 2014; 20:1109-21. [PMID: 25324681 PMCID: PMC4119234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/29/2014] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Retinal vascular dysfunction caused by vascular endothelial growth factor (VEGF) is the major pathological change that occurs in diabetic retinopathy (DR). It has recently been demonstrated that G protein-coupled receptor 91 (GPR91) plays a major role in both vasculature development and retinal angiogenesis. In this study, we examined the signaling pathways involved in GPR91-dependent VEGF release during the early stages of retinal vascular change in streptozotocin-induced diabetes. METHODS Diabetic rats were assigned randomly to receive intravitreal injections of shRNA lentiviral particles targeting GPR91 (LV.shGPR91) or control particles (LV.shScrambled). Accumulation of succinate was assessed by gas chromatography-mass spectrometry (GC-MS). At 14 weeks, the ultrastructure and function of the retinal vessels of diabetic retinas with or without shRNA treatment were assessed using hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and Evans blue dye permeability. The expression of GPR91, extracellular signal-regulated kinases 1 and 2 (ERK1/2) and cyclooxygenase-2 (COX-2) were measured using immunofluorescence and western blotting. COX-2 and VEGF mRNA were determined by quantitative RT-PCR. Prostaglandin E2 (PGE2) and VEGF secretion were detected using an enzyme-linked immunosorbent assay. RESULTS Succinate exhibited abundant accumulation in diabetic rat retinas. The retinal telangiectatic vessels, basement membrane thickness, and Evans blue dye permeability were attenuated by treatment with GPR91 shRNA. In diabetic rats, knockdown of GPR91 inhibited the activities of ERK1/2 and COX-2 as well as the expression of PGE2 and VEGF. Meanwhile, COX-2, PGE2, and VEGF expression was inhibited by ERK1/2 inhibitor U0126 and COX-2 inhibitor NS-398. CONCLUSIONS Our data suggest that hyperglycemia causes succinate accumulation and GPR91 activity in retinal ganglion cells, which mediate VEGF-induced retinal vascular change via the ERK1/2/COX-2/PGE2 pathway. This study highlights the signaling pathway as a potential target for intervention in DR.
Collapse
Affiliation(s)
- Tingting Li
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jianyan Hu
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shanshan Du
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yongdong Chen
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Shuai Wang
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, the Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, China,Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China
| |
Collapse
|
38
|
Purinergic receptors in ocular inflammation. Mediators Inflamm 2014; 2014:320906. [PMID: 25132732 PMCID: PMC4123590 DOI: 10.1155/2014/320906] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
Inflammation is a complex process that implies the interaction between cells and molecular mediators, which, when not properly “tuned,” can lead to disease. When inflammation affects the eye, it can produce severe disorders affecting the superficial and internal parts of the visual organ. The nucleoside adenosine and nucleotides including adenine mononucleotides like ADP and ATP and dinucleotides such as P1,P4-diadenosine tetraphosphate (Ap4A), and P1,P5-diadenosine pentaphosphate (Ap5A) are present in different ocular locations and therefore they may contribute/modulate inflammatory processes. Adenosine receptors, in particular A2A adenosine receptors, present anti-inflammatory action in acute and chronic retinal inflammation. Regarding the A3 receptor, selective agonists like N6-(3-iodobenzyl)-5′-N-methylcarboxamidoadenosine (CF101) have been used for the treatment of inflammatory ophthalmic diseases such as dry eye and uveoretinitis. Sideways, diverse stimuli (sensory stimulation, large intraocular pressure increases) can produce a release of ATP from ocular sensory innervation or after injury to ocular tissues. Then, ATP will activate purinergic P2 receptors present in sensory nerve endings, the iris, the ciliary body, or other tissues surrounding the anterior chamber of the eye to produce uveitis/endophthalmitis. In summary, adenosine and nucleotides can activate receptors in ocular structures susceptible to suffer from inflammatory processes. This involvement suggests the possible use of purinergic agonists and antagonists as therapeutic targets for ocular inflammation.
Collapse
|
39
|
Cavallaro G, Filippi L, Bagnoli P, La Marca G, Cristofori G, Raffaeli G, Padrini L, Araimo G, Fumagalli M, Groppo M, Dal Monte M, Osnaghi S, Fiorini P, Mosca F. The pathophysiology of retinopathy of prematurity: an update of previous and recent knowledge. Acta Ophthalmol 2014; 92:2-20. [PMID: 23617889 DOI: 10.1111/aos.12049] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retinopathy of prematurity (ROP) is a disease that can cause blindness in very low birthweight infants. The incidence of ROP is closely correlated with the weight and the gestational age at birth. Despite current therapies, ROP continues to be a highly debilitating disease. Our advancing knowledge of the pathogenesis of ROP has encouraged investigations into new antivasculogenic therapies. The purpose of this article is to review the findings on the pathophysiological mechanisms that contribute to the transition between the first and second phases of ROP and to investigate new potential therapies. Oxygen has been well characterized for the key role that it plays in retinal neoangiogenesis. Low or high levels of pO2 regulate the normal or abnormal production of hypoxia-inducible factor 1 and vascular endothelial growth factors (VEGF), which are the predominant regulators of retinal angiogenesis. Although low oxygen saturation appears to reduce the risk of severe ROP when carefully controlled within the first few weeks of life, the optimal level of saturation still remains uncertain. IGF-1 and Epo are fundamentally required during both phases of ROP, as alterations in their protein levels can modulate disease progression. Therefore, rhIGF-1 and rhEpo were tested for their abilities to prevent the loss of vasculature during the first phase of ROP, whereas anti-VEGF drugs were tested during the second phase. At present, previous hypotheses concerning ROP should be amended with new pathogenetic theories. Studies on the role of genetic components, nitric oxide, adenosine, apelin and β-adrenergic receptor have revealed new possibilities for the treatment of ROP. The genetic hypothesis that single-nucleotide polymorphisms within the β-ARs play an active role in the pathogenesis of ROP suggests the concept of disease prevention using β-blockers. In conclusion, all factors that can mediate the progression from the avascular to the proliferative phase might have significant implications for the further understanding and treatment of ROP.
Collapse
Affiliation(s)
- Giacomo Cavallaro
- NICU, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico - Università degli Studi di Milano, Milan, ItalyNICU, Medical and Surgical Feto-Neonatal Department, "A. Meyer" University Children's Hospital, Florence, ItalyDepartment of Biology, Unit of General Physiology, University of Pisa, Pisa, ItalyNeurometabolic Unit, Department of Pediatric Neurosciences, "A. Meyer" University Children's Hospital, Florence, ItalyDepartment of Ophthalmology, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ahmad S, Fatteh N, El-Sherbiny NM, Naime M, Ibrahim AS, El-Sherbini AM, El-Shafey SA, Khan S, Fulzele S, Gonzales J, Liou GI. Potential role of A2A adenosine receptor in traumatic optic neuropathy. J Neuroimmunol 2013; 264:54-64. [PMID: 24090652 DOI: 10.1016/j.jneuroim.2013.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
In traumatic optic neuropathy (TON), apoptosis of retinal ganglion cells is closely related to the local production of reactive oxygen species and inflammatory mediators from activated microglial cells. Adenosine receptor A2A (A2AAR) has been shown to possess anti-inflammatory properties that have not been studied in TON. In the present study, we examined the role of A2AAR in retinal complications associated with TON. Initial studies in wild-type mice revealed that treatment with the A2AAR agonist resulted in marked decreases in the TON-induced microglial activation, retinal cell death and releases of reactive oxygen species and pro-inflammatory cytokines TNF-α and IL-6. To further assess the role of A2AAR in TON, we studied the effects of A2AAR ablation on the TON-induced retinal abnormalities. A2AAR-/- mice with TON showed a significantly higher mRNA level of TNF-α, Iba1-1 in retinal tissue, and ICAM-1 expression in retinal sections compared with wild-type mice with TON. To explore a potential mechanism by which A2AAR-signaling regulates inflammation in TON, we performed additional studies using hypoxia- or LPS-treated microglial cells as an in vitro model for TON. Activation of A2AAR attenuates hypoxia or LPS-induced TNF-α release and significantly repressed the inflammatory signaling, ERK in the activated microglia. Collectively, this work provides pharmacological and genetic evidence for A2AAR signaling as a control point of cell death in TON and suggests that the retinal protective effect of A2AAR is mediated by attenuating the inflammatory response that occurs in microglia via interaction with MAPKinase pathway.
Collapse
Affiliation(s)
- Saif Ahmad
- Department of Ophthalmology, Georgia Regents University (GRU), Augusta, GA, USA; Departmet of Biological Sciences, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Potential roles of adenosine deaminase-2 in diabetic retinopathy. Biochem Biophys Res Commun 2013; 436:355-61. [DOI: 10.1016/j.bbrc.2013.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 11/21/2022]
|
42
|
Vindeirinho J, Costa GN, Correia MB, Cavadas C, Santos PF. Effect of diabetes/hyperglycemia on the rat retinal adenosinergic system. PLoS One 2013; 8:e67499. [PMID: 23840723 PMCID: PMC3696088 DOI: 10.1371/journal.pone.0067499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 05/20/2013] [Indexed: 02/04/2023] Open
Abstract
The early stages of diabetic retinopathy (DR) are characterized by alterations similar to neurodegenerative and inflammatory conditions such as increased neural apoptosis, microglial cell activation and amplified production of pro-inflammatory cytokines. Adenosine regulates several physiological functions by stimulating four subtypes of receptors, A1AR, A2AAR, A2BAR, and A3AR. Although the adenosinergic signaling system is affected by diabetes in several tissues, it is unknown whether diabetic conditions in the retina can also affect it. Adenosine delivers potent suppressive effects on virtually all cells of the immune system, but its potential role in the context of DR has yet to be studied in full. In this study, we used primary mixed cultures of rat retinal cells exposed to high glucose conditions, to mimic hyperglycemia, and a streptozotocin rat model of type 1 diabetes to determine the effect diabetes/hyperglycemia have on the expression and protein levels of adenosine receptors and of the enzymes adenosine deaminase and adenosine kinase. We found elevated mRNA and protein levels of A1AR and A2AAR, in retinal cell cultures under high glucose conditions and a transient increase in the levels of the same receptors in diabetic retinas. Adenosine deaminase and adenosine kinase expression and protein levels showed a significant decrease in diabetic retinas 30 days after diabetes induction. An enzymatic assay performed in retinal cell cultures revealed a marked decrease in the activity of adenosine deaminase under high glucose conditions. We also found an increase in extracellular adenosine levels accompanied by a decrease in intracellular levels when retinal cells were subjected to high glucose conditions. In conclusion, this study shows that several components of the retinal adenosinergic system are affected by diabetes and high glucose conditions, and the modulation observed may uncover a possible mechanism for the alleviation of the inflammatory and excitotoxic conditions observed in diabetic retinas.
Collapse
Affiliation(s)
- Joana Vindeirinho
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Gabriel N. Costa
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Mariana B. Correia
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Cláudia Cavadas
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Paulo F. Santos
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
43
|
Elsherbiny NM, Ahmad S, Naime M, Elsherbini AM, Fulzele S, Al-Gayyar MM, Eissa LA, El-Shishtawy MM, Liou GI. ABT-702, an adenosine kinase inhibitor, attenuates inflammation in diabetic retinopathy. Life Sci 2013; 93:78-88. [PMID: 23770229 DOI: 10.1016/j.lfs.2013.05.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/29/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022]
Abstract
AIMS This study was undertaken to determine the effect of an adenosine kinase inhibitor (AKI) in diabetic retinopathy (DR). We have shown previously that adenosine signaling via A2A receptors (A2AAR) is involved in retinal protection from diabetes-induced inflammation. Here we demonstrate that AKI-enhanced adenosine signaling provides protection from DR in mice. MAIN METHODS We targeted AK, the key enzyme in adenosine metabolism, using a treatment regime with the selective AKI, ABT-702 (1.5mg/kg intraperitoneally twice a week) commencing at the beginning of streptozotocin-induced diabetes at the age of eight weeks. This treatment, previously demonstrated to increase free adenosine levels in vivo, was maintained until the age of 16 weeks. Retinal inflammation was evaluated using Western blot, Real-Time PCR and immuno-staining analyses. Role of A2AAR signaling in the anti-inflammation effect of ABT-702 was analyzed in Amadori-glycated-albumin (AGA)-treated microglial cells. KEY FINDINGS At 16 weeks, when diabetic mice exhibit significant signs of retinal inflammation including up-regulation of oxidative/nitrosative stress, A2AAR, ENT1, Iba1, TNF-α, ICAM1, retinal cell death, and down-regulation of AK, the ABT-702 treated group showed lower signs of inflammation compared to control animals receiving the vehicle. The involvement of adenosine signaling in the anti-inflammation effect of ABT-702 was supported by the TNF-α release blocking effect of A2AAR antagonist in AGA-treated microglial cells. SIGNIFICANCE These results suggest a role for AK in regulating adenosine receptor signaling in the retina. Inhibition of AK potentially amplifies the therapeutic effects of site- and event-specific accumulation of extracellular adenosine, which is of highly translational impact.
Collapse
|
44
|
Cohen MP. Clinical, pathophysiological and structure/function consequences of modification of albumin by Amadori-glucose adducts. Biochim Biophys Acta Gen Subj 2013; 1830:5480-5. [PMID: 23624335 DOI: 10.1016/j.bbagen.2013.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 11/25/2022]
Abstract
BACKGROUND The nonenzymatic condensation of glucose with albumin results in the formation of albumin modified by Amadori glucose adducts, the principal form in which glycated albumin exists in vivo. SCOPE OF REVIEW This review focuses on (a) the utility of measurement of Amadori-modified glycated albumin (AGA) as a biomarker in diabetes, where elevated levels attend the hyperglycemic state; (b) the role of AGA as a causal factor in the pathogenesis of complications of diabetes; (c) effects on transport properties; and (d) structural and functional consequences of the modification of albumin by Amadori glucose adducts. It does not discuss counterparts with respect to Advanced Glycation Endproducts (AGE), which may be found in other publications. MAJOR CONCLUSIONS Nonenzymatic glycation of albumin, which is increased in diabetes, has clinical relevance and pathophysiologic importance, with ramifications for the management of this disease, the development of its complications, and the transport of endogenous and exogenous ligands. GENERAL SIGNIFICANCE Appreciation of the manifold consequences of AGA has afforded new avenues for assessing clinical management of diabetes, awareness of the impact of nonenzymatic glycation on albumin biology, insights into the pathogenesis of vascular complications of diabetes, and avenues of investigation of and intervention strategies for these complications. This article is part of a Special Issue on albumin. This article is part of a Special Issue entitled Serum Albumin.
Collapse
Affiliation(s)
- Margo P Cohen
- Glycadia, Inc., 1880 JFK Boulevard, Suite 200, Philadelphia, PA 19103, United States.
| |
Collapse
|
45
|
Neural inflammation and the microglial response in diabetic retinopathy. J Ocul Biol Dis Infor 2012; 4:25-33. [PMID: 23614055 DOI: 10.1007/s12177-012-9086-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 01/27/2023] Open
Abstract
This chapter reviews the function of microglia and their potential roles in neural inflammation and pathological changes during diabetic retinopathy.
Collapse
|
46
|
Role of adenosine in diabetic retinopathy. J Ocul Biol Dis Infor 2012; 4:19-24. [PMID: 23308298 DOI: 10.1007/s12177-011-9067-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022] Open
Abstract
In diabetic retinopathy (DR), abnormalities in vascular and neuronal function are closely related to the local production of inflammatory mediators whose potential source is microglia. Adenosine and its receptors have been shown to possess anti-inflammatory properties that have only recently been studied in DR. Here, we review recent studies that determined the roles of adenosine and its associated proteins, including equilibrative nucleoside transporters, adenosine receptors, and underlying signaling pathways in retinal complications associated with diabetes.
Collapse
|