1
|
Hosseini E, Mohtashami M, Ghasemzadeh M. Down-regulation of platelet adhesion receptors is a controlling mechanism of thrombosis, while also affecting post-transfusion efficacy of stored platelets. Thromb J 2019; 17:20. [PMID: 31660046 PMCID: PMC6806620 DOI: 10.1186/s12959-019-0209-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Physiologically, upon platelet activation, uncontrolled propagation of thrombosis is prevented by regulating mechanisms which affect the expression and function of either platelet adhesion receptors or integrins. Receptor ectodomain shedding is an elective mechanism which is mainly involved in down-regulation of adhesion receptors GPIbα and GPVI. Platelet integrin αIIbβ3 can also be modulated with a calpain-dependent proteolytic cleavage. In addition, activating signals may induce the internalization of expressed receptors to selectively down-regulate their intensity. Alternatively, further activation of platelets is associated with microvesiculation as a none-selective mechanism which leads to the loss of membrane- bearing receptors. In a non-physiological condition, the storage of therapeutic platelets has also shown to be associated with the unwilling activation of platelets which triggers receptors down-regulation via aforementioned different mechanisms. Notably, herein the changes are time-dependent and not controllable. While the expression and shedding of pro-inflammatory molecules can induce post-transfusion adverse effects, stored-dependent loss of adhesion receptors by ectodomain shedding or microvesiculation may attenuate post-transfusion adhesive functions of platelets causing their premature clearance from circulation. In its first part, the review presented here aims to describe the mechanisms involved in down-regulation of platelet adhesion receptors. It then highlights the crucial role of ectodomain shedding and microvesiculation in the propagation of "platelet storage lesion" which may affect the post-transfusion efficacy of platelet components.
Collapse
Affiliation(s)
- Ehteramolsadat Hosseini
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Maryam Mohtashami
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran
| | - Mehran Ghasemzadeh
- 1Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, PO Box: 14665-1157, Tehran, Iran.,2Australian Center for Blood Diseases, Monash University, Melbourne, Victoria 3004 Australia
| |
Collapse
|
2
|
Chen J, Schroeder JA, Luo X, Montgomery RR, Shi Q. The impact of GPIbα on platelet-targeted FVIII gene therapy in hemophilia A mice with pre-existing anti-FVIII immunity. J Thromb Haemost 2019; 17:449-459. [PMID: 30609275 PMCID: PMC6397061 DOI: 10.1111/jth.14379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Indexed: 01/13/2023]
Abstract
Essentials Platelet-specific FVIII gene therapy is effective in hemophilia A mice even with inhibitors. The impact of platelet adherence via VWF/GPIbα binding on platelet gene therapy was investigated. GPIbα does not significantly affect platelet gene therapy of hemophilia A with inhibitors. Platelet gene therapy induces immune tolerance in hemophilia A mice with pre-existing immunity. SUMMARY: Background We have previously demonstrated that von Willebrand factor (VWF) is essential in platelet-specific FVIII (2bF8) gene therapy of hemophilia A (HA) with inhibitory antibodies (inhibitors). At the site of injury, platelet adherence is initiated by VWF binding to the platelet GPIb complex. Objective To investigate the impact of GPIbα on platelet gene therapy of HA with inhibitors. Methods Platelet-FVIII expression was introduced by 2bF8 lentivirus (2bF8LV) transduction of hematopoietic stem cells (HSCs) from GPIbαnull (Ibnull ) mice or rhF8-primed FVIIInull (F8null ) mice followed by transplantation into lethally irradiated rhF8-primed F8null recipients. Animals were analyzed by flow cytometry, FVIII assays and the tail bleeding test. Results After transplantation, 99% of platelets were derived from donors. The macrothrombocytopenia phenotype was maintained in F8null mice that received 2bF8LV-transduced Ibnull HSCs (2bF8-Ibnull /F8null ). The platelet-FVIII expression level in 2bF8-Ibnull /F8null recipients was similar to that obtained from F8null mice that received 2bF8LV-transduced F8null HSCs (2bF8-F8null /F8null ). The tail bleeding test showed that the remaining hemoglobin level in the 2bF8-Ibnull /F8null group was significantly higher than in the F8null control group, but there was no significant difference between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The half-life of inhibitor disappearance time was comparable between the 2bF8-Ibnull /F8null and 2bF8-F8null /F8null groups. The rhF8 re-challenge did not elicit a memory immune response once inhibitor titers dropped to undetectable levels after 2bF8 gene therapy. Conclusion GPIbα does not significantly impact platelet gene therapy of HA with inhibitors. 2bF8 gene therapy restores hemostasis and promotes immune tolerance in HA mice with pre-existing immunity.
Collapse
Affiliation(s)
- Juan Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Jocelyn A. Schroeder
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Xiaofeng Luo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
| | - Robert R. Montgomery
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| | - Qizhen Shi
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
- Children’s Research Institute, Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, USA
- MACC Fund Research Center, Milwaukee, WI, USA
| |
Collapse
|
3
|
Factor VIIa. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00063-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Fager AM, Machlus KR, Ezban M, Hoffman M. Human platelets express endothelial protein C receptor, which can be utilized to enhance localization of factor VIIa activity. J Thromb Haemost 2018; 16:1817-1829. [PMID: 29879294 PMCID: PMC6166658 DOI: 10.1111/jth.14165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 12/01/2022]
Abstract
Essentials Factor VIIa binds activated platelets to promote hemostasis in hemophilia patients with inhibitors. The interactions and sites responsible for platelet-FVIIa binding are not fully understood. Endothelial cell protein C receptor (EPCR) is expressed on activated human platelets. EPCR binding enhances the efficacy of a FVIIa variant and could impact design of new therapeutics. SUMMARY Background High-dose factor VIIa (FVIIa) is routinely used as an effective bypassing agent to treat hemophilia patients with inhibitory antibodies that compromise factor replacement. However, the mechanism by which FVIIa binds activated platelets to promote hemostasis is not fully understood. FVIIa-DVQ is an analog of FVIIa with enhanced tissue factor (TF)-independent activity and hemostatic efficacy relative to FVIIa. Our previous studies have shown that FVIIa-DVQ exhibits greater platelet binding, thereby suggesting that features in addition to lipid composition contribute to platelet-FVIIa interactions. Objectives Endothelial cell protein C receptor (EPCR) also functions as a receptor for FVIIa on endothelial cells. We therefore hypothesized that an interaction with EPCR might play a role in platelet-FVIIa binding. Methods/results In the present study, we used flow cytometric analyses to show that platelet binding of both FVIIa and FVIIa-DVQ is partially inhibited in the presence of excess protein C or an anti-EPCR antibody. This decreased binding results in a corresponding decrease in the activity of both molecules in FXa and thrombin generation assays. Enhanced binding to EPCR was sufficient to account for the increased platelet binding of FVIIa-DVQ compared with wild-type FVIIa. As EPCR protein expression has not previously been shown in platelets, we confirmed the presence of EPCR in platelets using immunofluorescence, flow cytometry, immunoprecipitation, and mass spectrometry. Conclusions This work represents the first demonstration that human platelets express EPCR and suggests that modulation of EPCR binding could be utilized to enhance the hemostatic efficacy of rationally designed FVIIa analogs.
Collapse
Affiliation(s)
- A M Fager
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Pathology and Laboratory Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - K R Machlus
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - M Ezban
- Pharmacology, Novo Nordisk A/S, Måløv, Denmark
| | - M Hoffman
- Pathology and Laboratory Medicine Service, Durham Veterans Affairs Medical Center, Durham, NC, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
5
|
Lee A, Poon MC. Inherited platelet functional disorders: General principles and practical aspects of management. Transfus Apher Sci 2018; 57:494-501. [PMID: 30031712 DOI: 10.1016/j.transci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Platelets are a critical component for effecting hemostasis and wound healing. Disorders affecting any platelet pathway mediating adhesion, activation, aggregation and procoagulant surface exposure can result in a bleeding diathesis. Specific diagnosis even with advanced techniques which are unavailable to most centers is often difficult. Inherited platelet function disorders therefore represent a heterogeneous and complex collection of disorders with a spectrum of bleeding severity, from relatively mild (and easily missed or misdiagnosed) to severe bleeding phenotype with salient diagnostic features. We advocate the use of bleeding assessment tools to help identification of patients and more importantly for assessment of individual patient bleeding phenotype to guide management decisions for treating and preventing bleeding. The complex management of these patients is best coordinated in a multidisciplinary comprehensive care clinic setting expert in managing bleeding disorders and associated complications, with particular attention to the physical and psychosocial health of patients and their families. Depending on the bleeding phenotype, the location and severity of bleeding, and the nature of an invasive procedure, available treatment modalities range from conservative measures using local pressure, topical thrombin, fibrin sealant, antifibrinolytics etc. to the use of systemic haemostatics such as desmopressin (DDAVP), platelets and recombinant human activated factor VII (rFVIIa). This review will provide opinions on the practical aspects and general management of inherited platelet function disorders, with discussion on the mechanism of action, and the pros and cons of various hemostatic agents. Finally, the prospect of curative treatment for patients with severe bleeding phenotype refractory to available treatments and with poor quality of life will be briefly discussed.
Collapse
Affiliation(s)
- Adrienne Lee
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| | - Man-Chiu Poon
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Pediatric, Cumming School of Medicine, University of Calgary, Calgary, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Canada; Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada.
| |
Collapse
|
6
|
Schut A, Hyseni A, Adelmeijer J, Meijers JCM, de Groot PG, Lisman T. Sustained pro-haemostatic activity of rFVIIa in plasma and platelets in non-bleeding pigs may explain the efficacy of a once-daily prophylaxis in humans. Thromb Haemost 2017; 112:304-10. [DOI: 10.1160/th13-09-0798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/08/2014] [Indexed: 11/05/2022]
Abstract
SummaryRecombinant factor VIIa (rFVIIa) is registered for treatment of inhibitor-complicated haemophilia, and a once-daily prophylactic administration of rFVIIa is successful in reducing the number of bleeding events. This suggests that a single rFVIIa dose has a pro-haemostatic effect up to 24 hours (h), which is difficult to explain given its half-life of 2 h. In this study, six pigs received a 90 µg/kg rFVIIa bolus. Plasma was collected and platelets were isolated at various time points up to 48 h, and analysed for FVIIa levels and associated haemostatic activity. Elevated plasma FVIIa levels were detected up to 24 h post-administration (36 (32–56) mU/ml [median (interquartile range [IQR]), 24 h] vs 2 (2–14) mU/ml [baseline]). Corresponding prothrombin time (PT) values remained shortened compared to baseline until 24 h post-administration (9.4 (9.3–9.9) seconds (s) [24 h] vs 10.5 (10.2–11.0) s [baseline], p ≤0.01). The lag time in thrombin generation testing as well as clotting times in plasma-based assays were shortened up to 12 or 24 h post-administration, respectively (lag times 1.8 (1.7–2.1) minutes (min) [12 h] vs 2.3 (2.3–2.6) min [baseline], p ≤0.01 and clotting times 3.8 (3.2–3.9) min [24 h] vs 5.2 (4.6–5.5) min [baseline], p ≤0.001). Platelet FVIIa levels were elevated up to 48 h (7.7 (3.4–9.0) ng VIIa/mg actin [48 h] vs 2.5 (0.7–4.8) ng VIIa/mg actin [baseline]). In conclusion, elevated and haemostatically active plasma and platelet FVIIa levels are detectable up to 24–48 h following rFVIIa administration in pigs. This prolonged pro-haemostatic effect of FVIIa may explain the prophylactic efficacy of a once-daily rFVIIa treatment.
Collapse
|
7
|
Poon MC, Di Minno G, Zotz R, d’Oiron R. Glanzmann’s thrombasthenia: strategies for identification and management. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1341306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Man-Chiu Poon
- Cumming School of Medicine, University of Calgary, Calgary, Canada
- Southern Alberta Rare Blood and Bleeding Disorders Comprehensive Care Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Giovanni Di Minno
- Department of Clinical Medicine and Surgery, Regional Reference Center for Coagulation Disorders, Federico II University, Naples, Italy
| | - Rainer Zotz
- Institute for Laboratory Medicine, Blood Coagulation and Transfusion Medicine (LBT), Düsseldorf, Germany
- Department of Haemostasis, Haemotherapy and Transfusion Medicine, Heinrich Heine University Medical Centre, D-40225 Düsseldorf, Germany
| | - Roseline d’Oiron
- Centre for Haemophilia and Rare Congenital Bleeding Disorders, University Hospitals Paris-Sud, Le Kremlin-Bicêtre, France
| |
Collapse
|
8
|
Zilberman-Rudenko J, Sylman JL, Garland KS, Puy C, Wong AD, Searson PC, McCarty OJT. Utility of microfluidic devices to study the platelet-endothelium interface. Platelets 2017; 28:449-456. [PMID: 28358586 DOI: 10.1080/09537104.2017.1280600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integration of biomaterials and understanding of vascular biology has led to the development of perfusable endothelialized flow models, which have been used as valuable tools to study the platelet-endothelium interface under shear. In these models, the parameters of geometry, compliance, biorheology, and cellular complexity are varied to recapitulate the physical biology of platelet recruitment and activation under physiologically relevant conditions of blood flow. In this review, we summarize the mechanistic insights learned from perfusable microvessel models and discuss the potential utility as well as challenges of endothelialized microfluidic devices to study platelet function in the bloodstream in vitro.
Collapse
Affiliation(s)
- Jevgenia Zilberman-Rudenko
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Joanna L Sylman
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Kathleen S Garland
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| | - Cristina Puy
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA
| | - Andrew D Wong
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Peter C Searson
- b Institute for Nanobiotechnology (INBT) , Johns Hopkins University , Baltimore , MD , USA.,d Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Owen J T McCarty
- a Biomedical Engineering, School of Medicine , Oregon Health and Science University , Portland , OR , USA.,c Division of Pediatric Hematology/Oncology , Oregon Health and Science University , Portland , OR , USA
| |
Collapse
|
9
|
Abstract
Glanzmann's thrombasthenia (GT) and congenital factor VII deficiency (FVII CD) are rare autosomal recessive bleeding disorders: GT is the most frequent congenital platelet function disorder, and FVII CD is the most common factor-deficiency disease after haemophilia. The frequency of these disorders in the general population ranges from 1:500,000 to 1:2,000,000. Because GT and FVII CD are both rare, registries are the only approach possible to allow the collection and analysis of sufficient observational data. Recombinant activated factor VII (rFVIIa, eptacog alfa activated) is indicated for the treatment of acute bleeding episodes and for surgery coverage in patients with GT who are refractory to platelets and have antiplatelet or anti-human leukocyte antigen (HLA) antibodies, and for the prevention and treatment of bleeding in patients with FVII CD. This article summarises published data on the mechanism of action and use of rFVIIa in these disorders from two international, prospective, observational registries: the Glanzmann's Thrombasthenia Registry (GTR) for GT; and the Seven Treatment Evaluation Registry (STER) for FVII CD. Haemostatic effectiveness rates with rFVIIa were high across all patients with GT and those with FVII CD, and treatment with rFVIIa in the GTR and STER registries was well tolerated. The GTR and the STER are the largest collections of data in GT and FVII CD, respectively, and have expanded our knowledge of the management of these two rare bleeding disorders.
Collapse
|
10
|
New Insights Into the Treatment of Glanzmann Thrombasthenia. Transfus Med Rev 2016; 30:92-9. [PMID: 26968829 DOI: 10.1016/j.tmrv.2016.01.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited autosomal recessive bleeding disorder of platelet function caused by a quantitative or qualitative defect of platelet membrane glycoprotein IIb/IIIa (integrin αIIbβ3), a fibrinogen receptor required for platelet aggregation. Bleeds in GT are variable and may be severe and unpredictable. Bleeding not responsive to local and adjunctive measures, as well as surgical procedures, is treated with platelets, recombinant activated factor VII (rFVIIa), or antifibrinolytics, alone or in combination. Although platelets are the standard treatment for GT, their use is associated with the risk of blood-borne infection transmission and may also cause the development of platelet antibodies (to human leukocyte antigens and/or αIIbβ3), potentially resulting in platelet refractoriness. Currently, where rFVIIa is approved for use in GT, this is mostly for patients with platelet antibodies and/or a history of platelet refractoriness. However, data from the prospective Glanzmann's Thrombasthenia Registry (829 bleeds and 206 procedures in 218 GT patients) show that rFVIIa was frequently used in nonsurgical and surgical bleeds, with high efficacy rates, irrespective of platelet antibodies/refractoriness status. The mechanisms underpinning rFVIIa effectiveness in GT have been studied. At therapeutic concentrations, rFVIIa binds to activated platelets and directly activates FX to FXa, resulting in a burst of thrombin generation. Thrombin converts fibrinogen to fibrin and also enhances GT platelet adhesion and aggregation mediated by the newly converted (polymeric) fibrin, leading to primary hemostasis at the wound site. In addition, thrombin improves the final clot structure and activates thrombin-activatable fibrinolysis inhibitor to decrease clot lysis.
Collapse
|
11
|
Advances in transfusion science for shock-trauma: Optimising the clinical management of acute haemorrhage. Transfus Apher Sci 2015; 53:412-22. [PMID: 26653928 DOI: 10.1016/j.transci.2015.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The primary resuscitation of severely injured patients, acute haemorrhage and shock-trauma has been well reported in the literature. Resuscitation protocols include the use of diverse agents such as fresh whole blood [FWB], packed red blood cells [PRBCs], reconstituted blood products, fresh frozen plasma [FFP] and its derivative concentrates or recombinant products, volume expanders and tranexamic acid [TXA]. The reasonably prudent use of these agents and products is necessary to reverse risk factors of haemorrhagic shock such as haemodilution, hypothermia, acidosis and coagulopathy. Addressing the mechanisms of haemoregulation in the pathophysiology of DIC is important to optimise transfusion practice.
Collapse
|
12
|
Arellano-Rodrigo E, Lopez-Vilchez I, Galan AM, Molina P, Reverter JC, Carné X, Villalta J, Tassies D, Lozano M, Díaz-Ricart M, Escolar G. Coagulation Factor Concentrates Fail to Restore Alterations in Fibrin Formation Caused by Rivaroxaban or Dabigatran in Studies With Flowing Blood From Treated Healthy Volunteers. Transfus Med Rev 2015; 29:242-9. [DOI: 10.1016/j.tmrv.2015.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/30/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
|
13
|
Böhm E, Seyfried BK, Dockal M, Graninger M, Hasslacher M, Neurath M, Konetschny C, Matthiessen P, Mitterer A, Scheiflinger F. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. BMC Biotechnol 2015; 15:87. [PMID: 26382581 PMCID: PMC4574471 DOI: 10.1186/s12896-015-0205-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/09/2015] [Indexed: 04/16/2023] Open
Abstract
UNLABELLED BACKGROUND & METHODS Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & DISCUSSION The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. CONCLUSIONS From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.
Collapse
Affiliation(s)
- Ernst Böhm
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | - Birgit K Seyfried
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | - Michael Dockal
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | - Michael Graninger
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | | | - Marianne Neurath
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | | | - Peter Matthiessen
- BaxaltaInnovations GmbH, Industriestraße 72, A-1220, Vienna, Austria.
| | - Artur Mitterer
- Baxalta Innovations GmbH, Uferstraße 15, A-2304, Orth/Donau, Austria.
| | | |
Collapse
|
14
|
Lisman T, de Groot PG. The role of cell surfaces and cellular receptors in the mode of action of recombinant factor VIIa. Blood Rev 2015; 29:223-9. [DOI: 10.1016/j.blre.2014.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 11/27/2022]
|
15
|
Escolar G, Arellano-Rodrigo E, Lopez-Vilchez I, Molina P, Sanchis J, Reverter JC, Carne X, Cid J, Villalta J, Tassies D, Galan AM, Diaz-Ricart M. Reversal of Rivaroxaban-Induced Alterations on Hemostasis by Different Coagulation Factor Concentrates. Circ J 2015; 79:331-8. [DOI: 10.1253/circj.cj-14-0909] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gines Escolar
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Eduardo Arellano-Rodrigo
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Irene Lopez-Vilchez
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Patricia Molina
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Juan Sanchis
- Department of Cardiology, Hospital Clinico Universitario de Valencia, School of Medicine, University of Valencia
| | - Joan Carles Reverter
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | | | - Joan Cid
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | | | - Dolors Tassies
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Ana M. Galan
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| | - Maribel Diaz-Ricart
- Department of Haemotherapy and Haemostasis, Hospital Clinic, Centre of Biomedical Diagnosis, Institute of Biomedical Research August Pi i Sunyer, University of Barcelona
| |
Collapse
|
16
|
Bisland S, Smith F. Total Hip Arthroplasty in A Young Patient with Bernard-Soulier Syndrome. J Orthop Case Rep 2014; 4:38-41. [PMID: 27298957 PMCID: PMC4719372 DOI: 10.13107/jocr.2250-0685.165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Introduction: The management of patients with coagulopathic disorders undergoing orthopaedic surgery requires a dedicated, multi-disciplinary team with detailed perioperative planning. Bernard-Soulier Syndrome (BSS) is an extremely rare disorder, affecting 1 in 1 million individuals worldwide. It is caused by a deficiency in glycoprotein 1b-V-IX which is required for normal platelet-mediated clot formation. The deficiency results in prolonged bleeding time with high risk of spontaneous bleeds. Few reports exist in the clinical literature of BSS patients undergoing major surgery. Case Report: A 40 year old, female with known BSS and developmental dysplasia of her left hip (DDH) was referred to us for consideration of left total hip arthroplasty (THA). Consultation with her Haematologist for pre-operative optimization of platelets and related clotting times together with detailed discussions of her intended anaesthesia protocol and surgery resulted in a successful operation with less than anticipated blood loss. She entered our rehabilitation program just one week after surgery. Conclusion: BSS is an extremely rare bleeding disorder that puts patients at very high risk of blood loss following surgery. This is the first report that we are aware of describing a BSS patient undergoing a THA. A cohesive, highly specialized, multi-disciplinary team is crucial to the success of these patients.
Collapse
Affiliation(s)
- Stuart Bisland
- Division of Orthopaedic Surgery, McMaster University, Hamilton, Ontario L8L 2X2 Canada
| | - Frank Smith
- Division of Orthopaedic Surgery, Juravinski Hospital, Hamilton, Ontario L8L 2X2 Canada
| |
Collapse
|
17
|
Escolar G, Fernandez-Gallego V, Arellano-Rodrigo E, Roquer J, Reverter JC, Sanz VV, Molina P, Lopez-Vilchez I, Diaz-Ricart M, Galan AM. Reversal of apixaban induced alterations in hemostasis by different coagulation factor concentrates: significance of studies in vitro with circulating human blood. PLoS One 2013; 8:e78696. [PMID: 24244342 PMCID: PMC3823858 DOI: 10.1371/journal.pone.0078696] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/07/2013] [Indexed: 11/18/2022] Open
Abstract
Apixaban is a new oral anticoagulant with a specific inhibitory action on FXa. No information is available on the reversal of the antihemostatic action of apixaban in experimental or clinical settings. We have evaluated the effectiveness of different factor concentrates at reversing modifications of hemostatic mechanisms induced by moderately elevated concentrations of apixaban (200 ng/ml) added in vitro to blood from healthy donors (n = 10). Effects on thrombin generation (TG) and thromboelastometry (TEM) parameters were assessed. Modifications in platelet adhesive, aggregating and procoagulant activities were evaluated in studies with blood circulating through damaged vascular surfaces, at a shear rate of 600 s(-1). The potential of prothrombin complex concentrates (PCCs; 50 IU/kg), activated prothrombin complex concentrates (aPCCs; 75 IU/kg), or activated recombinant factor VII (rFVIIa; 270 μg/kg), at reversing the antihemostatic actions of apixaban, were investigated. Apixaban interfered with TG kinetics. Delayed lag phase, prolonged time to peak and reduced peak values, were improved by the different concentrates, though modifications in TG patterns were diversely affected depending on the activating reagents. Apixaban significantly prolonged clotting times (CTs) in TEM studies. Prolongations in CTs were corrected by the different concentrates with variable efficacies (rFVIIa≥aPCC>PCC). Apixaban significantly reduced fibrin and platelet interactions with damaged vascular surfaces in perfusion studies (p<0.05 and p<0.01, respectively). Impairments in fibrin formation were normalized by the different concentrates. Only rFVIIa significantly restored levels of platelet deposition. Alterations in hemostasis induced by apixaban were variably compensated by the different factor concentrates investigated. However, effects of these concentrates were not homogeneous in all the tests, with PCCs showing more efficacy in TG, and rFVIIa being more effective on TEM and perfusion studies. Our results indicate that rFVIIa, PCCs and aPCCs have the potential to restore platelet and fibrin components of the hemostasis previously altered by apixaban.
Collapse
Affiliation(s)
- Gines Escolar
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | | | - Eduardo Arellano-Rodrigo
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Hospital Universitari del Mar, Parc de Salut Mar, Barcelona, Spain
| | - Joan Carles Reverter
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Victoria Veronica Sanz
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Patricia Molina
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Irene Lopez-Vilchez
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| | - Ana Maria Galan
- Department of Hemotherapy-Hemostasis, Hospital Clinic, Centre de Diagnostic Biomedic, Institut d'Investigacions Biomediques August Pi i Sunyer, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
van Geffen M, Mathijssen NC, Holme PA, Laros-van Gorkom BA, van Kraaij MG, Masereeuw R, Peyvandi F, van Heerde WL. Pharmacodynamics of recombinant activated factor VII and plasma-derived factor VII in a cohort of severe FVII deficient patients. Thromb Res 2013; 132:116-22. [DOI: 10.1016/j.thromres.2013.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/25/2022]
|
19
|
Factor VIIa. Platelets 2013. [DOI: 10.1016/b978-0-12-387837-3.00061-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kulkarni R. Comprehensive care of the patient with haemophilia and inhibitors undergoing surgery: practical aspects. Haemophilia 2012; 19:2-10. [PMID: 22925397 DOI: 10.1111/j.1365-2516.2012.02922.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2012] [Indexed: 11/30/2022]
Abstract
Congenital haemophilia is a rare and complex condition for which dedicated specialized and comprehensive care has produced measurable improvements in clinical outcomes and advances in patient management. Among these advances is the ability to safely perform surgery in patients with inhibitor antibodies to factors VIII and IX, in whom all but the most necessary of surgeries were once avoided due to the risk for uncontrollable bleeding due to ineffectiveness of replacement therapy. Nevertheless, surgery continues to pose a major challenge in this relatively rare group of patients because of significantly higher costs than in patients without inhibitors, as well as a high risk for bleeding and other complications. Because of the concentration of expertise and experience, it is recommended that any surgery in patients with haemophilia and inhibitors be planned in conjunction with a haemophilia treatment centre (HTC) and performed in a hospital that incorporates a HTC. Coordinated, standard pre-, intra- and postoperative assessments and planning are intended to optimize surgical outcome and utilization of resources, including costly factor concentrates and other haemostatic agents, while minimizing the risk for bleeding and other adverse consequences both during and after surgery. This article will review the special considerations for patients with inhibitors as they prepare for and move through surgery and recovery, with an emphasis on the roles and responsibilities of individual members of the multidisciplinary team in facilitating this process.
Collapse
Affiliation(s)
- R Kulkarni
- Division of Pediatric and Adolescent Hematology/Oncology, Department of Pediatrics and Human Development, Michigan State University College of Human Medicine, East Lansing, MI 48824, USA.
| |
Collapse
|
21
|
Kanaji S, Kuether EL, Fahs SA, Schroeder JA, Ware J, Montgomery RR, Shi Q. Correction of murine Bernard-Soulier syndrome by lentivirus-mediated gene therapy. Mol Ther 2012; 20:625-32. [PMID: 22044935 PMCID: PMC3293608 DOI: 10.1038/mt.2011.231] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 09/28/2011] [Indexed: 12/29/2022] Open
Abstract
Bernard-Soulier syndrome (BSS) is an inherited bleeding disorder caused by a defect in the platelet glycoprotein (GP) Ib-IX-V complex. The main treatment for BSS is platelet transfusion but it is often limited to severe bleeding episodes or surgical interventions due to the risk of alloimmunization. We have previously reported successful expression of human GPIbα (hGPIbα) in human megakaryocytes using a lentiviral vector (LV) encoding human GP1BA under control of the platelet-specific integrin αIIb promoter (2bIbα). In this study, we examined the efficacy of this strategy for the gene therapy of BSS using GPIbα(null) as a murine model of BSS. GPIbα(null) hematopoietic stem cells (HSC) transduced with 2bIbα LV were transplanted into lethally irradiated GPIbα(null) littermates. Therapeutic levels of hGPIbα expression were achieved that corrected the tail bleeding time and improved the macrothrombocytopenia. Sequential bone marrow (BM) transplants showed sustained expression of hGPIbα with similar phenotypic correction. Antibody response to hGPIbα was documented in 1 of 17 total recipient mice but was tolerated without any further treatment. These results demonstrate that lentivirus-mediated gene transfer can provide sustained phenotypic correction of murine BSS, indicating that this approach may be a promising strategy for gene therapy of BSS patients.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Erin L Kuether
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Scot A Fahs
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jocelyn A Schroeder
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Robert R Montgomery
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Qizhen Shi
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|