1
|
Sreesada P, Vandana, Krishnan B, Amrutha R, Chavan Y, Alfia H, Jyothis A, Venugopal P, Aradhya R, Suravajhala P, Nair BG. Matrix metalloproteinases: Master regulators of tissue morphogenesis. Gene 2024; 933:148990. [PMID: 39393432 DOI: 10.1016/j.gene.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
The matrix metalloproteinases (MMPs) are a class of zinc proteases that aid in breaking most of the extracellular matrix's (ECM) constituents. Additionally, MMPs play a part in processing elements that affect inflammation, cell development and proliferation, and many more. In vivo genetic study of the Drosophila MMPs Mmp1 and Mmp2 reveals they are essential for tissue remodeling but not embryonic development. The canonical and conserved MMP domain organization is present in both fly MMPs. Because Mmp2 appeared to be membrane-anchored and Mmp1 appeared to be released, the pericellular localization of Drosophila MMPs has been used to classify them. This suggests that the protein's localization is the critical distinction in this small MMP family. The signal sequence, the propeptide, the catalytic domain, and the hemopexin-like domain are among the numerous domains found in MMPs. Following secretion from the extracellular environment to the endoplasmic reticulum, the pre-domain, also known as the signal sequence, serves to direct MMP production. MMPs of the secretory and membrane types (MT-MMPs) are two groups of MMPs that have been widely recognized. Subgroups of MMPs are categorized based on their structure and function. While analysis of the intracellular activity of human MMPs is challenging because the human genome contains around 23 distinct MMPs with overlapping functions, only two MMPs, dMMP1 and dMMP2, are encoded by the Drosophila melanogaster genome. On the other hand, the balance between MMPs and the family members are implicated in various pathophysiology/progression of diseases, but whether or not the mechanisms of MMP inhibition are not clearly understood as master regulators. In this review, we outline the role of MMPs as master regulators of tissue morphogenesis.
Collapse
Affiliation(s)
- P Sreesada
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Vandana
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Bhagath Krishnan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - R Amrutha
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Yash Chavan
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Hasanath Alfia
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Anjali Jyothis
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Parvathy Venugopal
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| | - Rajaguru Aradhya
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Prashanth Suravajhala
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India.
| | - Bipin G Nair
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Clappana PO 690525, Kerala, India
| |
Collapse
|
2
|
Bautista-Bautista G, Salguero-Zacarias S, Villeda-Gabriel G, García-López G, Osorio-Caballero M, Palafox-Vargas ML, Acuña-González RJ, Lara-Pereyra I, Díaz-Ruíz O, Flores-Herrera H. Escherichia coli induced matrix metalloproteinase-9 activity and type IV collagen degradation is regulated by progesterone in human maternal decidual. BMC Pregnancy Childbirth 2024; 24:645. [PMID: 39367340 PMCID: PMC11451097 DOI: 10.1186/s12884-024-06847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Escherichia coli (E. coli) is one of the main bacteria associated with preterm premature rupture of membranes by increasing pro-matrix metalloproteinase 9 (proMMP-9) and degradation of type IV collagen in human feto-maternal interface (HFMi). proMMP-9 is regulated by progesterone (P4) but it is unclear whether P4 inhibits proMMP in human maternal decidual (MDec). This study aimed to determine a role of P4 on proMMP-2 and - 9 and type IV collagen induced by E. coli infection in MDec. METHODS Nine HFMi were mounted in a Transwell system. MDec was stimulated with P4 or E. coli for 3-, 6-, or 24-hours. proMMP-2, -9 and type IV collagen were assessed. RESULTS Gelatin zymography revealed an increase in proMMP-9 after 3, 6, and 24 h of stimulating MDec with E. coli. Using immunofluorescence, it was confirmed the increase in the HFMi tissue and a reduction on the amount of type IV collagen leading to the separation of fetal amniochorion and MDEc. The degradative activity of proMMP-9 was reduced by 20% by coincubation with P4. CONCLUSIONS P4 modulates the activity of proMMP-9 induced by E. coli stimulation but it was unable to completely reverse the degradation of type IV collagen in human MDec tissue.
Collapse
Affiliation(s)
- Gerardo Bautista-Bautista
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Santos Salguero-Zacarias
- Departamento de Tococirugia y Urgencias, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Graciela Villeda-Gabriel
- Departamento de Inmunología e infectología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes , Ciudad de México, México
| | - Mauricio Osorio-Caballero
- Departamento de Salud Sexual y Reproductiva, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Martha Leticia Palafox-Vargas
- Departamento de Anatomía Patológica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México, México
| | - Ricardo Josué Acuña-González
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México
| | - Irlando Lara-Pereyra
- Departamento de Ginecología, Hospital General de Zona 252, Instituto Mexicano del Seguro Social, Atlacomulco, México
| | - Oscar Díaz-Ruíz
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hector Flores-Herrera
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Urales #800 Col. Lomas de Virreyes CP 11000, Tercer piso de la Torre de Investigación, Ciudad de México, México.
| |
Collapse
|
3
|
Wang X, Zheng W, Zhu Z, Xing B, Yan W, Zhu K, Xiao L, Yang C, Wei M, Yang L, Jin ZB, Bi X, Zhang C. Timp1 Deletion Induces Anxiety-like Behavior in Mice. Neurosci Bull 2024; 40:732-742. [PMID: 38113013 PMCID: PMC11178759 DOI: 10.1007/s12264-023-01163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/25/2023] [Indexed: 12/21/2023] Open
Abstract
The hippocampus is essential for learning and memory, but it also plays an important role in regulating emotional behavior, as hippocampal excitability and plasticity affect anxiety and fear. Brain synaptic plasticity may be regulated by tissue inhibitor of matrix metalloproteinase 1 (TIMP1), a known protein inhibitor of extracellular matrix (ECM), and the expression of TIMP1 in the hippocampus can be induced by neuronal excitation and various stimuli. However, the involvement of Timp1 in fear learning, anxiety, and hippocampal synaptic function remains to be established. Our study of Timp1 function in vivo revealed that Timp1 knockout mice exhibit anxiety-like behavior but normal fear learning. Electrophysiological results suggested that Timp1 knockout mice showed hyperactivity in the ventral CA1 region, but the basic synaptic transmission and plasticity were normal in the Schaffer collateral pathway. Taken together, our results suggest that deletion of Timp1 in vivo leads to the occurrence of anxiety behaviors, but that Timp1 is not crucial for fear learning.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Wei Zheng
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ziyi Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Biyu Xing
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Weijie Yan
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Ke Zhu
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lingli Xiao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chaojuan Yang
- Key Laboratory for Biomechanics and Mechanobiology of the Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Mengping Wei
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Lei Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China
| | - Zi-Bing Jin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| | - Xueyun Bi
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, 210000, China.
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
4
|
Coates-Park S, Rich JA, Stetler-Stevenson WG, Peeney D. The TIMP protein family: diverse roles in pathophysiology. Am J Physiol Cell Physiol 2024; 326:C917-C934. [PMID: 38284123 PMCID: PMC11193487 DOI: 10.1152/ajpcell.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
The tissue inhibitors of matrix metalloproteinases (TIMPs) are a family of four matrisome proteins classically defined by their roles as the primary endogenous inhibitors of metalloproteinases (MPs). Their functions however are not limited to MP inhibition, with each family member harboring numerous MP-independent biological functions that play key roles in processes such as inflammation and apoptosis. Because of these multifaceted functions, TIMPs have been cited in diverse pathophysiological contexts. Herein, we provide a comprehensive overview of the MP-dependent and -independent roles of TIMPs across a range of pathological conditions. The potential therapeutic and biomarker applications of TIMPs in these disease contexts are also considered, highlighting the biomedical promise of this complex and often misunderstood protein family.
Collapse
Affiliation(s)
- Sasha Coates-Park
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - Joshua A Rich
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - William G Stetler-Stevenson
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| | - David Peeney
- Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Jiang L, Zhu Y, Wu L, Wang C, Yang N, Xu Y, Sun L. Comparative peptidomics analysis of preeclamptic placenta and the identification of a novel bioactive SERPINA1 C-terminal peptide. Reprod Biol 2024; 24:100858. [PMID: 38290226 DOI: 10.1016/j.repbio.2024.100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
Preeclampsia (PE) is a life-threatening disease that severely harms pregnant women and infants' health but has a poorly understood etiology. Peptidomics can supply important information about the occurrence of diseases. However, application of peptidomics in preeclamptic placentas has never been reported. We conducted a comparative peptidomics analysis of PE placentas and performed bio-informatics analysis on differentially expressed peptides. Effects of differential peptide 405SPLFMGKVVNPTQK418 on the behaviors of trophoblasts and angiogenesis were assessed by CCK8, transwell assays, and tube network formation assays. And we also confirmed the role of peptide in the zebrafish xenograft model. A total of 3582 peptide were identified. 48 peptides were differentially expressed. Bioinformatics analysis indicated that precursor proteins of these differentially expressed peptides correlate with "complement and coagulation cascades," and "platelet activation" pathways. Of the 48 differential peptides, we found that peptide 405SPLFMGKVVNPTQK418 can significantly increase proliferation, migration of trophoblasts and stimulate angiogenesis of HUVECs in vitro and zebrafish model. These findings suggest peptidomes can aid in understanding the pathogenesis of PE more comprehensively. Peptide 405SPLFMGKVVNPTQK418 can be novel target and strategy to alleviate the condition of preeclampsia.
Collapse
Affiliation(s)
- Lingling Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China; Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, PR China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Tianfeixiang, Mochou Road, Qinhuai, Nanjing 210004, Jiangsu, PR China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Cong Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Nana Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China
| | - Yetao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, PR China.
| |
Collapse
|
6
|
Shao J, Zhang Z, Cai X, Shen Y, Tong J. Aqueous humor protein markers in myopia: a review. Int Ophthalmol 2024; 44:21. [PMID: 38324137 DOI: 10.1007/s10792-024-02942-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/16/2023] [Indexed: 02/08/2024]
Abstract
PURPOSE Myopia is one of the most common forms of refractive error. Most myopia manifests itself as a relative growth of the eye axis, resulting in a state in which light is projected in front of the retina after being refracted by the refractive system of the eyeball. So far, the specific pathogenesis of myopia is still not well explained, through the results of animal experiments, researchers have proposed various possible scenarios, but all these are based on animal models, and there may still be a certain gap with the mechanism of true myopia in humans. The most readily available in clinical work is aqueous humor obtained during cataract surgery, for which we reviewed these studies of aqueous humor samples from myopic patients. METHODS A systematic literature search was done on PubMed using key words including "myopia," "aqueous humor," and "protein." RESULTS The results of existing aqueous humor studies have shown that the difference in substances in the aqueous humor of myopia is related to the degradation of the scleral matrix, chronic inflammation of the eye, pro-fibrosis, blood vessel production, and inhibition. There may be more than one reason associated with myopia progression. CONCLUSION The specific mechanism of myopia has not been fully elucidated. Therefore, the means of preventing and treating myopia should focus on inhibiting the degradation of the scleral matrix, promoting the proliferation of scleral collagen fibers, and alleviating chronic inflammation of the eyes. Further research into myopic aqueous humor may provide us with new insights.
Collapse
Affiliation(s)
- Jiechao Shao
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Zongchan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Xuecheng Cai
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
7
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison ER, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, an inhibitor of oligodendrocyte differentiation and FTY720 responses. Proc Natl Acad Sci U S A 2024; 121:e2306816121. [PMID: 38266047 PMCID: PMC10835138 DOI: 10.1073/pnas.2306816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/27/2023] [Indexed: 01/26/2024] Open
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. Astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout (Timp1KO) mice do not efficiently remyelinate following a demyelinating injury. Here, we performed an unbiased proteomic analysis and identified a fibronectin-derived peptide called Anastellin (Ana) that was unique to the Timp1KO astrocyte secretome. Ana was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Ana is known to act upon the sphingosine-1-phosphate receptor 1, and we determined that Ana also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro. Administration of FTY720 to wild-type C57BL/6 mice during MOG35-55-experimental autoimmune encephalomyelitis ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 (Timp1KO) had no effect. Analysis of Timp1 and fibronectin (FN1) transcripts from primary human astrocytes from healthy and multiple sclerosis (MS) donors revealed lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Last, analyses of proteomic databases of MS samples identified Ana peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high disease activity. A role for Ana in MS as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and innate remyelination potential in the MS brain.
Collapse
Affiliation(s)
- Pearl A. Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Cory M. Willis
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Antoine Menoret
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Alexandra M. Nicaise
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Anthony Sacino
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
| | - Arend. H. Sikkema
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Evan R. Jellison
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Kyaw K. Win
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - David K. Han
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT06030
| | - William Church
- Department of Chemistry and Neuroscience Program, Trinity College, Hartford, CT06106
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Neurobiology, University of Groningen, University Medical Center Groningen, Groningen9700RB, the Netherlands
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| | - Stephen J. Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT06030
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT06030
| |
Collapse
|
8
|
Taylor X, Clark IM, Fitzgerald GJ, Oluoch H, Hole JT, DeMattos RB, Wang Y, Pan F. Amyloid-β (Aβ) immunotherapy induced microhemorrhages are associated with activated perivascular macrophages and peripheral monocyte recruitment in Alzheimer's disease mice. Mol Neurodegener 2023; 18:59. [PMID: 37649100 PMCID: PMC10469415 DOI: 10.1186/s13024-023-00649-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Amyloid-related imaging abnormalities (ARIA) have been identified as the most common and serious adverse events resulting from pathological changes in the cerebral vasculature during several recent anti-amyloid-β (Aβ) immunotherapy trials. However, the precise cellular and molecular mechanisms underlying how amyloid immunotherapy enhances cerebral amyloid angiopathy (CAA)-mediated alterations in vascular permeability and microhemorrhages are not currently understood. Interestingly, brain perivascular macrophages have been implicated in regulating CAA deposition and cerebrovascular function however, further investigations are required to understand how perivascular macrophages play a role in enhancing CAA-related vascular permeability and microhemorrhages associated with amyloid immunotherapy. METHODS In this study, we examined immune responses induced by amyloid-targeting antibodies and CAA-induced microhemorrhages using histology and gene expression analyses in Alzheimer's disease (AD) mouse models and primary culture systems. RESULTS In the present study, we demonstrate that anti-Aβ (3D6) immunotherapy leads to the formation of an antibody immune complex with vascular amyloid deposits and induces the activation of CD169+ perivascular macrophages. We show that macrophages activated by antibody mediated Fc receptor signaling have increased expression of inflammatory signaling and extracellular matrix remodeling genes such as Timp1 and MMP9 in vitro and confirm these key findings in vivo. Finally, we demonstrate enhanced vascular permeability of plasma proteins and recruitment of inflammatory monocytes around vascular amyloid deposits, which are associated with hemosiderin deposits from cerebral microhemorrhages, suggesting the multidimensional roles of activated perivascular macrophages in response to Aβ immunotherapy. CONCLUSIONS In summary, our study establishes a connection between Aβ antibodies engaged at CAA deposits, the activation of perivascular macrophages, and the upregulation of genes involved in vascular permeability. However, the implications of this phenomenon on the susceptibility to microhemorrhages remain to be fully elucidated. Further investigations are warranted to determine the precise role of CD169 + perivascular macrophages in enhancing CAA-mediated vascular permeability, extravasation of plasma proteins, and infiltration of immune cells associated with microhemorrhages.
Collapse
Affiliation(s)
- Xavier Taylor
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Isaiah M Clark
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Griffin J Fitzgerald
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Herold Oluoch
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Justin T Hole
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Ronald B DeMattos
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA.
| | - Yaming Wang
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Feng Pan
- Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| |
Collapse
|
9
|
Shan L, Wang F, Zhai D, Meng X, Liu J, Lv X. Matrix metalloproteinases induce extracellular matrix degradation through various pathways to alleviate hepatic fibrosis. Biomed Pharmacother 2023; 161:114472. [PMID: 37002573 DOI: 10.1016/j.biopha.2023.114472] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/20/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Liver fibrosis is the common consequence of various chronic liver injuries and is mainly characterized by the imbalance between the production and degradation of extracellular matrix, which leads to the accumulation of interstitial collagen and other matrix components. Matrix metalloproteinases (MMPs) and their specific inhibitors, that is, tissue inhibitors of metalloproteinases (TIMPs), play a crucial role in collagen synthesis and lysis. Previous in vivo and in vitro studies of our laboratory found repressing extracellular matrix (ECM) accumulation by restoring the balance between MMPs and TIMPs can alleviate liver fibrosis. We conducted a review of articles published in PubMed and Science Direct in the last decade until February 1, 2023, which were searched for using these words "MMPs/TIMPs" and "Hepatic Fibrosis." Through a literature review, this article reviews the experimental studies of liver fibrosis based on MMPs/TIMPs, summarizes the components that may exert an anti-liver fibrosis effect by affecting the expression or activity of MMPs/TIMPs, and attempts to clarify the mechanism of MMPs/TIMPs in regulating collagen homeostasis, so as to provide support for the development of anti-liver fibrosis drugs. We found the MMP-TIMP-ECM interaction can result in better understanding of the pathogenesis and progression of hepatic fibrosis from a different angle, and targeting this interaction may be a promising therapeutic strategy for hepatic fibrosis. Additionally, we summarized and analyzed the drugs that have been found to reduce liver fibrosis by changing the ratio of MMPs/TIMPs, including medicine natural products.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China; Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China
| | - Fengling Wang
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230011, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei 230032, China; The Key Laboratory of Major Autoimmune Diseases, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Sutter PA, Willis CM, Menoret A, Nicaise AM, Sacino A, Sikkema AH, Jellison E, Win KK, Han DK, Church W, Baron W, Vella AT, Crocker SJ. Astrocytic TIMP-1 regulates production of Anastellin, a novel inhibitor of oligodendrocyte differentiation and FTY720 responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.529003. [PMID: 36824834 PMCID: PMC9949145 DOI: 10.1101/2023.02.17.529003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Astrocyte activation is associated with neuropathology and the production of tissue inhibitor of metalloproteinase-1 (TIMP1). TIMP1 is a pleiotropic extracellular protein that functions both as a protease inhibitor and as a growth factor. We have previously demonstrated that murine astrocytes that lack expression of Timp1 do not support rat oligodendrocyte progenitor cell (rOPC) differentiation, and adult global Timp1 knockout ( Timp1 KO ) mice do not efficiently remyelinate following a demyelinating injury. To better understand the basis of this, we performed unbiased proteomic analyses and identified a fibronectin-derived peptide called anastellin that is unique to the murine Timp1 KO astrocyte secretome. Anastellin was found to block rOPC differentiation in vitro and enhanced the inhibitory influence of fibronectin on rOPC differentiation. Anastellin is known to act upon the sphingosine-1-phosphate receptor 1 (S1PR1), and we determined that anastellin also blocked the pro-myelinating effect of FTY720 (or fingolimod) on rOPC differentiation in vitro . Further, administration of FTY720 to wild-type C57BL/6 mice during MOG 35-55 -EAE ameliorated clinical disability while FTY720 administered to mice lacking expression of Timp1 in astrocytes ( Timp1 cKO ) had no effect. Analysis of human TIMP1 and fibronectin ( FN1 ) transcripts from healthy and multiple sclerosis (MS) patient brain samples revealed an inverse relationship where lower TIMP1 expression was coincident with elevated FN1 in MS astrocytes. Lastly, we analyzed proteomic databases of MS samples and identified anastellin peptides to be more abundant in the cerebrospinal fluid (CSF) of human MS patients with high versus low disease activity. The prospective role for anastellin generation in association with myelin lesions as a consequence of a lack of astrocytic TIMP-1 production could influence both the efficacy of fingolimod responses and the innate remyelination potential of the the MS brain. Significance Statement Astrocytic production of TIMP-1 prevents the protein catabolism of fibronectin. In the absence of TIMP-1, fibronectin is further digested leading to a higher abundance of anastellin peptides that can bind to sphingosine-1-phosphate receptor 1. The binding of anastellin with the sphingosine-1-phosphate receptor 1 impairs the differentiation of oligodendrocytes progenitor cells into myelinating oligodendrocytes in vitro , and negates the astrocyte-mediated therapeutic effects of FTY720 in the EAE model of chronic CNS inflammation. These data indicate that TIMP-1 production by astrocytes is important in coordinating astrocytic functions during inflammation. In the absence of astrocyte produced TIMP-1, elevated expression of anastellin may represent a prospective biomarker for FTY720 therapeutic responsiveness.
Collapse
|
11
|
Xu G, Yang Y, Yang J, Xiao L, Wang X, Qin L, Gao J, Xuan R, Wu X, Chen Z, Sun R, Song G. Screening and identification of miR-181a-5p in oral squamous cell carcinoma and functional verification in vivo and in vitro. BMC Cancer 2023; 23:162. [PMID: 36800936 PMCID: PMC9936757 DOI: 10.1186/s12885-023-10600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a common malignant tumor associated with poor prognosis. MicroRNAs (miRNAs) play crucial regulatory roles in the cancer development. However, the role of miRNAs in OSCC development and progression is not well understood. METHODS We sought to establish a dynamic Chinese hamster OSCC animal model, construct miRNA differential expression profiles of its occurrence and development, predict its targets, and perform functional analysis and validation in vitro. RESULTS Using expression and functional analyses, the key candidate miRNA (miR-181a-5p) was selected for further functional research, and the expression of miR-181a-5p in OSCC tissues and cell lines was detected. Subsequently, transfection technology and a nude mouse tumorigenic model were used to explore potential molecular mechanisms. miR-181a-5p was significantly downregulated in human OSCC specimens and cell lines, and decreased miR-181a-5p expression was observed in multiple stages of the Chinese hamster OSCC animal model. Moreover, upregulated miR-181a-5p significantly inhibited OSCC cell proliferation, colony formation, invasion, and migration; blocked the cell cycle; and promoted apoptosis. BCL2 was identified as a target of miR-181a-5p. BCL2 may interact with apoptosis- (BAX), invasion- and migration- (TIMP1, MMP2, and MMP9), and cell cycle-related genes (KI67, E2F1, CYCLIND1, and CDK6) to further regulate biological behavior. Tumor xenograft analysis indicated that tumor growth was significantly inhibited in the high miR-181a-5p expression group. CONCLUSION Our findings indicate that miR-181a-5p can be used as a potential biomarker and provide a novel animal model for mechanistic research on oral cancer.
Collapse
Affiliation(s)
- Guoqiang Xu
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Yiyan Yang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Junting Yang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China ,grid.263452.40000 0004 1798 4018Shanxi Medical University School of Basic Medical Science, Taiyuan, 030001 China
| | - Lanfei Xiao
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Xiaotang Wang
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Litao Qin
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Jiping Gao
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Ruijing Xuan
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Xiaofen Wu
- grid.263452.40000 0004 1798 4018Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001 China
| | - Zhaoyang Chen
- grid.263452.40000 0004 1798 4018Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001 China
| | - Rui Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Human Disease Animal Model, Shanxi Medical University, Road Xinjian 56, Taiyuan, 030001, China.
| |
Collapse
|
12
|
Li W, Liu Y, Xu X, Zhang Q, Zhang X, Zhang J, Niu X, Yang S, Zhang X, Shi W, Zhang G, Chang M, Tian Y. The Relationship Between MMP17 Variants and Ischemic Stroke Risk in the Population from Shaanxi Province in China. Pharmgenomics Pers Med 2023; 16:59-66. [PMID: 36733691 PMCID: PMC9889100 DOI: 10.2147/pgpm.s396076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Background Ischemic stroke (IS) was a multifactorial disease, which was the main cause of death and adult disability. Genetic factors cannot be ignored. Objective The present study discussed the relationship between MMP17 variants and the susceptibility of IS. Methods Based on the Agena MassARRAY platform, we genotyped single nucleotide polymorphisms (SNPs) on the MMP17 gene in 1345 participants (670 controls and 675 cases). We used logistic regression analysis to analyze the association of MMP17 SNPs with the risk of IS in the Chinese population, with odds ratio (OR) and 95% confidence intervals (CIs). False-positive report probability (FPRP) detected false positives on the significant results. Besides, we detected the SNP-SNP interaction to predict IS risk by multi-factor dimensionality reduction (MDR) analysis. Results In the total analysis, MMP17 rs7975920 conferred an increased susceptibility to IS. After a stratified analysis by age and gender, the significant association between rs7975920 and IS risk was displayed in the subjects aged >55 years old and females. After stratified analysis by smoking and drinking, MMP17 rs6598163 was related to the risk of IS in smokers and rs7975920 was associated with the risk of IS in smokers and was in correlation with IS risk in drinkers. Conclusion In short, we first observed that MMP17 rs7975920 and rs6598163 were related to the risk of IS. The above results provided a theoretical basis for the elaboration of the role of MMP17 in IS in the Chinese population.
Collapse
Affiliation(s)
- Weiping Li
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Yanqing Liu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xiaoling Xu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Qi Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xiao Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Jie Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xiaochen Niu
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Shiyao Yang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Xiaobo Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Wenzhen Shi
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Gejuan Zhang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Mingze Chang
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China
| | - Ye Tian
- Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi’an No.3 Hospital, The Affiliated Hospital of Northwest University, School of Life Sciences and Medicine, Northwest University, Xi’an, Shaanxi Province, People’s Republic of China,Correspondence: Ye Tian; Wenzhen Shi, Xi’an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, No. 10, East Section of Fengcheng Third Road, Weiyang District, Xi’an, Shaanxi Province, People’s Republic of China, Tel +86 29-61816515, Email ;
| |
Collapse
|
13
|
Bronisz E, Cudna A, Wierzbicka A, Kurkowska-Jastrzębska I. Blood-Brain Barrier-Associated Proteins Are Elevated in Serum of Epilepsy Patients. Cells 2023; 12:cells12030368. [PMID: 36766708 PMCID: PMC9913812 DOI: 10.3390/cells12030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction emerges as one of the mechanisms underlying the induction of seizures and epileptogenesis. There is growing evidence that seizures also affect BBB, yet only scarce data is available regarding serum levels of BBB-associated proteins in chronic epilepsy. In this study, we aimed to assess serum levels of molecules associated with BBB in patients with epilepsy in the interictal period. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2, S100B, CCL-2, ICAM-1, P-selectin, and TSP-2 were examined in a group of 100 patients who were seizure-free for a minimum of seven days and analyzed by ELISA. The results were compared with an age- and sex-matched control group. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B were higher in patients with epilepsy in comparison to control group (p < 0.0001; <0.0001; 0.001; <0.0001; <0.0001, respectively). Levels of CCL-2, ICAM-1, P-selectin and TSP-2 did not differ between the two groups. Serum levels of MMP-9, MMP-2, TIMP-1, TIMP-2 and S100B are elevated in patients with epilepsy in the interictal period, which suggests chronic processes of BBB disruption and restoration. The pathological process initiating epilepsy, in addition to seizures, is probably the factor contributing to the elevation of serum levels of the examined molecules.
Collapse
Affiliation(s)
- Elżbieta Bronisz
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
- Correspondence:
| | - Agnieszka Cudna
- Second Department of Neurology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Aleksandra Wierzbicka
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| | - Iwona Kurkowska-Jastrzębska
- Sleep Disorders Center, Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, 02-957 Warsaw, Poland
| |
Collapse
|
14
|
Mason J, Öhlund D. Key aspects for conception and construction of co-culture models of tumor-stroma interactions. Front Bioeng Biotechnol 2023; 11:1150764. [PMID: 37091337 PMCID: PMC10119418 DOI: 10.3389/fbioe.2023.1150764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
The tumor microenvironment is crucial in the initiation and progression of cancers. The interplay between cancer cells and the surrounding stroma shapes the tumor biology and dictates the response to cancer therapies. Consequently, a better understanding of the interactions between cancer cells and different components of the tumor microenvironment will drive progress in developing novel, effective, treatment strategies. Co-cultures can be used to study various aspects of these interactions in detail. This includes studies of paracrine relationships between cancer cells and stromal cells such as fibroblasts, endothelial cells, and immune cells, as well as the influence of physical and mechanical interactions with the extracellular matrix of the tumor microenvironment. The development of novel co-culture models to study the tumor microenvironment has progressed rapidly over recent years. Many of these models have already been shown to be powerful tools for further understanding of the pathophysiological role of the stroma and provide mechanistic insights into tumor-stromal interactions. Here we give a structured overview of different co-culture models that have been established to study tumor-stromal interactions and what we have learnt from these models. We also introduce a set of guidelines for generating and reporting co-culture experiments to facilitate experimental robustness and reproducibility.
Collapse
Affiliation(s)
- James Mason
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Daniel Öhlund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- *Correspondence: Daniel Öhlund,
| |
Collapse
|
15
|
Pavan Kumar N, Venkataraman A, Varadarjan P, Nancy A, Rajamanickam A, Selladurai E, Sankaralingam T, Thiruvengadam K, Selvam R, Thimmaiah A, Natarajan S, Ramaswamy G, Putlibai S, Sadasivam K, Sundaram B, Hissar S, Ranganathan UD, Nutman TB, Babu S. Role of matrix metalloproteinases in multi-system inflammatory syndrome and acute COVID-19 in children. Front Med (Lausanne) 2022; 9:1050804. [PMID: 36544496 PMCID: PMC9760695 DOI: 10.3389/fmed.2022.1050804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/15/2022] [Indexed: 12/11/2022] Open
Abstract
Introduction Multisystem Inflammatory Syndrome in children (MIS-C) is a serious inflammatory sequela of SARS-CoV2 infection. The pathogenesis of MIS-C is vague and matrix metalloproteinases (MMPs) may have an important role. Matrix metalloproteinases (MMPs) are known drivers of lung pathology in many diseases. Methods To elucidate the role of MMPs in pathogenesis of pediatric COVID-19, we examined their plasma levels in MIS-C and acute COVID-19 children and compared them to convalescent COVID-19 and children with other common tropical diseases (with overlapping clinical manifestations). Results Children with MIS-C had elevated levels of MMPs (P < 0.005 statistically significant) in comparison to acute COVID-19, other tropical diseases (Dengue fever, typhoid fever, and scrub typhus fever) and convalescent COVID-19 children. PCA and ROC analysis (sensitivity 84-100% and specificity 80-100%) showed that MMP-8, 12, 13 could help distinguish MIS-C from acute COVID-19 and other tropical diseases with high sensitivity and specificity. Among MIS-C children, elevated levels of MMPs were seen in children requiring intensive care unit admission as compared to children not needing intensive care. Similar findings were noted when children with severe/moderate COVID-19 were compared to children with mild COVID-19. Finally, MMP levels exhibited significant correlation with laboratory parameters, including lymphocyte counts, CRP, D-dimer, Ferritin and Sodium levels. Discussion Our findings suggest that MMPs play a pivotal role in the pathogenesis of MIS-C and COVID-19 in children and may help distinguish MIS-C from other conditions with overlapping clinical presentation.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- ICMR – National Institute for Research in Tuberculosis, Chennai, India,*Correspondence: Nathella Pavan Kumar, ,
| | | | | | - Arul Nancy
- National Institutes of Health-National Institute for Research in Tuberculosis – International Center for Excellence in Research, Chennai, India
| | - Anuradha Rajamanickam
- National Institutes of Health-National Institute for Research in Tuberculosis – International Center for Excellence in Research, Chennai, India
| | | | | | | | | | | | | | | | | | | | | | - Syed Hissar
- ICMR – National Institute for Research in Tuberculosis, Chennai, India
| | | | - Thomas B. Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Subash Babu
- National Institutes of Health-National Institute for Research in Tuberculosis – International Center for Excellence in Research, Chennai, India,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
16
|
Li RL, Duan HX, Liang Q, Huang YL, Wang LY, Zhang Q, Wu CJ, Liu SQ, Peng W. Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis. Front Immunol 2022; 13:1046810. [PMID: 36439173 PMCID: PMC9682071 DOI: 10.3389/fimmu.2022.1046810] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-MMPs and heterogeneous subgroups according to their structure and function. MMP contents in the human body are strictly regulated, and their synthesis, activation and inhibition processes should be kept in a certain balance; otherwise, this would result in the occurrence of various diseases. Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory disease that is affected by a variety of endogenous and exogenous factors. In RA development, MMPs act as important mediators of inflammation and participate in the degradation of extracellular matrix substrates and digestion of fibrillar collagens, leading to the destruction of joint structures. Interestingly, increasing evidence has suggested that herbal medicines have many advantages in RA due to their multitarget properties. In this paper, literature was obtained through electronic databases, including the Web of Science, PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and analysis, herbal medicines were found to inhibit the inflammatory process of RA by regulating MMPs and protecting joint structures. However, further preclinical and clinical studies are needed to support this view before these herbal medicines can be developed into drugs with actual application to the disease.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong-Liang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shu-Qin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Song S, Regan B, Ereifej ES, Chan ER, Capadona JR. Neuroinflammatory Gene Expression Analysis Reveals Pathways of Interest as Potential Targets to Improve the Recording Performance of Intracortical Microelectrodes. Cells 2022; 11:2348. [PMID: 35954192 PMCID: PMC9367362 DOI: 10.3390/cells11152348] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Intracortical microelectrodes are a critical component of brain-machine interface (BMI) systems. The recording performance of intracortical microelectrodes used for both basic neuroscience research and clinical applications of BMIs decreases over time, limiting the utility of the devices. The neuroinflammatory response to the microelectrode has been identified as a significant contributing factor to its performance. Traditionally, pathological assessment has been limited to a dozen or so known neuroinflammatory proteins, and only a few groups have begun to explore changes in gene expression following microelectrode implantation. Our initial characterization of gene expression profiles of the neuroinflammatory response to mice implanted with non-functional intracortical probes revealed many upregulated genes that could inform future therapeutic targets. Emphasis was placed on the most significant gene expression changes and genes involved in multiple innate immune sets, including Cd14, C3, Itgam, and Irak4. In previous studies, inhibition of Cluster of Differentiation 14 (Cd14) improved microelectrode performance for up to two weeks after electrode implantation, suggesting CD14 can be explored as a potential therapeutic target. However, all measures of improvements in signal quality and electrode performance lost statistical significance after two weeks. Therefore, the current study investigated the expression of genes in the neuroinflammatory pathway at the tissue-microelectrode interface in Cd14-/- mice to understand better how Cd14 inhibition was connected to temporary improvements in recording quality over the initial 2-weeks post-surgery, allowing for the identification of potential co-therapeutic targets that may work synergistically with or after CD14 inhibition to improve microelectrode performance.
Collapse
Affiliation(s)
- Sydney Song
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Brianna Regan
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evon S. Ereifej
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Veteran Affairs Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - E. Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA; (S.S.); (E.S.E.)
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
18
|
Nebie O, Buée L, Blum D, Burnouf T. Can the administration of platelet lysates to the brain help treat neurological disorders? Cell Mol Life Sci 2022; 79:379. [PMID: 35750991 PMCID: PMC9243829 DOI: 10.1007/s00018-022-04397-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
Abstract
Neurodegenerative disorders of the central nervous system (CNS) and brain traumatic insults are characterized by complex overlapping pathophysiological alterations encompassing neuroinflammation, alterations of synaptic functions, oxidative stress, and progressive neurodegeneration that eventually lead to irreversible motor and cognitive dysfunctions. A single pharmacological approach is unlikely to provide a complementary set of molecular therapeutic actions suitable to resolve these complex pathologies. Recent preclinical data are providing evidence-based scientific rationales to support biotherapies based on administering neurotrophic factors and extracellular vesicles present in the lysates of human platelets collected from healthy donors to the brain. Here, we present the most recent findings on the composition of the platelet proteome that can activate complementary signaling pathways in vivo to trigger neuroprotection, synapse protection, anti-inflammation, antioxidation, and neurorestoration. We also report experimental data where the administration of human platelet lysates (HPL) was safe and resulted in beneficial neuroprotective effects in established rodent models of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, traumatic brain injury, and stroke. Platelet-based biotherapies, prepared from collected platelet concentrates (PC), are emerging as a novel pragmatic and accessible translational therapeutic strategy for treating neurological diseases. Based on this assumption, we further elaborated on various clinical, manufacturing, and regulatory issues that need to be addressed to ensure the ethical supply, quality, and safety of HPL preparations for treating neurodegenerative and traumatic pathologies of the CNS. HPL made from PC may become a unique approach for scientifically based treatments of neurological disorders readily accessible in low-, middle-, and high-income countries.
Collapse
Affiliation(s)
- Ouada Nebie
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, 59045, Lille, France.
- Alzheimer and Tauopathies, LabEx DISTALZ, LiCEND, 59000, Lille, France.
- NeuroTMULille International Laboratory, Univ. Lille, Lille, France.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Thierry Burnouf
- College of Biomedical Engineering, Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- NeuroTMULille International Laboratory, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
- Brain and Consciousness Research Centre, Taipei Medical University Shuang-Ho Hospital, New Taipei City, 23561, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
19
|
Tseng KY, Wang HC, Cheng KF, Wang YH, Chang LL, Cheng KI. Sciatic Nerve Intrafascicular Injection Induces Neuropathy by Activating the Matrix Modulators MMP-9 and TIMP-1. Front Pharmacol 2022; 13:859982. [PMID: 35694244 PMCID: PMC9178525 DOI: 10.3389/fphar.2022.859982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Peripheral nerve block (PNB) under echo guidance may not prevent intrafascicular anesthetic injection-induced nerve injury. This study investigated whether unintended needle piercing alone, or the intrafascicular nerve injectant could induce neuropathy. Methods: 120 adult male Sprague-Dawley rats were divided into four groups: 1) group S, only the left sciatic nerve was exposed; 2) group InF-P, the left sciatic nerve was exposed and pierced with a 30 G needle; 3) group InF-S, left sciatic nerve was exposed and injected with saline (0.9% NaCl 30 µL); 4) group InF-R, left sciatic nerve was exposed and injected with 0.5% (5 mg/mL, 30 µL) ropivacaine. Behaviors of thermal and mechanical stimuli responses from hindpaws, sciatic nerve vascular permeability and tight junction protein expression, and macrophage infiltration were assessed. Pro-inflammatory cytokine expression and TIMP-1 and MMP-9 activation at the injection site and the swollen, and distal sites of the sciatic nerve were measured by cytokine array, western blotting, and immunofluorescence of POh14 and POD3. Results: Intrafascicular saline and ropivacaine into the sciatic nerve, but not needle piercing alone, significantly induced mechanical allodynia that lasted for seven days. In addition, the prior groups increased vascular permeability and macrophage infiltration, especially in the swollen site of the sciatic nerve. Thermal hypersensitivity was induced and lasted for only 3 days after intrafascicular saline injection. Obvious upregulation of TIMP-1 and MMP-9 on POh6 and POh14 occurred regardless of intrafascicular injection or needle piercing. Compared to the needle piercing group, the ratio of MMP-9/TIMP-1 was significantly higher in the intrafascicular injectant groups at the injected and swollen sites of the sciatic nerve. Although no gross changes in the expressions of tight junction proteins (TJPs) claudin-5 and ZO-1, the TJPs turned to apparent fragmentation and fenestration-like degenerative change in swollen endothelial cells and thickened microvessels. Conclusion: Intrafascicular nerve injection is a distinct mechanism that induces neuropathy. It is likely that the InF nerve injection-induced neuropathy was largely due to dramatic, but transient, increases in enzymatic activities of MMP-9 and activating TIMP-1 in the operated nerves. The changes in enzymatic activities then contributed to certain levels of extracellular matrix degradation, which leads to increases in endoneurial vascular permeability.
Collapse
Affiliation(s)
- Kuang-Yi Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Chen Wang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kai-Feng Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsuan Wang
- Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Lin-Li Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Microbiology and Immunology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Hiroshima Y, Oyama Y, Sawasaki K, Nakamura M, Kimura N, Kawahito K, Fujie H, Sakamoto N. A Compressed Collagen Construct for Studying Endothelial-Smooth Muscle Cell Interaction Under High Shear Stress. Ann Biomed Eng 2022; 50:951-963. [PMID: 35471673 DOI: 10.1007/s10439-022-02972-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
The coculture of vascular endothelial cells (ECs) on collagen gels containing smooth muscle cells (SMCs) has been carried out to investigate cellular interactions associated with blood vessel pathophysiology under wall shear stress (WSS) conditions. However, due to a lack of gel stiffness, the previous collagen gel coculture constructs are difficult to use for pathologic higher WSS conditions. Here, we newly constructed a coculture model with centrifugally compressed cell-collagen combined construct (C6), which withstands higher WSS conditions. The elastic modulus of C6 was approximately 6 times higher than that of the uncompressed collagen construct. The level of α-smooth muscle actin, a contractile SMC phenotype marker observed in healthy arteries, was elevated in C6 compared with that of the uncompressed construct, and further increased by exposure to a physiological level WSS of 2 Pa, but not by a pathological level of 20 Pa. WSS conditions of 2 and 20 Pa also induced different expression ratios of matrix metalloproteinases and their inhibitors in the C6 coculture model but did not in monocultured ECs and SMCs. The C6 coculture model will be a powerful tool to investigate interactions between ECs and SMCs under pathologically high WSS conditions.
Collapse
Affiliation(s)
- Yuya Hiroshima
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yuki Oyama
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Kaoru Sawasaki
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Masanori Nakamura
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya, 466-8555, Japan
| | - Naoyuki Kimura
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Amanuma 1-847, Omiya, Saitama, 330-834, Japan
| | - Koji Kawahito
- Department of Cardiovascular Surgery, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi, 329-0498, Japan
| | - Hiromichi Fujie
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan
| | - Naoya Sakamoto
- Department of Mechanical Systems Engineering, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan. .,Research Center for Medicine-Engineering Collaboration, Tokyo Metropolitan University, Minami-Osawa 1-1, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
21
|
Liu R, Dai M, Gong G, Chen M, Cao C, Wang T, Hou Z, Shi Y, Guo J, Zhang Y, Xia X. The role of extracellular matrix on unfavorable maternal–fetal interface: focusing on the function of collagen in human fertility. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00087-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AbstractExtracellular matrix (ECM) is characterized as widespread, abundant, and pluripotent. Among ECM members, collagen is widely accepted as one of the most prominent components for its essential structural property that can provide a scaffold for other components of ECM and the rich biological functions, which has been extensively used in tissue engineering. Emerging evidence has shown that the balance of ECM degradation and remodeling is vital to regulations of maternal–fetal interface including menstrual cycling, decidualization, embryo implantation and pregnancy maintenance. Moreover, disorders in these events may eventually lead to failure of pregnancy. Although the improvement of assisted conception and embryo culture technologies bring hope to many infertile couples, some unfavorable outcomes, such as recurrent implantation failure (RIF), recurrent pregnancy loss (RPL) or recurrent miscarriage (RM), keep troubling the clinicians and patients. Recently, in vitro three-dimensional (3D) model mimicking the microenvironment of the maternal–fetal interface is developed to investigate the physiological and pathological conditions of conception and pregnancy. The progress of this technology is based on clarifying the role of ECM in the endometrium and the interaction between endometrium and conceptus. Focusing on collagen, the present review summarized the degradation and regulation of ECM and its role in normal menstruation, endometrium receptivity and unsatisfying events occurring in infertility treatments, as well as the application in therapeutic approaches to improve pregnancy outcomes. More investigations about ECM focusing on the maternal–fetal interface interaction with mesenchymal stem cells or local immunoregulation may inspire new thoughts and advancements in the clinical application of infertility treatments.
Graphical abstract
Collapse
|
22
|
Esfandiari G, Ghasempour G, Kakavandi N, Soleimani A, Rahimi B, Bahraini E, Najafi M, Khosravi M. A motif in metallopeptidase inhibitor decreases effectively the activity of macrophage metalloproteinases. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164619666220304162545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
The tissue remodeling process and cellular migration relate to the activities of matrix metalloproteinases (MMPs). The aim of this study was to investigate the effects of a predicted motif from TIMPs on the MMP-2 and MMP-9 activities secreted from the differentiated macrophages.
Methods and Materials:
The monocytes were isolated from the healthy individuals by RosetteSep kit and were differentiated into macrophages using M-CSF. A 4-amino acid motif (TCAP) was predicted using bioinformatics tools. Zymography technique was applied for the measurement of MMP activities. The docking studies were also investigated between MMPs, tetrapeptide, and Batimastat.
Results:
The TCAP inhibited significantly the differentiated macrophage MMP-2 and MMP-9 activities (p=0.0001and p=0.01, respectively). The docking results suggested the some MMP amino acids are involved with both tetrapeptide (TCAP), and Batimastat,
Conclution:
The data showed that the small motif (TCAP) of TIMPs inhibits effectively the MMP-2 activity.
Collapse
Affiliation(s)
- Golnaz Esfandiari
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Naser Kakavandi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Soleimani
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Borhan Rahimi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Bahraini
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Khosravi
- Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Escalona RM, Kannourakis G, Findlay JK, Ahmed N. Expression of TIMPs and MMPs in Ovarian Tumors, Ascites, Ascites-Derived Cells, and Cancer Cell Lines: Characteristic Modulatory Response Before and After Chemotherapy Treatment. Front Oncol 2022; 11:796588. [PMID: 35047406 PMCID: PMC8762252 DOI: 10.3389/fonc.2021.796588] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Background The tissue inhibitors of metalloproteinase (TIMPs) and their associated metalloproteinase (MMPs) are essential regulators of tissue homeostasis and are essential for cancer progression. This study analyzed the expression of TIMP-1,-2,-3 and the associated MMPs (MMP-2,-9,-11,-14) in different Stages, Grades and World Health Organization (WHO) classifications of serous ovarian tumors, ascites, ascites-derived cells from chemo-naïve (CN) and relapsed (CR) patients, and in ovarian cancer cell lines. The status of TIMPs and associated MMPs in response to chemotherapy treatment was assessed in cancer cell lines; TCGA data was interrogated to gauge TIMPs and associated MMPs as prognostic and platinum-response indicators. Methods The levels of TIMP-1, -2 and -3 were assessed by immunohistochemistry. The mRNA expression of TIMPs and MMPs was quantified by real time PCR (qRT-PCR). The chemosensitivity (IC50 values) to Cisplatin or Paclitaxel in cell lines was evaluated by MTT assay. The levels of TIMPs in ascites and cell lysates were analyzed by an ELISA assay. Results The expression of TIMP-2 was significantly upregulated in Type 2 compared to Type 1 tumors and normal/benign ovarian tissues. TIMP-3 expression was significantly enhanced in Stage III, Grade 3 and Type 2 tumors compared to normal/benign ovarian tissues. The mRNA expression of MMP-9,-11 and -14 was significantly upregulated in Stage IV compared to normal/benign ovarian tissues. The expression of TIMP-1 was highest, followed by TIMP-2 and then TIMP-3 in CN ascites. At the cellular level, TIMP-2 mRNA expression was significantly higher in CN compared to CR epithelial cells in patients. The expression of TIMP-1 and -2, MMPs and cancer stem cells (CSCs) were upregulated in response to chemotherapy treatments in cancer cell lines. Interrogation of the TCGA dataset suggests shifts in platinum responses in patients consistent with genetic alterations in TIMP-2, -3 and MMP-2, -11 genes in tumors; and decreased overall survival (OS) and progression-free survival (PFS) in patients with altered MMP-14 genes. Conclusions TIMPs and related MMPs are differentially expressed in serous ovarian tumors, ascites, ascites-derived cells and ovarian cancer cell lines. Chemotherapy treatment modulates expression of TIMPs and MMPs in association with increased expression of genes related to cancer stem cells.
Collapse
Affiliation(s)
- Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| | - Jock K Findlay
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, Australia.,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, Australia.,Centre for Reproductive Health, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Translational Medicine, Monash University, Melbourne, VIC, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, Australia
| |
Collapse
|
24
|
Jin D, Yang S, Wu S, Yin M, Kuang H. A functional PVA aerogel-based membrane obtaining sutureability through modified electrospinning technology and achieving promising anti-adhesion effect after cardiac surgery. Bioact Mater 2021; 10:355-366. [PMID: 34901552 PMCID: PMC8636782 DOI: 10.1016/j.bioactmat.2021.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/20/2022] Open
Abstract
Pericardial barrier destruction, inflammatory cell infiltration, and fibrous tissue hyperplasia, trigger adhesions after cardiac surgery. There are few anti-adhesion materials that are both functional and sutureable for pericardial reconstruction. Besides, a few studies have reported on the mechanism of preventing pericardial adhesion. Herein, a functional barrier membrane with sutureability was developed via a modified electrospinning method. It was composed of poly(l-lactide-co-caprolactone) (PLCL) nanofibers, poly(vinyl alcohol) (PVA) aerogel, and melatonin, named PPMT. The PPMT had a special microstructure manifested as a staggered arrangement of nanofibers on the surface and a layered macroporous aerogel structure in a cross-section. Besides providing the porosity and hydrophilicity obtained from PVA, the structure also had suitable mechanical properties for stitching due to the addition of PLCL nanofibers. Furthermore, it inhibited the proliferation of fibroblasts by suppressing the activation of Fas and P53, and achieved anti-inflammatory effects by affecting the activity of inflammatory cells and reducing the release of pro-inflammatory factors, such as interleukin 8 (IL-8) and tumor necrosis factor α (TNF-α). Finally, in vivo transplantation showed that it up-regulated the expression of matrix metalloproteinase-1 (MMP1) and tissue inhibitor of metalloproteinase-1 (TIMP1), and down-regulated the expression of Vinculin and transforming growth factor β (TGF-β) in the myocardium, thereby reducing the formation of adhesions. Collectively, these results demonstrate a great potential of PPMT membrane for practical application to anti-adhesion. A functional PVA aerogel-based membrane (PPMT) obtained sutureability through modified electrospinning technology. The primary mechanism to anti-adhesion of PPMT membrane was explored. Promising anti-adhesion effect of PPMT membrane was accomplished in pericardium reconstruction in rabbit.
Collapse
Affiliation(s)
- Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Shuofei Yang
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, People's Republic of China
| | - Haizhu Kuang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, 518001, Guangdong Province, People's Republic of China
| |
Collapse
|
25
|
Li M, Ning N, Liu Y, Li X, Mei Q, Zhou J, Huang Q, Xiang W, Zhang L, Xu X. The potential of Zishen Yutai pills to facilitate endometrial recovery and restore fertility after induced abortion in rats. PHARMACEUTICAL BIOLOGY 2021; 59:1505-1516. [PMID: 34711116 PMCID: PMC8555532 DOI: 10.1080/13880209.2021.1993272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Abortions damage the endometrium in women. Currently, therapeutic options for endometrial recovery are limited. Zishen Yutai Pill (ZYP) was found to promote endometrial blood supply as a traditional Chinese medicine. However, whether ZYP promotes endometrial recovery post-abortion has not yet been explored. OBJECTIVE This study evaluated the role of ZYP in rat endometrial recovery after induced abortion and explored its mechanism of action. MATERIALS AND METHODS Sprague-Dawley rats were divided into three groups: no-operation group, control group, and ZYP group. The rats in the control and ZYP group were induced abortion, and then treated with normal saline or ZYPs, respectively, for 1-3 oestrous cycles. Morphological changes in the endometrium were examined. Expression levels of the factors related to endometrial recovery were analyzed. The duration of this study was almost seven months. RESULTS The endometrial thickness (7.3 ± 0.17 mm) and number of glands (5.5 ± 0.20) increased significantly in the ZYP group compared with those in the control group (5.5 ± 0.15 mm and 3.5 ± 0.18; p < 0.05). Fibrosis of the endometrium was ameliorated by ZYP administration (45 ± 6% vs. 58 ± 7%; p < 0.05). ZYPs treatment increased the expression of VEGF, ER, MMP-9, LIF, and HB-EGF, but decreased TGF-β expression. Moreover, the average number of pups in the ZYP group (9.0 ± 1.5) was greater than that in the control (4 ± 1.3). DISCUSSION AND CONCLUSION ZYPs accelerate endometrial recovery and restored fertility in rats, suggesting its potential to promote human endometrial repair.
Collapse
Affiliation(s)
- Mianmian Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Ning
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Yu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaohui Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiaojuan Mei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiebin Zhou
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Qiuling Huang
- Guangzhou Baiyunshan Zhongyi Pharmaceutical Company Limited, Guangzhou, Guangdong, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoyan Xu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Kuźniarz K, Luchowska-Kocot D, Tomaszewski T, Kurzepa J. Role of matrix metalloproteinases and their tissue inhibitors in the pathological mechanisms underlying maxillofacial cystic lesions. Biomed Rep 2021; 15:65. [PMID: 34155449 PMCID: PMC8212445 DOI: 10.3892/br.2021.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 12/18/2022] Open
Abstract
Cystic lesions are considered to be one of the most common pathologies of the maxillofacial region, and matrix metalloproteinases (MMPs) may represent potential etiological factors. The aim of the present study was to elucidate the role of MMP-2 and MMP-9, and their endogenous tissue inhibitors, tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, respectively, in the pathogenesis of maxillofacial cystic lesions. A total of 25 patients diagnosed with radicular cysts (RCs; n=20), dentigerous cysts (n=3) and retention cysts (RtCs; n=7) were enrolled in the present study. Gelatin zymography was performed to assess the gelatinolytic activity of MMP-2 and MMP-9, and commercial ELISA kits were used to determine TIMP-1 and TIMP-2 concentrations. Gelatin zymography revealed the presence of both MMP-2 and MMP-9 in all types of samples analyzed. An increase in MMP-9 activity, TIMP-1 concentration and MMP-9/TIMP-1 ratio was observed in the fluid obtained from RCs compared with that obtained from RtCs. In conclusion, MMP-9 may be involved in the pathogenesis of RCs, whereas the activity of MMP-2 in the wall of RtCs was low, and this gelatinase did not appear to significantly affect the development of this type of lesion.
Collapse
Affiliation(s)
- Krystian Kuźniarz
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | | | - Tomasz Tomaszewski
- Department of Maxillofacial Surgery, Medical University of Lublin, Lublin 20-081, Poland
| | - Jacek Kurzepa
- Department of Medical Chemistry, Medical University of Lublin, Lublin 20-081, Poland
| |
Collapse
|
27
|
Kuraoka M, Aoki Y, Takeda S. Development of outcome measures according to dystrophic phenotypes in canine X-linked muscular dystrophy in Japan. Exp Anim 2021; 70:419-430. [PMID: 34135266 PMCID: PMC8614006 DOI: 10.1538/expanim.21-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked lethal muscle disorder characterized by primary muscle degeneration. Therapeutic strategies for DMD have been extensively explored, and some are in the stage of human clinical trials. Along with the development of new therapies, sensitive outcome measures are needed to monitor the effects of new treatments. Therefore, we investigated outcome measures such as biomarkers and motor function evaluation in a dystrophic model of beagle dogs, canine X-linked muscular dystrophy in Japan (CXMDJ). Osteopontin (OPN), a myogenic inflammatory cytokine, was explored as a potential biomarker in dystrophic dogs over the disease course. The serum OPN levels of CXMDJ dystrophic dogs were elevated, even in the early disease phase, and this could be related to the presence of regenerating muscle fibers; as such, OPN would be a promising biomarker for muscle regeneration. Next, accelerometry, which is an efficient method to quantify performance in validated tasks, was used to evaluate motor function longitudinally in dystrophic dogs. We measured three-axis acceleration and angular velocity with wireless hybrid sensors during gait evaluations. Multiple parameters of acceleration and angular velocity showed notedly lower values in dystrophic dogs compared with wild-type dogs, even at the onset of muscle weakness. These parameters accordingly decreased with exacerbation of clinical manifestations along with the disease course. Multiple parameters also indicated gait abnormalities in dystrophic dogs, such as a waddling gait. These outcome measures could be applicable in clinical trials of patients with DMD or other muscle disorders.
Collapse
Affiliation(s)
- Mutsuki Kuraoka
- Laboratory of Experimental Animal Science, Nippon Veterinary and Life Science University.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry
| | - Shin'ichi Takeda
- National Institute of Neuroscience, National Center of Neurology and Psychiatry
| |
Collapse
|
28
|
Moin ASM, Sathyapalan T, Diboun I, Atkin SL, Butler AE. Identification of macrophage activation-related biomarkers in obese type 2 diabetes that may be indicative of enhanced respiratory risk in COVID-19. Sci Rep 2021; 11:6428. [PMID: 33742062 PMCID: PMC7979696 DOI: 10.1038/s41598-021-85760-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hyperactivation of the immune system through obesity and diabetes may enhance infection severity complicated by Acute Respiratory Distress Syndrome (ARDS). The objective was to determine the circulatory biomarkers for macrophage activation at baseline and after serum glucose normalization in obese type 2 diabetes (OT2D) subjects. A case-controlled interventional pilot study in OT2D (n = 23) and control subjects (n = 23). OT2D subjects underwent hyperinsulinemic clamp to normalize serum glucose. Plasma macrophage-related proteins were determined using Slow Off-rate Modified Aptamer-scan plasma protein measurement at baseline (control and OT2D subjects) and after 1-h of insulin clamp (OT2D subjects only). Basal M1 macrophage activation was characterized by elevated levels of M1 macrophage-specific surface proteins, CD80 and CD38, and cytokines or chemokines (CXCL1, CXCL5, RANTES) released by activated M1 macrophages. Two potent M1 macrophage activation markers, CXCL9 and CXCL10, were decreased in OT2D. Activated M2 macrophages were characterized by elevated levels of plasma CD163, TFGβ-1, MMP7 and MMP9 in OT2D. Conventional mediators of both M1 and M2 macrophage activation markers (IFN-γ, IL-4, IL-13) were not altered. No changes were observed in plasma levels of M1/M2 macrophage activation markers in OT2D in response to acute normalization of glycemia. In the basal state, macrophage activation markers are elevated, and these reflect the expression of circulatory cytokines, chemokines, growth factors and matrix metalloproteinases in obese individuals with type 2 diabetes, that were not changed by glucose normalisation. These differences could potentially predispose diabetic individuals to increased infection severity complicated by ARDS.
Clinical trial reg. no: NCT03102801; registration date April 6, 2017.
Collapse
Affiliation(s)
- Abu Saleh Md Moin
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | | | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland Bahrain, Adliya, Kingdom of Bahrain
| | - Alexandra E Butler
- Diabetes Research Center (DRC), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar.
| |
Collapse
|
29
|
Das N, Benko C, Gill SE, Dufour A. The Pharmacological TAILS of Matrix Metalloproteinases and Their Inhibitors. Pharmaceuticals (Basel) 2020; 14:ph14010031. [PMID: 33396445 PMCID: PMC7823758 DOI: 10.3390/ph14010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) have been demonstrated to have both detrimental and protective functions in inflammatory diseases. Several MMP inhibitors, with the exception of Periostat®, have failed in Phase III clinical trials. As an alternative strategy, recent efforts have been focussed on the development of more selective inhibitors or targeting other domains than their active sites through specific small molecule inhibitors or monoclonal antibodies. Here, we present some examples that aim to better understand the mechanisms of conformational changes/allosteric control of MMPs functions. In addition to MMP inhibitors, we discuss unbiased global approaches, such as proteomics and N-terminomics, to identify new MMP substrates. We present some examples of new MMP substrates and their implications in regulating biological functions. By characterizing the roles and substrates of individual MMP, MMP inhibitors could be utilized more effectively in the optimal disease context or in diseases never tested before where MMP activity is elevated and contributing to disease progression.
Collapse
Affiliation(s)
- Nabangshu Das
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
| | - Colette Benko
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, Foothills Hospital, 3330 Hospital Dr, Calgary, AB T2N 4N1, Canada
| | - Sean E. Gill
- Centre for Critical Illness Research, Victoria Research Labs, Lawson Health Research Institute, A6-134, London, ON N6A 5W9, Canada;
- Division of Respirology, Department of Medicine, Western University, London, ON N6A 5W9, Canada
| | - Antoine Dufour
- Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone and Join Healthy, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, Foothills Hospital, 3330 Hospital Dr, Calgary, AB T2N 4N1, Canada
- Correspondence:
| |
Collapse
|
30
|
Gupta N, Bishnoi A, Mathew D, Arora A, Handa S, Kaur J, De D, Pal A. Assoziation hypertropher Post‐Akne‐Narben mit Einzelnukleotid‐Polymorphismus (rs243865) im
Matrix‐Metalloproteinase‐2‐
Gen. J Dtsch Dermatol Ges 2020; 18:1426-1436. [PMID: 33373159 DOI: 10.1111/ddg.14338_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2020] [Indexed: 11/28/2022]
Abstract
HINTERGRUND UND ZIEL Bei Akne wurde eine abweichende Gewebeexpression von Matrix-Metalloproteinasen beobachtet. Ziel unserer Studie war es, die Bedeutung von Polymorphismen einzelner Nukleotide (single nucleotide polymorphisms, SNPs) in MMP-2 (-1306 C/T, rs243865) und TIMP-2 (-418 G/C, rs8179090) bei Akne und Post-Akne-Narben zu untersuchen. PATIENTEN UND METHODEN 512 Patienten (169 mit Akne ohne Narbenbildung, 319 mit atrophen Aknenarben, 24 mit hypertrophen Aknenarben) und 161 gleichaltrige Kontrollen wurden nach Erhalt der schriftlichen Einwilligungserklärung aus der Ambulanz der Hautklinik in die Studie aufgenommen. Zur Genotypisierung mittels Polymerasekettenreaktion-Restriktionsfragmentlängenpolymorphismus (PCR-RFLP) wurde venöses Blut (5 ml) entnommen. Der Schweregrad von Akne und Akne-bedingter Narbenbildung wurde bestimmt. ERGEBNISSE Männer hatten ein deutlich erhöhtes Risiko schwere Akne (p = 0,012), Akne außerhalb des Gesichts (p = 0,047) und Aknenarben außerhalb des Gesichts (p = 0,0001) zu entwickeln. Entzündliche Akne korrelierte positiv mit dem Schweregrad der Narbenbildung (p = 0,001). Die Wahrscheinlichkeit für die Bildung hypertropher Narben war bei Personen mit homozygotem CC-Genotyp von MMP-2 (-1306 C/T) gegenüber Kontrollen nicht verändert (Faktor 1,0; p = 0,05; 95 %-KI: 0,7-1,6), jedoch gegenüber Personen mit Akne ohne Narbenbildung um den Faktor 7,8 (p = 0,047; 95 %-KI: 1,0-59,9) und gegenüber Personen mit atrophen Narben um den Faktor 8,2 (p = 0,041; 95 %-KI: 1,1-59,9) erhöht. SCHLUSSFOLGERUNGEN Es wurde eine signifikante Assoziation zwischen der Bildung hypertropher Post-Akne-Narben und dem CC-Genotyp von MMP-2 (-1306 C/T) beobachtet.
Collapse
Affiliation(s)
- Navya Gupta
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Don Mathew
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjot Arora
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipankar De
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
Gupta N, Bishnoi A, Mathew D, Arora A, Handa S, Kaur J, De D, Pal A. Hypertrophic post-acne scarring is associated with a single nucleotide polymorphism (rs243865) in the matrix metalloproteinase-2 gene. J Dtsch Dermatol Ges 2020; 18:1426-1435. [PMID: 33373134 DOI: 10.1111/ddg.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/16/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Aberrant tissue expression of matrix metalloproteinases has been observed in acne. Our objective was to study the relevance of MMP-2 (-1306 C/T, rs243865) and TIMP-2 (-418 G/C, rs8179090) single nucleotide polymorphisms (SNP) in acne and post-acne scarring. PATIENTS AND METHODS 512 patients (169 having acne without scarring, 319 having atrophic acne scarring, 24 having hypertrophic acne scarring) and 161 age-matched controls were recruited from the Dermatology Outpatient Department after obtaining informed written consent. Venous blood (5 ml) was collected for genotyping by Polymerase Chain Reaction (PCR)-Restriction Fragment Length Polymorphism (RFLP) method. The severity of acne and acne-scarring were graded. RESULTS Males had a significantly increased risk of developing severe acne (P = 0.012), extra-facial acne (P = 0.047) and extra-facial acne scarring (P = 0.0001). The presence of inflammatory acne positively correlated with severity of scarring (P = 0.001). Subjects with a homozygous CC genotype of MMP-2 (-1306 C/T) had 1.0, 7.8 and 8.2 times the odds of developing hypertrophic scarring when compared to controls (P = 0.05, 95 % CI: 0.7-1.6), subjects having acne without scarring (P = 0.047, 95 % CI: 1.0-59.9) and subjects having atrophic scarring, respectively (P = 0.041, 95 % CI: 1.1-59.9). CONCLUSIONS A significant association was observed between hypertrophic post-acne scarring and the CC genotype of MMP-2 (-1306 C/T).
Collapse
Affiliation(s)
- Navya Gupta
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Don Mathew
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amanjot Arora
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Handa
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dipankar De
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
32
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
33
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 662] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
34
|
Wang L, Zhang CG, Jia YL, Hu L. Tissue Inhibitor of Metalloprotease-1 (TIMP-1) Regulates Adipogenesis of Adipose-derived Stem Cells (ASCs) via the Wnt Signaling Pathway in an MMP-independent Manner. Curr Med Sci 2020; 40:989-996. [PMID: 33123912 DOI: 10.1007/s11596-020-2265-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Tissue inhibitor of metalloprotease-1 (TIMP-1) is a tissue inhibitor of matrix metalloproteinases (MMPs). It however exerts multiple effects on biological processes, such as cell growth, proliferation, differentiation and apoptosis, in an MMP-independent manner. This study aimed to examine the role of TIMP-1 in adipogenesis of adipose-derived stem cells (ASCs) and the underlying mechanism. We knocked down the TIMP-1 gene in ASCs through lentiviral vectors encoding TIMP-1 small interfering RNA (siRNA), and then found that the knockdown of TIMP-1 in ASCs promoted the adipogenic differentiation of stem cells and inhibited the Wnt/β-catenin signaling pathway in ASCs. We also noted that mutant TIMP-1 without the inhibitory activity on MMPs promoted the activation of Wnt/β-catenin pathway as well as the recombinant wild type TIMP-1 did, which indicated that the effect of TIMP-1 on Wnt/β-catenin pathway was MMP-independent. Our study suggested that TIMP-1 negatively regulated the adipogenesis of ASCs via the Wnt/β-catenin signaling pathway in an MMP-independent manner.
Collapse
Affiliation(s)
- Lu Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen-Guang Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Yu-Lin Jia
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Li Hu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
35
|
Abstract
Ischemic heart disease (IHD) accounts for the majority of heart disease-related deaths worldwide. Ubiquitin (UB), found in all eukaryotic cells, is a highly conserved low molecular weight (~8.5 kDa) protein. A well-known intracellular function of UB is to regulate protein turnover via the UB-proteasome system. UB is a normal constituent of plasma, and elevated levels of UB are observed in the serum of patients under a variety of pathological conditions. Recent studies provide evidence for cardioprotective potential of exogenous UB in the remodeling process of the heart in IHD, including effects on cardiac myocyte apoptosis, inflammatory response, and reorganization of the vasculature and extracellular matrix. This review summarizes functions of UB with an emphasis on the role of exogenous UB in myocardial remodeling in IHD.
Collapse
|
36
|
Baker-Williams AJ, Hashmi F, Budzyński MA, Woodford MR, Gleicher S, Himanen SV, Makedon AM, Friedman D, Cortes S, Namek S, Stetler-Stevenson WG, Bratslavsky G, Bah A, Mollapour M, Sistonen L, Bourboulia D. Co-chaperones TIMP2 and AHA1 Competitively Regulate Extracellular HSP90:Client MMP2 Activity and Matrix Proteolysis. Cell Rep 2020; 28:1894-1906.e6. [PMID: 31412254 DOI: 10.1016/j.celrep.2019.07.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/01/2019] [Accepted: 07/15/2019] [Indexed: 11/26/2022] Open
Abstract
The extracellular molecular chaperone heat shock protein 90 (eHSP90) stabilizes protease client the matrix metalloproteinase 2 (MMP2), leading to tumor cell invasion. Although co-chaperones are critical modulators of intracellular HSP90:client function, how the eHSP90:MMP2 complex is regulated remains speculative. Here, we report that the tissue inhibitor of metalloproteinases-2 (TIMP2) is a stress-inducible extracellular co-chaperone that binds to eHSP90, increases eHSP90 binding to ATP, and inhibits its ATPase activity. In addition to disrupting the eHSP90:MMP2 complex and terminally inactivating MMP2, TIMP2 loads the client to eHSP90, keeping the protease in a transient inhibitory state. Secreted activating co-chaperone AHA1 displaces TIMP2 from the complex, providing a "reactivating" mechanism for MMP2. Gene knockout or blocking antibodies targeting TIMP2 and AHA1 released by HT1080 cancer cells modify their gelatinolytic activity. Our data suggest that TIMP2 and AHA1 co-chaperones function as a molecular switch that determines the inhibition and reactivation of the eHSP90 client protein MMP2.
Collapse
Affiliation(s)
- Alexander J Baker-Williams
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Fiza Hashmi
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Marek A Budzyński
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Gleicher
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alan M Makedon
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Derek Friedman
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Stephanie Cortes
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; College of Medicine, MD Program, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Sara Namek
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Alaji Bah
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
37
|
Szwedowski D, Szczepanek J, Paczesny Ł, Pękała P, Zabrzyński J, Kruczyński J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches. Int J Mol Sci 2020; 21:E5430. [PMID: 32751537 PMCID: PMC7432875 DOI: 10.3390/ijms21155430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Cartilage lesions have a multifactorial nature, and genetic factors are their strongest determinants. As biochemical and genetic studies have dramatically progressed over the past decade, the molecular basis of cartilage pathologies has become clearer. Several homeostasis abnormalities within cartilaginous tissue have been found, including various structural changes, differential gene expression patterns, as well as altered epigenetic regulation. However, the efficient treatment of cartilage pathologies represents a substantial challenge. Understanding the complex genetic background pertaining to cartilage pathologies is useful primarily in the context of seeking new pathways leading to disease progression as well as in developing new targeted therapies. A technology utilizing gene transfer to deliver therapeutic genes to the site of injury is quickly becoming an emerging approach in cartilage renewal. The goal of this work is to provide an overview of the genetic basis of chondral lesions and the different approaches of the most recent systems exploiting therapeutic gene transfer in cartilage repair. The integration of tissue engineering with viral gene vectors is a novel and active area of research. However, despite promising preclinical data, this therapeutic concept needs to be supported by the growing body of clinical trials.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy;
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Przemysław Pękała
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30705 Krakow, Poland;
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jacek Kruczyński
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60512 Poznań, Poland;
| |
Collapse
|
38
|
Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, Zhang J, Chen YE, Sun H, Liang J, Fan J. Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med 2020; 24:4261-4274. [PMID: 32126159 PMCID: PMC7171347 DOI: 10.1111/jcmm.15087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 01/10/2020] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinase‐9 (MMP‐9), or gelatinase B, has been hypothesized to be involved in the progression of atherosclerosis. In the arterial wall, accumulated macrophages secrete considerable amounts of MMP‐9 but its pathophysiological functions in atherosclerosis have not been fully elucidated. To examine the hypothesis that macrophage‐derived MMP‐9 may affect atherosclerosis, we created MMP‐9 transgenic (Tg) rabbits to overexpress the rabbit MMP‐9 gene under the control of the scavenger receptor A enhancer/promoter and examined their susceptibility to cholesterol diet‐induced atherosclerosis. Tg rabbits along with non‐Tg rabbits were fed a cholesterol diet for 16 and 28 weeks, and their aortic and coronary atherosclerosis was compared. Gross aortic lesion areas were significantly increased in female Tg rabbits at 28 weeks; however, pathological examination revealed that all the lesions of Tg rabbits fed a cholesterol diet for either 16 or 28 weeks were characterized by increased monocyte/macrophage accumulation and prominent lipid core formation compared with those of non‐Tg rabbits. Macrophages isolated from Tg rabbits exhibited higher infiltrative activity towards a chemoattractant, MCP‐1 in vitro and augmented capability of hydrolysing extracellular matrix in granulomatous tissue. Surprisingly, the lesions of Tg rabbits showed more advanced lesions with remarkable calcification in both aortas and coronary arteries. In conclusion, macrophage‐derived MMP‐9 facilitates the infiltration of monocyte/macrophages into the lesions thereby enhancing the progression of atherosclerosis. Increased accumulation of lesional macrophages may promote vascular calcification.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Ahmed Bilal Waqar
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Kazutoshi Nishijima
- Bioscience Education-Research Support Center, Akita University, Akita, Japan
| | - Bo Ning
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Shuji Kitajima
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Fumikazu Matsuhisa
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
| | - Lu Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan
| | - Enqi Liu
- Research Institute of Atherosclerotic Disease and Laboratory Animal Center, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Tomonari Koike
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Ying Yu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yuqing Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Huijun Sun
- Department of Pharmacology, Dalian Medical University, Dalian, China
| | - Jingyan Liang
- Research Center for Vascular Biology, School of Medicine, Yangzhou University, Yangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, Japan.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
39
|
Kang YM, Lee SK, Chun YM, Choi YR, Moon SH, Lee HM, Kang HJ. Follistatin Mitigates Myofibroblast Differentiation and Collagen Synthesis of Fibroblasts from Scar Tissue around Injured Flexor Tendons. Yonsei Med J 2020; 61:85-93. [PMID: 31887804 PMCID: PMC6938778 DOI: 10.3349/ymj.2020.61.1.85] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/03/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of FST gene on the inhibition of fibrosis in fibroblastic cells from scar tissue around repaired zone II flexor tendons. MATERIALS AND METHODS Immunohistochemistry was conducted on fibroblast cells transfected with adenovirus-LacZ (Ad-LacZ) as a marker gene (control), or with adenovirus-FST (Ad-FST) as a therapeutic gene. Fibroblast cultures without adenoviral exposure served as controls. RESULTS Fibroblastic cells transfected with Ad-FST demonstrated significant decrease in collagen type I, MMP-1, MMP2, and α-SMA mRNA expressions compared to those transfected with Ad-LacZ. In addition, fibroblastic cells transfected with Ad-FST exhibited significant decrease in MMP-1, TIMP-1, fibronectin, PAI-1, TRPV4, α-SMA, desmin, and PAX7 protein expressions. CONCLUSION Based on these findings, we conclude that FST may be a novel therapeutic strategy for preventing scar adhesions around repaired tendons by inhibiting fibroblasts from differentiating into myofibroblasts, in addition to producing type I collagen and regulating extracellular matrix turnover via the downregulation of MMP-1 and TIMP-1. FST may also decrease contracture of the scar by inhibiting Ca2+-dependent cell contraction.
Collapse
Affiliation(s)
- Young Mi Kang
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Su Keon Lee
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Min Chun
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Rak Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea.
| | - Seong Hwan Moon
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- BK21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hwan Mo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Jung Kang
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
40
|
Rana I, Suphapimol V, Jerome JR, Talia DM, Deliyanti D, Wilkinson-Berka JL. Angiotensin II and aldosterone activate retinal microglia. Exp Eye Res 2019; 191:107902. [PMID: 31884019 DOI: 10.1016/j.exer.2019.107902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 11/13/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022]
Abstract
Microglial cells are important contributors to the neuroinflammation and blood vessel damage that occurs in ischemic retinopathies. We hypothesized that key effectors of the renin-angiotensin aldosterone system, angiotensin II (Ang II) and aldosterone, increase the density of microglia in the retina and stimulate their production of reactive oxygen species (ROS) as well as pro-angiogenic and pro-inflammatory factors. Two animal models were studied that featured up-regulation of Ang II or aldosterone and included transgenic Ren-2 rats which overexpress renin and Ang II in tissues including the retina, and Sprague Dawley rats with ischemic retinopathy and infused with aldosterone. Complementary studies were performed in primary cultures of retinal microglia from neonatal Sprague Dawley rats exposed to hypoxia (0.5% O2) and inhibitors of the angiotensin type 1 receptor (valsartan), the mineralocorticoid receptor (spironolactone) or aldosterone synthase (FAD286). In both in vivo models, the density of ionized calcium-binding adaptor protein-1 labelled microglia/macrophages was increased in retina compared to genetic or vehicle controls. In primary cultures of retinal microglia, hypoxia increased ROS (superoxide) levels as well as the expression of the NADPH oxidase (NOX) isoforms, NOX1, NOX2 and NOX4. The elevated levels of ROS as well as NOX2 and NOX4 were reduced by all of the treatments, and valsartan and FAD286 also reduced NOX1 mRNA levels. A protein cytokine array of retinal microglia revealed that valsartan, spironolactone and FAD286 reduced the hypoxia-induced increase in the potent pro-angiogenic and pro-inflammatory agent, vascular endothelial growth factor as well as the inflammatory factors, CCL5 and interferon γ. Valsartan also reduced the hypoxia-induced increase in IL-6 and TIMP-1 as well as the chemoattractants, CXCL2, CXCL3, CXCL5 and CXCL10. Spironolactone and FAD286 reduced the levels of CXCL2 and CXCL10, respectively. In conclusion, our findings that both Ang II and aldosterone influence the activation of retinal microglia implicates the renin-angiotensin aldosterone system in the pathogenesis of ischemic retinopathies.
Collapse
Affiliation(s)
- Indrajeetsinh Rana
- Department of Immunology and Pathology, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Victoria University, Ballarat Road, Footscray, Victoria, Australia
| | - Varaporn Suphapimol
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Jack R Jerome
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Dean M Talia
- Department of Immunology and Pathology, The Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Devy Deliyanti
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer L Wilkinson-Berka
- Department of Diabetes, The Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
41
|
Dewing JM, Carare RO, Lotery AJ, Ratnayaka JA. The Diverse Roles of TIMP-3: Insights into Degenerative Diseases of the Senescent Retina and Brain. Cells 2019; 9:cells9010039. [PMID: 31877820 PMCID: PMC7017234 DOI: 10.3390/cells9010039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a component of the extracellular environment, where it mediates diverse processes including matrix regulation/turnover, inflammation and angiogenesis. Rare TIMP-3 risk alleles and mutations are directly linked with retinopathies such as age-related macular degeneration (AMD) and Sorsby fundus dystrophy, and potentially, through indirect mechanisms, with Alzheimer's disease. Insights into TIMP-3 activities may be gleaned from studying Sorsby-linked mutations. However, recent findings do not fully support the prevailing hypothesis that a gain of function through the dimerisation of mutated TIMP-3 is responsible for retinopathy. Findings from Alzheimer's patients suggest a hitherto poorly studied relationship between TIMP-3 and the Alzheimer's-linked amyloid-beta (A) proteins that warrant further scrutiny. This may also have implications for understanding AMD as aged/diseased retinae contain high levels of A. Findings from TIMP-3 knockout and mutant knock-in mice have not led to new treatments, particularly as the latter does not satisfactorily recapitulate the Sorsby phenotype. However, recent advances in stem cell and in vitro approaches offer novel insights into understanding TIMP-3 pathology in the retina-brain axis, which has so far not been collectively examined. We propose that TIMP-3 activities could extend beyond its hitherto supposed functions to cause age-related changes and disease in these organs.
Collapse
Affiliation(s)
- Jennifer M. Dewing
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Roxana O. Carare
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - J. Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, MP806, Tremona Road, Southampton SO16 6YD, UK; (J.M.D.); (R.O.C.); (A.J.L.)
- Correspondence: ; Tel.: +44-238120-8183
| |
Collapse
|
42
|
Yu Y, Fang L, Wang S, Li Y, Guo Y, Sun YP. Amphiregulin promotes trophoblast invasion and increases MMP9/TIMP1 ratio through ERK1/2 and Akt signal pathways. Life Sci 2019; 236:116899. [DOI: 10.1016/j.lfs.2019.116899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022]
|
43
|
Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM. TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms. Front Mol Neurosci 2019. [PMID: 31616247 DOI: 10.3389/fnmol.2019.00220/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Unresolved inflammation is a significant predictor for developing chronic pain, and targeting the mechanisms underlying inflammation offers opportunities for therapeutic intervention. During inflammation, matrix metalloproteinase (MMP) activity contributes to tissue remodeling and inflammatory signaling, and is regulated by tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 and -2 have known roles in pain, but only in the context of MMP inhibition. However, TIMP-1 also has receptor-mediated cell signaling functions that are not well understood. Here, we examined how TIMP-1-dependent cell signaling impacts inflammatory hypersensitivity and ongoing pain. We found that hindpaw injection of complete Freund's adjuvant (CFA) increased cutaneous TIMP-1 expression that peaked prior to development of mechanical hypersensitivity, suggesting that TIMP-1 inhibits the development of inflammatory hypersensitivity. To examine this possibility, we injected TIMP-1 knockout (T1KO) mice with CFA and found that T1KO mice exhibited rapid onset thermal and mechanical hypersensitivity at the site of inflammation that was absent or attenuated in WT controls. We also found that T1KO mice exhibited hypersensitivity in adjacent tissues innervated by different sets of afferents, as well as skin contralateral to the site of inflammation. Replacement of recombinant murine (rm)TIMP-1 alleviated hypersensitivity when administered at the site and time of inflammation. Administration of either the MMP inhibiting N-terminal or the cell signaling C-terminal domains recapitulated the antinociceptive effect of full-length rmTIMP-1, suggesting that rmTIMP-1inhibits hypersensitivity through MMP inhibition and receptor-mediated cell signaling. We also found that hypersensitivity was not due to genotype-specific differences in MMP-9 activity or expression, nor to differences in cytokine expression. Administration of rmTIMP-1 prevented mechanical hypersensitivity and ongoing pain in WT mice, collectively suggesting a novel role for TIMP-1 in the attenuation of inflammatory pain.
Collapse
Affiliation(s)
- Brittany E Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Nathan Kozlowski
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Stephen J Crocker
- Department of Neuroscience, UConn Health, Farmington, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States
| | - Erin E Young
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States.,The Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States.,Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kyle M Baumbauer
- School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
44
|
Knight BE, Kozlowski N, Havelin J, King T, Crocker SJ, Young EE, Baumbauer KM. TIMP-1 Attenuates the Development of Inflammatory Pain Through MMP-Dependent and Receptor-Mediated Cell Signaling Mechanisms. Front Mol Neurosci 2019; 12:220. [PMID: 31616247 PMCID: PMC6764257 DOI: 10.3389/fnmol.2019.00220] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 08/30/2019] [Indexed: 12/12/2022] Open
Abstract
Unresolved inflammation is a significant predictor for developing chronic pain, and targeting the mechanisms underlying inflammation offers opportunities for therapeutic intervention. During inflammation, matrix metalloproteinase (MMP) activity contributes to tissue remodeling and inflammatory signaling, and is regulated by tissue inhibitors of metalloproteinases (TIMPs). TIMP-1 and -2 have known roles in pain, but only in the context of MMP inhibition. However, TIMP-1 also has receptor-mediated cell signaling functions that are not well understood. Here, we examined how TIMP-1-dependent cell signaling impacts inflammatory hypersensitivity and ongoing pain. We found that hindpaw injection of complete Freund’s adjuvant (CFA) increased cutaneous TIMP-1 expression that peaked prior to development of mechanical hypersensitivity, suggesting that TIMP-1 inhibits the development of inflammatory hypersensitivity. To examine this possibility, we injected TIMP-1 knockout (T1KO) mice with CFA and found that T1KO mice exhibited rapid onset thermal and mechanical hypersensitivity at the site of inflammation that was absent or attenuated in WT controls. We also found that T1KO mice exhibited hypersensitivity in adjacent tissues innervated by different sets of afferents, as well as skin contralateral to the site of inflammation. Replacement of recombinant murine (rm)TIMP-1 alleviated hypersensitivity when administered at the site and time of inflammation. Administration of either the MMP inhibiting N-terminal or the cell signaling C-terminal domains recapitulated the antinociceptive effect of full-length rmTIMP-1, suggesting that rmTIMP-1inhibits hypersensitivity through MMP inhibition and receptor-mediated cell signaling. We also found that hypersensitivity was not due to genotype-specific differences in MMP-9 activity or expression, nor to differences in cytokine expression. Administration of rmTIMP-1 prevented mechanical hypersensitivity and ongoing pain in WT mice, collectively suggesting a novel role for TIMP-1 in the attenuation of inflammatory pain.
Collapse
Affiliation(s)
- Brittany E Knight
- Department of Neuroscience, UConn Health, Farmington, CT, United States
| | - Nathan Kozlowski
- School of Nursing, University of Connecticut, Storrs, CT, United States
| | - Joshua Havelin
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States
| | - Tamara King
- Center for Excellence in the Neurosciences, University of New England, Biddeford, ME, United States.,Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States.,College of Osteopathic Medicine, University of New England, Biddeford, ME, United States
| | - Stephen J Crocker
- Department of Neuroscience, UConn Health, Farmington, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States
| | - Erin E Young
- School of Nursing, University of Connecticut, Storrs, CT, United States.,Institute for Systems Genomics, UConn Health, Farmington, CT, United States.,The Center for Advancement in Managing Pain, School of Nursing, University of Connecticut, Storrs, CT, United States.,Genetics and Genome Sciences, UConn Health, Farmington, CT, United States
| | - Kyle M Baumbauer
- School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States.,School of Nursing, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
45
|
Carpén T, Sorsa T, Jouhi L, Tervahartiala T, Haglund C, Syrjänen S, Tarkkanen J, Mohamed H, Mäkitie A, Hagström J, Mattila PS. High levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) in the serum are associated with poor prognosis in HPV-negative squamous cell oropharyngeal cancer. Cancer Immunol Immunother 2019; 68:1263-1272. [PMID: 31240326 PMCID: PMC6682571 DOI: 10.1007/s00262-019-02362-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 06/17/2019] [Indexed: 01/19/2023]
Abstract
Background An emerging subset of oropharyngeal squamous cell carcinomas (OPSCC) is caused by HPV. HPV-positive OPSCC has a better prognosis than HPV-negative OPSCC, but other prognostic markers for these two different diseases are scarce. Our aim was to evaluate serum levels and tumor expression of matrix metalloproteinase-8 (MMP-8) and tissue inhibitor of metalloproteinase-1 (TIMP-1) and to assess their prognostic role in HPV-positive and HPV-negative OPSCC. Materials and methods A total of 90 consecutive OPSCC patients diagnosed and treated with curative intent at the Helsinki University Hospital between 2012 and 2016 were included. Serum samples were prospectively collected. An immunofluorometric assay and an enzyme-linked immunosorbent assay were used to determine MMP-8 and TIMP-1 serum concentrations, respectively. HPV status of the tumors was determined using a combination of HPV-DNA genotyping and p16-INK4a immunohistochemistry. The endpoints were overall survival (OS) and disease-free survival (DFS). Results High TIMP-1 serum levels were strongly and independently associated with poorer OS (adjusted HR 14.7, 95% CI 1.8–117.4, p = 0.011) and DFS (adjusted HR 8.7, 95% CI 1.3–57.1, p = 0.024) among HPV-negative patients; this association was not observed in HPV-positive OPSCC. Although TIMP-1 was immunoexpressed in the majority of the tumor tissue samples, the level of immunoexpression was not associated with prognosis, nor did MMP-8 serum levels. Conclusion Our results indicate that serum TIMP-1 levels may serve as an independent prognostic marker for HPV-negative OPSCC patients.
Collapse
Affiliation(s)
- Timo Carpén
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland. .,Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland.,Department of Oral Diseases, Karolinska Institutet, Huddinge, Sweden
| | - Lauri Jouhi
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 41, 00014 HUS, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 440, 00029 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.,Department of Pathology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland
| | - Jussi Tarkkanen
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Hesham Mohamed
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland.,Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska Hospital, 171 76, Stockholm, Sweden.,Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Department of Pathology, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 21, 00014 HUS, Helsinki, Finland.,Research Programs Unit, Translational Cancer Biology, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland
| | - Petri S Mattila
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Helsinki and HUS Helsinki University Hospital, P.O.Box 263, 00029 HUS, Helsinki, Finland
| |
Collapse
|
46
|
Ding X, Cao Y, Xing Y, Ge S, Lin M, Li J. TIMP-1 Mediates Inflammatory and Immune Response to IL-6 in Adult Orbital Xanthogranulomatous Disease. Ocul Immunol Inflamm 2019; 28:288-297. [PMID: 30973282 DOI: 10.1080/09273948.2019.1581227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Purpose: To explore the pathogenesis that TIMP-1 mediated in adult orbital xanthogranulomatous disease (AOXGD), a rare type of non-Langerhans histiocytosis that damages the appearance and quality of life of patientsMethods: We reviewed 22 patients diagnosed with AOXGD based on clinical manifestations and histological analysis, and then investigated the expression of TIMP-1 and IL-6 with q-PCR and IHC in AOXGD tissues and the possible mechanism involved in the induction of TIMP-1 by IL-6.Results: IL-6 and TIMP-1 were significantly increased in AOXGD tissues. IL-6 promoted TIMP-1 production by M1 macrophages by stimulating the phosphorylation of JAK2 and STAT3. Moreover, IL-17 and IFN-γ, the classical markers of Th1 and Th17 cells, were increased in AOXGD.Conclusion: These data implied that the IL6~JAK2/STAT3-TIMP-1 signalling pathway is activated in AOXGD and that adaptive Th1 and Th17 responses are involved in the development of AOXGD.
Collapse
Affiliation(s)
- Xia Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuan Cao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yue Xing
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Ming Lin
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Jin Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, P.R. China.,Department of Ophthalmology, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
47
|
Castruita-De la Rosa C, Garza-Veloz I, Delgado-Enciso I, Olivas-Chavez JC, Cardenas-Vargas E, Rodriguez-Sanchez IP, Francisco Citalan-Madrid A, Ortega-Cisneros V, Isaias Badillo-Almaraz J, Maria Trejo-Ortiz P, Araujo-Espino R, Araujo-Conejo A, de Jesus Jaime-Guzman J, Martinez-Fierro ML. Spontaneous abortion is preceded by an altered serum concentration of matrix metalloproteinases. J Matern Fetal Neonatal Med 2019; 33:4108-4116. [PMID: 30885072 DOI: 10.1080/14767058.2019.1597046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Objective: To evaluate the usefulness of the serum concentration of nine matrix metalloproteinases (MMPs) as biomarkers of spontaneous abortion.Methods: A retrospective nested cohort case-control study was carried out in Zacatecas, Mexico. MMP-1-3, MMP-7-10, and MMP-12-13 were analyzed in serum from women who had spontaneous abortion of unknown causes (n = 7), who suffered abortions attributed to urinary tract infection (n = 7) and from those with healthy pregnancies without complications (controls; n = 20). Protein profiles were determined between 11 and 13 weeks of gestation (GW) using the Bio-Plex Pro Human MMP Panel. Differences in serum MMP concentrations between the study groups and their correlation with clinical findings were evaluated statistically.Results: There were differences in serum concentrations of MMP-9 between groups of spontaneous abortion of unknown cause (13.2 ± 7.5 ng/µL), abortion attributed to urinary tract infection (11.6 ± 5.8 ng/µL) and the controls (11.8 ± 16.5 ng/µL) (p = .022). Compared with controls, higher serum concentrations of MMP-8, MMP-9, and MMP-10 were observed in the group of spontaneous abortions of unknown causes (p value < .05). A negative correlation between MMP-8 and MMP-9 and urine density was also identified (r = -0.949, p value = .0167; and r = -0.947, p = .0167).Conclusions: Elevated serum concentrations of MMP-8, MMP-9, and MMP-10 were associated and preceded by the appearance of spontaneous interruption of pregnancy of unknown causes. Our results support the hypothesis that altered MMP modulation may be related with the pathogenesis of spontaneous abortion.
Collapse
Affiliation(s)
- Claudia Castruita-De la Rosa
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | | | - Juan C Olivas-Chavez
- Servicios de Salud de Zacatecas, Hospital de la Mujer Zacatecana, Zacatecas, Mexico
| | - Edith Cardenas-Vargas
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico.,Servicios de Salud de Zacatecas, Hospital General Zacatecas "Luz González Cosío", Zacatecas, Mexico
| | - Iram Pablo Rodriguez-Sanchez
- Laboratorio de Fisiología Molecular y Estructural, Facultad de Ciencias Biologicas, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Ali Francisco Citalan-Madrid
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Vicente Ortega-Cisneros
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Jose Isaias Badillo-Almaraz
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | | | - Roxana Araujo-Espino
- Unidad Academica de Enfermeria, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| | - Arturo Araujo-Conejo
- Servicios de Salud de Zacatecas, Hospital General Zacatecas "Luz González Cosío", Zacatecas, Mexico
| | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Academica de Medicina Humana y Ciencias de la Salud, Universidad Autonoma de Zacatecas, Zacatecas, Mexico
| |
Collapse
|
48
|
Ko JH, Kang YM, Yang JH, Kim JS, Lee WJ, Kim SH, Yang IH, Moon SH. Regulation of MMP and TIMP expression in synovial fibroblasts from knee osteoarthritis with flexion contracture using adenovirus-mediated relaxin gene therapy. Knee 2019; 26:317-329. [PMID: 30770167 DOI: 10.1016/j.knee.2019.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/07/2018] [Accepted: 01/17/2019] [Indexed: 02/02/2023]
Abstract
PURPOSE The aim of this study was to investigate the effects of relaxin (RLN) expression on fibrosis inhibition in synovial fibroblasts. MATERIALS AND METHODS Tissue cells from patients with knee osteoarthritis and >30° flexion contractures were utilised. Synovial fibroblasts were activated by TGF-β1 (two nanograms per millilitre) and then exposed to Ad-RLN as a therapeutic gene, adenovirus-lacZ construct as a marker gene, and SB505124 as an inhibitor for TGF-β1 signal for 48 h. The mRNA expression levels of collagens and MMPs were analysed by reverse transcription-polymerase chain reaction. Also, fibronectin, phosphorylation of Smad2 and ERK1/2, alpha smooth muscle actin, TIMP-1, TIMP-2, MMP-1 and MMP-13 levels were estimated using western blotting, and the total collagen synthesis was assayed. RESULTS Ad-RLN-transduced synovial fibroblasts demonstrated 17%, 13%, and 48% reduction in collagen I, III and IV mRNA expression levels, respectively, and a 40% decrease in MMP-3, MMP-8, 20% decrease in MMP-9, MMP-13 mRNA expression, compared to non-Ad-RLN-transduced cells. In protein expression, Ad-RLN-transduced synovial fibroblasts demonstrated 46% increase in MMP-1, 5% decrease in MMP-2, 51% increase in MMP-9, and 22% increase in MMP-13, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts showed a 25% decrease in TIMP-1 and 65% decrease in TIMP-2 protein expression at 48h, compared to non-Ad-RLN-transduced cells. Ad-RLN-transduced synovial fibroblasts demonstrated a 45% inhibition of fibronectin in protein expression level and 38% decrease in total collagen synthesis at 48h, compared to non-Ad-RLN-transduced cells. CONCLUSION Relaxin expression exerted anti-fibrogenic effects on synovial fibroblasts from patients with knee osteoarthritis and flexion contractures. Therefore, relaxin could be an alternative therapeutic agent during the initial stage of osteoarthritis with flexion contracture by exerting its anti-fibrogenic effects.
Collapse
Affiliation(s)
- Jae Han Ko
- Department of Orthopaedic Surgery, Yonsei Barun Orthopaedic Surgery Clinic, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Young Mi Kang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Jae Ho Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ji Sup Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea; Department of Orthopaedic Surgery, Catholic Kwandong University College of Medicine, Incheon, Republic of Korea
| | - Won Jai Lee
- Department of Plastic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Sang Ho Kim
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Ick Hwan Yang
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea
| | - Seong Hwan Moon
- Department of Orthopaedic Surgery, Yonsei University, College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
49
|
The Activity of Matrix Metalloproteinases (MMP-2, MMP-9) and Their Tissue Inhibitors (TIMP-1, TIMP-3) in the Cerebral Cortex and Hippocampus in Experimental Acanthamoebiasis. Int J Mol Sci 2018; 19:ijms19124128. [PMID: 30572657 PMCID: PMC6321078 DOI: 10.3390/ijms19124128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The pathological process occurring within the central nervous system (CNS) as a result of the infection by Acanthamoeba spp. is not fully understood. Therefore, the aim of this study was to determine whether Acanthamoeba spp. may affect the levels of matrix metalloproteinases (MMP-2,-9), their tissue inhibitors (TIMP-1,-3) and MMP-9/TIMP-1, MMP-2/TIMP-3 ratios in the cerebral cortex and hippocampus, in relation to the host’s immunological status. Our results showed that Acanthamoeba spp. infection can change the levels of MMP and TIMP in the CNS and may be amenable targets for limiting amoebic encephalitis. The increase in the activity of matrix metalloproteinases during acanthamoebiasis may be primarily the result of inflammation process, probably an increased activity of proteolytic processes, but also (to a lesser extent) a defense mechanism preventing the processes of neurodegeneration.
Collapse
|
50
|
Tang Y, Fan M, Choi YJ, Yu Y, Yao G, Deng Y, Moon SH, Kim EK. Sika deer (Cervus nippon) velvet antler extract attenuates prostate cancer in xenograft model. Biosci Biotechnol Biochem 2018; 83:348-356. [PMID: 30381032 DOI: 10.1080/09168451.2018.1537775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study determines whether antler extract (AE) possesses inhibitory effects in a prostate cancer (PC) xenograft model and explores the underlying mechanism. After therapeutic intervention for two weeks, AE significantly inhibited prostate cancer xenograft tumor growth by 65.08%, and prostate-specific antigen (PSA) and serum dihydrotestosterone (DHT) levels. However, AE increased the serum testosterone level compared to the vehicle control group. Furthermore, our investigation of the inhibitory effects on angiogenesis and epithelial-to-mesenchymal transition (EMT)-related genes revealed that AE downregulated matrix metalloproteinase 2 (MMP)-2, (MMP)-9, vascular endothelial growth factor (VEGF), zinc finger protein (SNAIL1), twist-related protein 1 (TWIST1), and zinc-finger E-box-binding homeobox 1 (ZEB1) in vivo. In contrast, AE increased tissue inhibitor of MMP (TIMP)-1, (TIMP)-2, and E-cadherin. The results suggest that AE possesses potent anti-PC activity, and this is the first report on the anti-PC effect of AE in vivo.
Collapse
Affiliation(s)
- Yujiao Tang
- a School of Bio-science and Food Engineering , Changchun University of Science and Technology , Changchun , China.,b Division of Food Bioscience, College of Biological and Agricultural Engineering , Konkuk University , Chungju , Republic of Korea
| | - Meiqi Fan
- b Division of Food Bioscience, College of Biological and Agricultural Engineering , Konkuk University , Chungju , Republic of Korea
| | - Young-Jin Choi
- b Division of Food Bioscience, College of Biological and Agricultural Engineering , Konkuk University , Chungju , Republic of Korea
| | - Yonghai Yu
- a School of Bio-science and Food Engineering , Changchun University of Science and Technology , Changchun , China
| | - Gang Yao
- c Jilin University , Changchun , China
| | - Yongyan Deng
- a School of Bio-science and Food Engineering , Changchun University of Science and Technology , Changchun , China
| | - Sang-Ho Moon
- b Division of Food Bioscience, College of Biological and Agricultural Engineering , Konkuk University , Chungju , Republic of Korea
| | - Eun-Kyung Kim
- b Division of Food Bioscience, College of Biological and Agricultural Engineering , Konkuk University , Chungju , Republic of Korea
| |
Collapse
|