1
|
Liu M. Effector and regulatory B-cell imbalance in systemic sclerosis: cooperation or competition? Clin Rheumatol 2024; 43:2783-2789. [PMID: 39080112 PMCID: PMC11330388 DOI: 10.1007/s10067-024-07086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/18/2024]
Abstract
B cells play a central role in the pathogenesis of systemic sclerosis (SSc). Most B-cell studies have focused on their pathological role as antibody producers. However, in addition to immunoglobulin secretion, these cells have a wide range of functions in the immune response, including antigen presentation to T cells and cytokine production. Importantly, not all B-cell subsets promote the immune response. Regulatory B cells (Bregs) attenuate inflammation and contribute to the maintenance of immune tolerance. However, effector B cells (Beffs) positively modulate the immune response through the production of various cytokines. In SSc, Bregs are insufficient and/or dysfunctional. B-cell-targeting biologics have been trialled with promising results in the treatment of SSc. These therapies can affect Bregs or Beffs, which can potentially limit their long-term efficacy. Future strategies might involve the modulation of effector B cells in combination with the stimulation of regulatory subsets. Additionally, the monitoring of individual B-cell subsets in patients may lead to the discovery of novel biomarkers that could help predict disease relapse or progression. The purpose of this review is to summarize the relevant literatures and explain how Bregs and Beffs jointly participate in the pathogenesis of SSc.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, the 12Th Urumqi Road, Shanghai, 200040, China.
| |
Collapse
|
2
|
Babar DA, Khansole G, Kumar Singh V, Shinde A, Vaishnavi K, Balaji AS, Rode HB. N,N-Diarylsulfonamide Reduces Proinflammatory Cytokine Interleukin-6 Levels in Cells through Nuclear Factor-κB Regulation. ChemMedChem 2024; 19:e202300598. [PMID: 38613187 DOI: 10.1002/cmdc.202300598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
The arylsulfonamides were synthesized from aryl sulfonyl chloride and aromatic amines in dichloromethane in the presence of pyridine. The aryne chemistry was used to prepare diarylsulfonamide from arylsulfonamides and O-silylaryl triflate with CsF in acetonitrile at room temperature for 30 min. The synthesized compounds were evaluated for cytotoxicity followed by the cytokine/inflammatory marker's inhibition capability and its mechanism of action in RAW-264.7 cells. Elevated interleukin-6 (IL-6) levels have been reported in inflammatory conditions and inflammation-associated disorders. Hence, reducing the IL-6 levels in inflammatory conditions can serve as an attractive therapeutic target in dealing the inflammation. Among 42 compounds, seven compounds showed significant inhibition of IL-6 levels in lipopolysaccharide (LPS) challenged RAW-264.7 cells at 12.5 μM concentration. Further, investigation revealed that the IC50 value of these compounds for reducing IL-6 levels was found to be in the range of 2.6 to 9.7 μM. The promising compounds 5y (IC50 of 2.6 μM) and 5n (IC50 of 4.1 μM) along with other derivatives fulfil drug-likeness parameters laid down by Lipinski's rule of five. Further, RT-qPCR and Western-blot analysis revealed that treatment with 5n significantly reduced the expression of pro-inflammatory, inflammatory and macrophage marker's expression (IL-1β, CCL2, COX2 and CD68) compared to LPS control. The mechanistic evaluation showed that 5n exhibited anti-inflammatory properties by modulating the nuclear factor-κB (NF-κB) activation. The identified compound can be a promising candidate for further discovery efforts to generate a preclinical candidate effective in inflammation.
Collapse
Affiliation(s)
- Dattatraya A Babar
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| | - Gopinath Khansole
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Vishal Kumar Singh
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Akash Shinde
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
| | - Kambhampati Vaishnavi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Andugulapati Sai Balaji
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Haridas B Rode
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-, 500007
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
3
|
Di Leo V, Annese F, Papadia F, Russo MS, Giliberti M, Sallustio F, Gesualdo L. Refractory IgA Nephropathy: A Challenge for Future Nephrologists. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:274. [PMID: 38399561 PMCID: PMC10890070 DOI: 10.3390/medicina60020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
IgA nephropathy (IgAN) represents the most prevalent form of primary glomerulonephritis, and, on a global scale, it ranks among the leading culprits behind end-stage kidney disease (ESKD). Presently, the primary strategy for managing IgAN revolves around optimizing blood pressure and mitigating proteinuria. This is achieved through the utilization of renin-angiotensin system (RAS) inhibitors, namely, angiotensin-converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARBs). As outlined by the KDIGO guidelines, individuals who continue to show a persistent high risk of progressive ESKD, even with comprehensive supportive care, are candidates for glucocorticoid therapy. Despite these therapies, some patients have a disease refractory to treatment, defined as individuals that present a 24 h urinary protein persistently >1 g after at least two rounds of regular steroids (methylprednisolone or prednisone) and/or immunosuppressant therapy (e.g., mycophenolate mofetil), or who do not tolerate regular steroids and/or immunosuppressant therapy. The aim of this Systematic Review is to revise the current literature, using the biomedical database PubMed, to investigate possible therapeutic strategies, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, fecal microbiota transplantation, as well as blockade of complement components.
Collapse
|
4
|
Kenny FN, Marcotti S, De Freitas DB, Drudi EM, Leech V, Bell RE, Easton J, Díaz-de-la-Loza MDC, Fleck R, Allison L, Philippeos C, Manhart A, Shaw TJ, Stramer BM. Autocrine IL-6 drives cell and extracellular matrix anisotropy in scar fibroblasts. Matrix Biol 2023; 123:1-16. [PMID: 37660739 PMCID: PMC10878985 DOI: 10.1016/j.matbio.2023.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Fibrosis is associated with dramatic changes in extracellular matrix (ECM) architecture of unknown etiology. Here we exploit keloid scars as a paradigm to understand fibrotic ECM organization. We reveal that keloid patient fibroblasts uniquely produce a globally aligned ECM network in 2-D culture as observed in scar tissue. ECM anisotropy develops after rapid initiation of a fibroblast supracellular actin network, suggesting that cell alignment initiates ECM patterning. Keloid fibroblasts produce elevated levels of IL-6, and autocrine IL-6 production is both necessary and sufficient to induce cell and ECM alignment, as evidenced by ligand stimulation of normal dermal fibroblasts and treatment of keloid fibroblasts with the function blocking IL-6 receptor monoclonal antibody, tocilizumab. Downstream of IL-6, supracellular organization of keloid fibroblasts is controlled by activation of cell-cell adhesion. Adhesion formation inhibits contact-induced cellular overlap leading to nematic organization of cells and an alignment of focal adhesions. Keloid fibroblasts placed on isotropic ECM align the pre-existing matrix, suggesting that focal adhesion alignment leads to active anisotropic remodeling. These results show that IL-6-induced fibroblast cooperativity can control the development of a nematic ECM, highlighting both IL-6 signaling and cell-cell adhesions as potential therapeutic targets to inhibit this common feature of fibrosis.
Collapse
Affiliation(s)
- Fiona N Kenny
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | | | - Elena M Drudi
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Vivienne Leech
- Department of Mathematics, University College London, UK
| | - Rachel E Bell
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jennifer Easton
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | | | - Roland Fleck
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Leanne Allison
- Centre for Ultrastructure Imaging, King's College London, UK
| | - Christina Philippeos
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Angelika Manhart
- Department of Mathematics, University College London, UK; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - Tanya J Shaw
- Centre for Inflammation Biology & Cancer Immunology, Department of Inflammation Biology, School of Immunology & Microbial Sciences, King's College London, London, UK.
| | - Brian M Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| |
Collapse
|
5
|
Amati F, Bongiovanni G, Tonutti A, Motta F, Stainer A, Mangiameli G, Aliberti S, Selmi C, De Santis M. Treatable Traits in Systemic Sclerosis. Clin Rev Allergy Immunol 2023; 65:251-276. [PMID: 37603199 DOI: 10.1007/s12016-023-08969-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/22/2023]
Abstract
Systemic sclerosis (SSc) is a chronic systemic disease within the spectrum of connective tissue diseases, specifically characterized by vascular abnormalities and inflammatory and fibrotic involvement of the skin and internal organs resulting in high morbidity and mortality. The clinical phenotype of SSc is heterogeneous, and serum autoantibodies together with the extent of skin involvement have a predictive value in the risk stratification. Current recommendations include an organ-based management according to the predominant involvement with only limited individual factors included in the treatment algorithm. Similar to what has been proposed for other chronic diseases, we hypothesize that a "treatable trait" approach based on relevant phenotypes and endotypes could address the unmet needs in SSc stratification and treatment to maximize the outcomes. We provide herein a comprehensive review and a critical discussion of the literature regarding potential treatable traits in SSc, focusing on established and candidate biomarkers, with the purpose of setting the bases for a precision medicine-based approach. The discussion, structured based on the organ involvement, allows to conjugate the pathogenetic mechanisms of tissue injury with the proposed predictors, particularly autoantibodies and other serum biomarkers. Ultimately, we are convinced that precision medicine is the ideal guide to manage a complex condition such as SSc for which available treatments are largely unsatisfactory.
Collapse
Affiliation(s)
- Francesco Amati
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gabriele Bongiovanni
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Antonio Tonutti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Motta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anna Stainer
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giuseppe Mangiameli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Thoracic Surgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Stefano Aliberti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Respiratory Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Maria De Santis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
6
|
Hu M, Yao Z, Xu L, Peng M, Deng G, Liu L, Jiang X, Cai X. M2 macrophage polarization in systemic sclerosis fibrosis: pathogenic mechanisms and therapeutic effects. Heliyon 2023; 9:e16206. [PMID: 37234611 PMCID: PMC10208842 DOI: 10.1016/j.heliyon.2023.e16206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/14/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Systemic sclerosis (SSc, scleroderma), is an autoimmune rheumatic disease characterized by fibrosis of the skin and internal organs, and vasculopathy. Preventing fibrosis by targeting aberrant immune cells that drive extracellular matrix (ECM) over-deposition is a promising therapeutic strategy for SSc. Previous research suggests that M2 macrophages play an essential part in the fibrotic process of SSc. Targeted modulation of molecules that influence M2 macrophage polarization, or M2 macrophages, may hinder the progression of fibrosis. Here, in an effort to offer fresh perspectives on the management of scleroderma and fibrotic diseases, we review the molecular mechanisms underlying the regulation of M2 macrophage polarization in SSc-related organ fibrosis, potential inhibitors targeting M2 macrophages, and the mechanisms by which M2 macrophages participate in fibrosis.
Collapse
Affiliation(s)
- Mingyue Hu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhongliu Yao
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Li Xu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Muzi Peng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Guiming Deng
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Liang Liu
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Xueyu Jiang
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Yueyang Hospital of Chinese Medicine, Hunan University of Chinese Medicine, Yueyang, Hunan 414000, China
| | - Xiong Cai
- Department of Rheumatology of the First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
7
|
Papara C, De Luca DA, Bieber K, Vorobyev A, Ludwig RJ. Morphea: The 2023 update. Front Med (Lausanne) 2023; 10:1108623. [PMID: 36860340 PMCID: PMC9969991 DOI: 10.3389/fmed.2023.1108623] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Morphea, also known as localized scleroderma, is a chronic inflammatory connective tissue disorder with variable clinical presentations, that affects both adults and children. It is characterized by inflammation and fibrosis of the skin and underlying soft tissue, in certain cases even of the surrounding structures such as fascia, muscle, bone and central nervous system. While the etiology is still unknown, many factors may contribute to disease development, including genetic predisposition, vascular dysregulation, TH1/TH2 imbalance with chemokines and cytokines associated with interferon-γ and profibrotic pathways as well as certain environmental factors. Since the disease may progress to permanent cosmetic and functional sequelae, it is crucial to properly assess the disease activity and to initiate promptly the adequate treatment, thus preventing subsequent damage. The mainstay of treatment is based on corticosteroids and methotrexate. These, however, are limited by their toxicity, especially if applied long-term. Furthermore, corticosteroids and methotrexate often do not sufficiently control the disease and/or the frequent relapses of morphea. This review presents the current understanding of morphea by discussing its epidemiology, diagnosis, management and prognosis. In addition, it will describe recent pathogenetic findings, thus proposing potential novel targets for therapeutic development in morphea.
Collapse
Affiliation(s)
- Cristian Papara
- Department of Dermatology, University of Lübeck, Lübeck, Germany,Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany,*Correspondence: Cristian Papara, ✉
| | - David A. De Luca
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Department of Dermatology, University of Lübeck, Lübeck, Germany,Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Department of Dermatology, University of Lübeck, Lübeck, Germany,Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| |
Collapse
|
8
|
Molecular Mechanisms Behind the Role of Plasmacytoid Dendritic Cells in Systemic Sclerosis. BIOLOGY 2023; 12:biology12020285. [PMID: 36829561 PMCID: PMC9953616 DOI: 10.3390/biology12020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023]
Abstract
Systemic sclerosis (SSc) is a debilitating autoimmune disease that affects multiple systems. It is characterized by immunological deregulation, functional and structural abnormalities of small blood vessels, and fibrosis of the skin, and, in some cases, internal organs. Fibrosis has a devastating impact on a patient's life and lung fibrosis is associated with high morbimortality. Several immune populations contribute to the progression of SSc, and plasmacytoid dendritic cells (pDCs) have been identified as crucial mediators of fibrosis. Research on murine models of lung and skin fibrosis has shown that pDCs are essential in the development of fibrosis, and that removing pDCs improves fibrosis. pDCs are a subset of dendritic cells (DCs) that are specialized in anti-viral responses and are also involved in autoimmune diseases, such as SSc, systemic lupus erythematosus (SLE) and psoriasis, mostly due to their capacity to produce type I interferon (IFN). A type I IFN signature and high levels of CXCL4, both derived from pDCs, have been associated with poor prognosis in patients with SSc and are correlated with fibrosis. This review will examine the recent research on the molecular mechanisms through which pDCs impact SSc.
Collapse
|
9
|
Chen L, Zhao J, Chao Y, Roy A, Guo W, Qian J, Xu W, Domsic RT, Lafyatis R, Lu B, Deng F, Wang QJ. Loss of Protein Kinase D2 Activity Protects Against Bleomycin-Induced Dermal Fibrosis in Mice. J Transl Med 2023; 103:100018. [PMID: 37039152 PMCID: PMC10507682 DOI: 10.1016/j.labinv.2022.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/22/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
Protein kinase D (PKD) has been linked to inflammatory responses in various pathologic conditions; however, its role in inflammation-induced dermal fibrosis has not been evaluated. In this study, we aimed to investigate the roles and mechanisms of protein kinase D2 (PKD2) in inflammation-induced dermal fibrosis and evaluate the therapeutic potential of PKD inhibitors in this disease. Using homozygous kinase-dead PKD2 knock-in (KI) mice, we examined whether genetic ablation or pharmacologic inhibition of PKD2 activity affected dermal inflammation and fibrosis in a bleomycin (BLM)-induced skin fibrosis model. Our data showed that dermal thickness and collagen fibers were significantly reduced in BLM-treated PKD2 KI mice compared with that in wild-type mice, and so was the expression of α-smooth muscle actin and collagens and the mRNA levels of transforming growth factor-β1 and interleukin-6 in the KI mice. Corroboratively, pharmacologic inhibition of PKD by CRT0066101 also significantly blocked BLM-induced dermal fibrosis and reduced α-smooth muscle actin, collagen, and interleukin-6 expression. Further analyses indicated that loss of PKD2 activity significantly blocked BLM-induced infiltration of monocytes/macrophages and neutrophils in the dermis. Moreover, using bone marrow-derived macrophages, we demonstrated that PKD activity was required for cytokine production and migration of macrophages. We have further identified Akt as a major downstream target of PKD2 in the early inflammatory phase of the fibrotic process. Taken together, our findings indicate that PKD2 promotes dermal fibrosis via regulating immune cell infiltration, cytokine production, and downstream activation of Akt in lesional skin, and targeted inhibition of PKD2 may benefit the treatment of this condition.
Collapse
Affiliation(s)
- Liping Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinjun Zhao
- Department of Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yapeng Chao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Adhiraj Roy
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Wenjing Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiabi Qian
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wanfu Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Robyn T Domsic
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert Lafyatis
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Binfeng Lu
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Q Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
10
|
Lin X, Ding M, Chen T, Min S, Wang D, Jiang G. Peripheral blood IL-6 levels in systemic sclerosis patients: Correlation between IL-6 levels and clinical phenotypes. J Cosmet Dermatol 2022; 21:6086-6091. [PMID: 35634998 DOI: 10.1111/jocd.15133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Detect the expression of Interleukin-6 (IL-6) in the serum of patients with systemic sclerosis (SSc) and assess its association with clinical and laboratory features of the disease. METHODS The clinical data from 50 patients with SSc in the affiliated hospital of Xuzhou Medical University, China were retrospectively analyzed. The level of IL-6 in peripheral blood of systemic sclerosis patients was compared between the different clinical phenotypes groups. Spearman correlation test was used to analyze the correlation of the IL-6 with C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), creatinine, and cystatin C. RESULTS Interleukin-6 increased in the disease course ≥5 years, systemic sclerosis-Interstitial lung disease (SSc-ILD), pulmonary arterial hypertension (PAH), gastrointestinal involvement, and cardiac involvement group compared with the group with disease course <5 years, no SSc-ILD, PAH, gastrointestinal involvement, and no cardiac involvement group. The differences were statistically significant (p < 0.05). Correlation analysis showed that IL-6 in the group with disease course ≥5 years had a positive correlation with ESR (Rs = 0.438, p = 0.022) and CRP (Rs = 0.825, P < 0.001), whereas it was negatively correlated with creatinine (Rs = -0.481, p = 0.011). Nevertheless, when it came to disease course <5 years, the figures had no statistically significant difference. CONCLUSION Serum IL-6 in patients with systemic sclerosis is related to different clinical phenotypes. IL-6 helps to diagnose various phases of diseases, monitor severities of diseases, and predict the prognosis of patients.
Collapse
Affiliation(s)
- Xiao Lin
- Department of dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingming Ding
- Department of dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tan Chen
- Xuzhou Medical University, Xuzhou, China
| | - Shuhui Min
- Department of dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Danfeng Wang
- Department of dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guan Jiang
- Department of dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Kuster S, Jordan S, Elhai M, Held U, Steigmiller K, Bruni C, Cacciapaglia F, Vettori S, Siegert E, Rednic S, Codullo V, Airo P, Braun-Moscovici Y, Hunzelmann N, Joao Salvador M, Riccieri V, Gheorghiu AM, Alegre Sancho JJ, Romanowska-Prochnicka K, Castellví I, Kötter I, Truchetet ME, López-Longo FJ, Novikov PI, Giollo A, Shirai Y, Belloli L, Zanatta E, Hachulla E, Smith V, Denton C, Ionescu RM, Schmeiser T, Distler JHW, Gabrielli A, Hoffmann-Vold AM, Kuwana M, Allanore Y, Distler O. Effectiveness and safety of tocilizumab in patients with systemic sclerosis: a propensity score matched controlled observational study of the EUSTAR cohort. RMD Open 2022; 8:e002477. [PMID: 36328401 PMCID: PMC9639158 DOI: 10.1136/rmdopen-2022-002477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Tocilizumab showed trends for improving skin fibrosis and prevented progression of lung fibrosis in systemic sclerosis (SSc) in randomised controlled clinical trials. We aimed to assess safety and effectiveness of tocilizumab in a real-life setting using the European Scleroderma Trial and Research (EUSTAR) database. METHODS Patients with SSc fulfilling the American College of Rheumatology (ACR)/EULAR 2013 classification criteria, with baseline and follow-up visits at 12±3 months, receiving tocilizumab or standard of care as the control group, were selected. Propensity score matching was applied. Primary endpoints were the modified Rodnan skin score (mRSS) and FVC at 12±3 months compared between the groups. Secondary endpoints were the percentage of progressive/regressive patients for skin and lung at 12±3 months. RESULTS Ninety-three patients with SSc treated with tocilizumab and 3180 patients with SSc with standard of care fulfilled the inclusion criteria. Comparison between groups did not show significant differences, but favoured tocilizumab across all predefined primary and secondary endpoints: mRSS was lower in the tocilizumab group (difference -1.0, 95% CI -3.7 to 1.8, p=0.48). Similarly, FVC % predicted was higher in the tocilizumab group (difference 1.5 (-6.1 to 9.1), p=0.70). The percentage of progressive/regressive patients favoured tocilizumab over controls. These results were robust regarding the sensitivity analyses. Safety analysis confirmed previously reported adverse event profiles. CONCLUSION Although this large, observational, controlled, real-life EUSTAR study did not show significant effectiveness of tocilizumab on skin and lung fibrosis, the consistency of direction of all predefined endpoints generates hypothesis for potential effectiveness in a broader SSc population.
Collapse
Affiliation(s)
- Simon Kuster
- Department of Rheumatology; University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Suzana Jordan
- Department of Rheumatology; University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Muriel Elhai
- Department of Rheumatology; University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, Paris Descartes University, Cochin Hospital, APHP, Paris, France
| | - Ulrike Held
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Klaus Steigmiller
- Department of Biostatistics at Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Cosimo Bruni
- Department of Rheumatology; University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence, Italy
| | - Fabio Cacciapaglia
- Rheumatology Unit, DETO, University Hospital Polyclinic of Bari, Bari, Italy
| | - Serena Vettori
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Elise Siegert
- Clinic for Rheumatology and Immunology, Bad Bramstedt, Germany
- Berlin Institute of Health at Charité, Berlin, Germany
| | - Simona Rednic
- Clinica Reumatologie, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Veronica Codullo
- Department of Rheumatology, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Paolo Airo
- UOC Rheumatology and Clinical Immunology, Spedali Civili di Brescia, Brescia, Italy
| | | | | | - Maria Joao Salvador
- Department of Rheumatology, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Valeria Riccieri
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Ana-Maria Gheorghiu
- Department of Internal Medicine and Rheumatology, Cantacuzino Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Katarzyna Romanowska-Prochnicka
- Department of Biophysics, Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
- Department of Connective Tissues Diseases, Institute of Rheumatology, Warsaw, Poland
| | - Ivan Castellví
- Department of Rheumatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramstedt, Germany
- University Hospital Hamburg-Eppendorf, Division of Rheumatology and Systemic Inflammatory Diseases, Hamburg, Germany
| | - Marie-Elise Truchetet
- Department of Rheumatology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - F J López-Longo
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France
| | - Pavel I Novikov
- Department of Rheumatology, National Reference Center for Systemic Autoimmune Rare Diseases, Hopital Pellegrin, Bordeaux, France
| | - Alessandro Giollo
- Rheumatology Section, Department of Medicine, University of Verona, Verona, Italy
| | - Yuichiro Shirai
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Laura Belloli
- Rheumatology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Elisabetta Zanatta
- Rheumatology Unit, Department of Clinical and Experimental Medicine, University of Padova, Padova, Italy
| | - Eric Hachulla
- Referral Centre for Rare Systemic Auto-immune Diseases for North and North-West of France, Department of Internal Medicine, Claude Huriez Hospital, University of Lille, Lille, France
| | - Vanessa Smith
- Department of Internal Medicine, Department of Rheumatology, Ghent University Hospital, Ghent, Belgium
- Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Centre (IRC), Ghent, Belgium
| | - Chris Denton
- Centre for Rheumatology, University College London Medical School-Royal Free Campus, London, UK
| | - Ruxandra M Ionescu
- Internal Medicine and Rheumatology Department-St. Maria Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Joerg H W Distler
- Department of Internal Medicine III, Erlangen University Hospital, Erlangen, Germany
| | - Armando Gabrielli
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy
| | | | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School, Tokyo, Japan
| | - Yannick Allanore
- Department of Rheumatology, Paris Descartes University, Cochin Hospital, APHP, Paris, France
| | - Oliver Distler
- Department of Rheumatology; University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
13
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
14
|
Cardoneanu A, Burlui AM, Macovei LA, Bratoiu I, Richter P, Rezus E. Targeting Systemic Sclerosis from Pathogenic Mechanisms to Clinical Manifestations: Why IL-6? Biomedicines 2022; 10:biomedicines10020318. [PMID: 35203527 PMCID: PMC8869570 DOI: 10.3390/biomedicines10020318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Systemic sclerosis (SS) is a chronic autoimmune disorder, which has both cutaneous and systemic clinical manifestations. The disease pathogenesis includes a triad of manifestations, such as vasculopathy, autoimmunity, and fibrosis. Interleukin-6 (IL-6) has a special role in SS development, both in vascular damage and in the development of fibrosis. In the early stages, IL-6 participates in vascular endothelial activation and apoptosis, leading to the release of damage-associated molecular patterns (DAMPs), which maintain inflammation and autoimmunity. Moreover, IL-6 plays an important role in the development of fibrotic changes by mediating the transformation of fibroblasts into myofibroblasts. All of these are associated with disabling clinical manifestations, such as skin thickening, pulmonary fibrosis, pulmonary arterial hypertension (PAH), heart failure, and dysphagia. Tocilizumab is a humanized monoclonal antibody that inhibits IL-6 by binding to the specific receptor, thus preventing its proinflammatory and fibrotic actions. Anti-IL-6 therapy with Tocilizumab is a new hope for SS patients, with data from clinical trials supporting the favorable effect, especially on skin and lung damage.
Collapse
Affiliation(s)
- Anca Cardoneanu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
- Correspondence:
| | - Alexandra Maria Burlui
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Luana Andreea Macovei
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.M.B.); (L.A.M.); (I.B.); (P.R.); (E.R.)
- Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
15
|
Wenzel D, Haddadi N, Afshari K, Richmond JM, Rashighi M. Upcoming treatments for morphea. Immun Inflamm Dis 2021; 9:1101-1145. [PMID: 34272836 PMCID: PMC8589364 DOI: 10.1002/iid3.475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/29/2021] [Indexed: 11/25/2022] Open
Abstract
Morphea (localized scleroderma) is a rare autoimmune connective tissue disease with variable clinical presentations, with an annual incidence of 0.4-2.7 cases per 100,000. Morphea occurs most frequently in children aged 2-14 years, and the disease exhibits a female predominance. Insights into morphea pathogenesis are often extrapolated from studies of systemic sclerosis due to their similar skin histopathologic features; however, clinically they are two distinct diseases as evidenced by different demographics, clinical features, disease course and prognosis. An interplay between genetic factors, epigenetic modifications, immune and vascular dysfunction, along with environmental hits are considered as the main contributors to morphea pathogenesis. In this review, we describe potential new therapies for morphea based on both preclinical evidence and ongoing clinical trials. We focus on different classes of therapeutics, including antifibrotic, anti-inflammatory, cellular and gene therapy, and antisenolytic approaches, and how these target different aspects of disease pathogenesis.
Collapse
Affiliation(s)
- Dan Wenzel
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Nazgol‐Sadat Haddadi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Khashayar Afshari
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Jillian M. Richmond
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| | - Mehdi Rashighi
- Department of DermatologyUniversity of Massachusetts Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
16
|
Höppner J, Bruni C, Distler O, Robson SC, Burmester GR, Siegert E, Distler JHW. Purinergic signaling in systemic sclerosis. Rheumatology (Oxford) 2021; 61:2770-2782. [PMID: 34849624 DOI: 10.1093/rheumatology/keab859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease that involves numerous organs and presents major management challenges. The histopathologic hallmarks of SSc include vasculopathy, fibrosis and autoimmune phenomena involving both innate and adaptive immune systems. Purinergic signalling is a pathway that may be implicated in the pathophysiology of several of these disease manifestations. Extracellular purines are potent signalling mediators, which have been shown to be dysregulated in SSc. As examples, purines can exacerbate vasculopathy and provoke platelet dysfunction; as well as contributing to immune dysregulation. Elements of purinergic signalling further promote organ and tissue fibrosis in several disease models. Here, we provide an overview of extracellular purine metabolism in purinergic signalling and link disorders of these to the molecular pathology of SSc. We also discuss targeting the purinergic signalling and explore the translational applications for new therapeutic options in SSc.
Collapse
Affiliation(s)
- Jakob Höppner
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Cosimo Bruni
- Department of Experimental and Clinical Medicine, Division of Rheumatology, Careggi University Hospital, University of Florence, Florence, Italy.,Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Simon C Robson
- Departments of Anesthesia and Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elise Siegert
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
17
|
Tiwari V, Rigby WFC. Journal Club: Efficacy of Tocilizumab in Early Systemic Sclerosis-Related Interstitial Lung Disease. ACR Open Rheumatol 2021; 4:119-122. [PMID: 34761880 PMCID: PMC8843758 DOI: 10.1002/acr2.11358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 11/08/2022] Open
|
18
|
Panopoulos ST, Tektonidou MG, Bournia VK, Arida A, Sfikakis PP. Anti-IL-6 Therapy Effect for Refractory Joint and Skin Involvement in Systemic Sclerosis: A Real-world, Single Center Experience. J Rheumatol 2021; 49:68-73. [PMID: 34393104 DOI: 10.3899/jrheum.210273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To examine the efficacy and safety of interleukin-6 inhibition by tocilizumab in difficult-to-treat real-world patients with Systemic Sclerosis (SSc). METHODS Twenty-one patients [20 women, 16 diffuse SSc, mean age: 52±10 years, 10 with early (<5 years) and 11 with long-standing disease (mean disease duration: 6.4±3.7 years)] with active joint and/or skin involvement refractory to corticosteroids (n=21), methotrexate (n=19), cyclophosphamide (n=10), mycophenolate (n=7), rituximab (n=1), leflunomide (n=2), hydroxychloroquine (n=2), and hematopoietic stem cell transplantation (n=2) who received weekly tocilizumab (162 mg subcutaneously) in an academic center, were monitored prospectively. Changes in modified Rodnan skin score (mRSS), disease activity score (DAS)28, lung function tests (LFTs) and patient reported outcomes (PROs) were analyzed after one year of treatment and at follow-up end. RESULTS One patient discontinued tocilizumab after 3 months due to inefficacy. During the first year of treatment, improvement was evident in the remaining 20 patients regarding skin involvement (mean mRSS change: -6.9±5.9,p<0.001), polyarthritis (mean DAS28 change: -1.9±0.8,p<0.001) and PROs (all p<0.001); LFTs stabilization was observed in 16/20 patients. During the second year, 3 patients discontinued tocilizumab (cytomegalovirus infection in 1, inefficacy in 2) and one died. Beneficial effects were sustained in all 16 patients at follow-up end (2.2±1.1 years), except LFTs deterioration in 3. Apart from recurrent digital ulcer infection in 3 patients, tocilizumab was well-tolerated. CONCLUSION Tocilizumab was effective in refractory joint and skin involvement irrespective of SSc disease duration or subtype. Long-term retention rates and disease stabilization for most real-world patients suggest that tocilizumab might be a valuable choice for difficult-to-treat SSc.
Collapse
Affiliation(s)
- Stylianos T Panopoulos
- First Department of Propaedeutic and Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece. The source(s) of support in the form of grants or industrial support This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Address correspondence to Stylianos Panopoulos, MD, PhD, Joint Rheumatology Program, Rheumatology Unit, 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, Μedical School General Hospital of Athens LAIKO. 17 Agiou Thoma str., 115 27 Athens, Greece
| | - Maria G Tektonidou
- First Department of Propaedeutic and Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece. The source(s) of support in the form of grants or industrial support This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Address correspondence to Stylianos Panopoulos, MD, PhD, Joint Rheumatology Program, Rheumatology Unit, 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, Μedical School General Hospital of Athens LAIKO. 17 Agiou Thoma str., 115 27 Athens, Greece
| | - Vasiliki-Kalliopi Bournia
- First Department of Propaedeutic and Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece. The source(s) of support in the form of grants or industrial support This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Address correspondence to Stylianos Panopoulos, MD, PhD, Joint Rheumatology Program, Rheumatology Unit, 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, Μedical School General Hospital of Athens LAIKO. 17 Agiou Thoma str., 115 27 Athens, Greece
| | - Aikaterini Arida
- First Department of Propaedeutic and Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece. The source(s) of support in the form of grants or industrial support This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Address correspondence to Stylianos Panopoulos, MD, PhD, Joint Rheumatology Program, Rheumatology Unit, 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, Μedical School General Hospital of Athens LAIKO. 17 Agiou Thoma str., 115 27 Athens, Greece
| | - Petros P Sfikakis
- First Department of Propaedeutic and Internal Medicine and Joint Rheumatology Program, National and Kapodistrian University of Athens, Medical School, Athens, Greece. The source(s) of support in the form of grants or industrial support This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Address correspondence to Stylianos Panopoulos, MD, PhD, Joint Rheumatology Program, Rheumatology Unit, 1st Department of Propaedeutic and Internal Medicine, National and Kapodistrian University of Athens, Μedical School General Hospital of Athens LAIKO. 17 Agiou Thoma str., 115 27 Athens, Greece
| |
Collapse
|
19
|
An update on the pathogenic role of IL-6 in rheumatic diseases. Cytokine 2021; 146:155645. [PMID: 34303949 DOI: 10.1016/j.cyto.2021.155645] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
Interleukin (IL)-6 is a pleiotropic cytokine that is involved in the pathogenesis of various rheumatic diseases. Direct inhibition of the IL-6 pathway by an anti-IL-6 receptor or inhibiting the ligand itself has proved to be efficacious in the treatment of these diseases. Juvenile idiopathic arthritis, adult-onset Still's disease, large vessel vasculitis including giant cell arteritis and Takayasu disease, systemic sclerosis, and polymyalgia rheumatica respond well to IL-6 inhibition as expected. However, no clinically meaningful effect has been observed with regard to IL-6 blockade in ankylosing spondylitis, psoriatic arthritis, and systemic lupus erythematosus. This review discusses the current state of IL-6 targeting approaches in various rheumatic diseases other than rheumatoid arthritis.
Collapse
|
20
|
Romano E, Rosa I, Fioretto BS, Cerinic MM, Manetti M. The Role of Pro-fibrotic Myofibroblasts in Systemic Sclerosis: from Origin to Therapeutic Targeting. Curr Mol Med 2021; 22:209-239. [PMID: 33823766 DOI: 10.2174/0929867328666210325102749] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/02/2021] [Accepted: 03/09/2021] [Indexed: 11/22/2022]
Abstract
Systemic sclerosis (SSc, scleroderma) is a complex connective tissue disorder characterized by multisystem clinical manifestations resulting from immune dysregulation/autoimmunity, vasculopathy and, most notably, progressive fibrosis of the skin and internal organs. In recent years, it has emerged that the main drivers of SSc-related tissue fibrosis are myofibroblasts, a type of mesenchymal cells with both the extracellular matrix-synthesizing features of fibroblasts and the cytoskeletal characteristics of contractile smooth muscle cells. The accumulation and persistent activation of pro-fibrotic myofibroblasts during SSc development and progression result into elevated mechanical stress and reduced matrix plasticity within the affected tissues and may be ascribed to a reduced susceptibility of these cells to pro-apoptotic stimuli, as well as their increased formation from tissue-resident fibroblasts or transition from different cell types. Given the crucial role of myofibroblasts in SSc pathogenesis, finding the way to inhibit myofibroblast differentiation and accumulation by targeting their formation, function and survival may represent an effective approach to hamper the fibrotic process or even halt or reverse established fibrosis. In this review, we discuss the role of myofibroblasts in SSc-related fibrosis, with a special focus on their cellular origin and the signaling pathways implicated in their formation and persistent activation. Furthermore, we provide an overview of potential therapeutic strategies targeting myofibroblasts that may be able to counteract fibrosis in this pathological condition.
Collapse
Affiliation(s)
- Eloisa Romano
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Irene Rosa
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Bianca Saveria Fioretto
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Marco Matucci Cerinic
- Department of Experimental and Clinical Medicine, Division of Rheumatology, University of Florence, Florence. Italy
| | - Mirko Manetti
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence. Italy
| |
Collapse
|
21
|
Solorzano S, Kim J, Chen J, Feng X, Young NS. Minimal role of interleukin 6 and toll-like receptor 2 and 4 in murine models of immune-mediated bone marrow failure. PLoS One 2021; 16:e0248343. [PMID: 33711076 PMCID: PMC7954294 DOI: 10.1371/journal.pone.0248343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/24/2021] [Indexed: 02/05/2023] Open
Abstract
Immune aplastic anemia (AA) results from T cell attack on hematopoietic cells, resulting in bone marrow hypocellularity and pancytopenia. Animal models have been successfully developed to study pathophysiological mechanisms in AA. While we have systemically defined the critical components of the adaptive immune response in the pathogenesis of immune marrow failure using this model, the role of innate immunity has not been fully investigated. Here, we demonstrate that lymph node (LN) cells from B6-based donor mice carrying IL-6, TLR2, or TLR4 gene deletions were fully functional in inducing severe pancytopenia and bone marrow failure (BMF) when infused into MHC-mismatched CByB6F1 recipients. Conversely, B6-based recipient mice with IL-6, TLR2, and TLR4 deletion backgrounds were all susceptible to immune-mediated BMF relative to wild-type B6 recipients following infusion of MHC-mismatched LN cells from FVB donors, but the disease appeared more severe in IL-6 deficient mice. We conclude that IL-6, TLR2, and TLR4, molecular elements important in maintenance of normal innate immunity, have limited roles in a murine model of immune-mediated BMF. Rather, adaptive immunity appears to be the major contributor to the animal disease.
Collapse
Affiliation(s)
- Sabrina Solorzano
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Center for Cancer and Blood Disorders, Children’s National Medical Center, Washington DC, United States of America
| | - Jisoo Kim
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jichun Chen
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xingmin Feng
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Neal S. Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
22
|
A Review of the Evidence for and against a Role for Mast Cells in Cutaneous Scarring and Fibrosis. Int J Mol Sci 2020; 21:ijms21249673. [PMID: 33353063 PMCID: PMC7766369 DOI: 10.3390/ijms21249673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Scars are generated in mature skin as a result of the normal repair process, but the replacement of normal tissue with scar tissue can lead to biomechanical and functional deficiencies in the skin as well as psychological and social issues for patients that negatively affect quality of life. Abnormal scars, such as hypertrophic scars and keloids, and cutaneous fibrosis that develops in diseases such as systemic sclerosis and graft-versus-host disease can be even more challenging for patients. There is a large body of literature suggesting that inflammation promotes the deposition of scar tissue by fibroblasts. Mast cells represent one inflammatory cell type in particular that has been implicated in skin scarring and fibrosis. Most published studies in this area support a pro-fibrotic role for mast cells in the skin, as many mast cell-derived mediators stimulate fibroblast activity and studies generally indicate higher numbers of mast cells and/or mast cell activation in scars and fibrotic skin. However, some studies in mast cell-deficient mice have suggested that these cells may not play a critical role in cutaneous scarring/fibrosis. Here, we will review the data for and against mast cells as key regulators of skin fibrosis and discuss scientific gaps in the field.
Collapse
|
23
|
Varrica C, Dias HS, Reis C, Carvalheiro M, Simões S. Targeted delivery in scleroderma fibrosis. Autoimmun Rev 2020; 20:102730. [PMID: 33338593 DOI: 10.1016/j.autrev.2020.102730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
Systemic sclerosis (SSc) is considered one of the most challenging and difficult to treat among rheumatic disorders, due to its severity, multiorgan manifestation and different outcomes. It manifests fibrosis in different organs, mostly in skin and lungs. The skin fibrosis expression is considered the first sign of the disease and usually it is followed by internal organ fibrosis. An aberrant immune system activation seems to relate to the expression of the disease, but even environmental influences and dysregulation of many molecules signalling pathways are involved in the development of the disease. Current therapies are limited and characterized by multiple side effects: systemic route is the elective administration route, which decreases patient adherence to the therapy, as they are often already bothered by pain and disfigurement. Treatments available are organ-based, originally indicated for other conditions and there is no therapy available to reduce the fibroblast population size within existing fibrotic lesions. Disease-modifying therapies or immunomodulatory agents that are highly effective in other rheumatic diseases have shown disappointing results in SSc. There are thus no standardized and effective treatments for this disease, and there are even unanswered questions related to the insurgence of the pathology and all the mechanisms involved. An ideal approach could be considered "targeted therapy" that will be an increasingly attainable objective insofar as our understanding of the disease improves. The advantages in identifying the molecule and the signalling pathways involved in the pathology have helped to find some novel compounds for the therapy of scleroderma fibrosis or following innovative uses for already-approved drugs, corroborated by many clinical studies.
Collapse
Affiliation(s)
- Carla Varrica
- University of Pavia, Corso Strada Nuova, 65, 27100 Pavia, Italy
| | - Helena Sofia Dias
- Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal; IBEB, Biophysics and Biomedical Engineering, Faculty of Sciences, Universidade de Lisboa, Campo Grande, 1649-016 Lisboa, Portugal
| | - Manuela Carvalheiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Sandra Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
24
|
Mastorino L, Avallone G, Dapavo P, Merli M, Agostini A, Grandinetti D, Fierro MT, Quaglino P, Ribero S. Tocilizumab and its usage for skin diseases. Ital J Dermatol Venerol 2020; 157:13-22. [PMID: 33314888 DOI: 10.23736/s2784-8671.20.06772-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The monoclonal anti-IL6 receptor antibody called Tocilizumab is widely used by rheumatologists for joint diseases. Its application in dermatology has mainly concerned scleroderma and Systemic Sclerosis in the last years. The most varied skin diseases treated with tocilizumab, such as psoriasis, psoriatic arthritis, Behcet's Syndrome, Lupus, and the already mentioned scleroderma up to multi-organ syndromes with skin involvement will be discussed. At the same time, there have been several side reactions to the drug involving the skin forcing careful skin monitoring during treatment. Despite the evidence currently available in the appropriate literature, there is no formal recommendation for any of these diseases to use Tocilizumab for therapeutic purposes. The aim of this review was to collect all the main evidence on the use and involvement of the drug in dermatological practice in order to stimulate further research or hypothesize on possible therapeutic options.
Collapse
Affiliation(s)
- Luca Mastorino
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gianluca Avallone
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Dapavo
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Martina Merli
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Agostini
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Damiano Grandinetti
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maria T Fierro
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Simone Ribero
- Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
25
|
Khanna D, Lin CJF, Furst DE, Goldin J, Kim G, Kuwana M, Allanore Y, Matucci-Cerinic M, Distler O, Shima Y, van Laar JM, Spotswood H, Wagner B, Siegel J, Jahreis A, Denton CP. Tocilizumab in systemic sclerosis: a randomised, double-blind, placebo-controlled, phase 3 trial. THE LANCET RESPIRATORY MEDICINE 2020; 8:963-974. [PMID: 32866440 DOI: 10.1016/s2213-2600(20)30318-0] [Citation(s) in RCA: 348] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/01/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND A phase 2 trial of tocilizumab showed preliminary evidence of efficacy in systemic sclerosis. We assessed skin fibrosis and systemic sclerosis-associated interstitial lung disease (SSc-ILD) in a phase 3 trial to investigate the safety and efficacy of tocilizumab, an anti-interleukin-6 receptor antibody, in the treatment of systemic sclerosis. METHODS In this multicentre, randomised, double-blind, placebo-controlled, phase 3 trial, participants were recruited from 75 sites in 20 countries across Europe, North America, Latin America, and Japan. Adults with diffuse cutaneous systemic sclerosis for 60 months or less and a modified Rodnan skin score (mRSS) of 10-35 at screening were randomly assigned (1:1) with a voice-web-response system to receive subcutaneous tocilizumab 162 mg or placebo weekly for 48 weeks, stratified by IL-6 levels; participants and investigators were masked to treatment group. The primary endpoint was the difference in change from baseline to week 48 in mRSS. Percentage of predicted forced vital capacity (FVC% predicted) at week 48, time to treatment failure, and patient-reported and physician-reported outcomes were secondary endpoints. This trial is registered with ClinicalTrials.gov (number NCT02453256) and is closed to accrual. FINDINGS Between Nov 20, 2015, and Feb 14, 2017, 210 individuals were randomly assigned to receive tocilizumab (n=104) or placebo (n=106). In the intention-to-treat population, least squares mean [LSM] change from baseline to week 48 in mRSS was -6·14 for tocilizumab and -4·41 for placebo (adjusted difference -1·73 [95% CI -3·78 to 0·32]; p=0·10). The shift in distribution of change from baseline in FVC% predicted at week 48 favoured tocilizumab (van Elteren nominal p=0·002 vs placebo), with a difference in LSM of 4·2 (95% CI 2·0-6·4; nominal p=0·0002), as did time to treatment failure (hazard ratio 0·63 [95% CI 0·37-1·06]; nominal p=0·08). Change in LSM from baseline to week 48 in Health Assessment Questionnaire-Disability Index and in patient-global and physician-global visual analogue scale assessments did not differ between tocilizumab and placebo. In the safety set, infections were the most common adverse events (54 [52%] of 104 participants in the tocilizumab group, 53 [50%] of 106 in the placebo group). Serious adverse events were reported in 13 participants treated with tocilizumab and 18 with placebo, primarily infections (three events, eight events) and cardiac events (two events, seven events). INTERPRETATION The primary skin fibrosis endpoint was not met. Findings for the secondary endpoint of FVC% predicted indicate that tocilizumab might preserve lung function in people with early SSc-ILD and elevated acute-phase reactants. Safety was consistent with the known profile of tocilizumab. FUNDING F Hoffmann-La Roche Ltd.
Collapse
Affiliation(s)
| | | | - Daniel E Furst
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Grace Kim
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Marden G, Wan Q, Wilks J, Nevin K, Feeney M, Wisniacki N, Trojanowski M, Bujor A, Stawski L, Trojanowska M. The role of the oncostatin M/OSM receptor β axis in activating dermal microvascular endothelial cells in systemic sclerosis. Arthritis Res Ther 2020; 22:179. [PMID: 32736577 PMCID: PMC7393919 DOI: 10.1186/s13075-020-02266-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Scleroderma (SSc) is a rare autoimmune disease characterized by vascular impairment and progressive fibrosis of the skin and other organs. Oncostatin M, a member of the IL-6 family, is elevated in SSc serum and was recognized as a significant player in various stages of fibrosis. The goal of this study was to assess the contribution of the OSM/OSMRβ pathway to endothelial cell (EC) injury and activation in SSc. METHODS IHC and IF were used to assess the distribution of OSM and OSMRβ in SSc (n = 14) and healthy control (n = 7) skin biopsies. Cell culture experiments were performed in human dermal microvascular endothelial cells (HDMECs) and included mRNA and protein analysis, and cell migration and proliferation assays. Ex vivo skin organoid culture was used to evaluate the effect of OSM on perivascular fibrosis. RESULTS OSMRβ protein was elevated in dermal ECs and in fibroblasts of SSc patients. Treatments of HDMECs with OSM or IL-6+sIL-6R have demonstrated that both cytokines similarly stimulated proinflammatory genes and genes related to endothelial to mesenchymal transition (EndMT). OSM was more effective than IL-6+sIL-6R in inducing cell migration, while both treatments similarly induced cell proliferation. The effects of OSM were mediated via OSMRβ and STAT3, while the LIFR did not contribute to these responses. Both OSM and IL-6+sIL-6R induced profibrotic gene expression in HDMECs, as well as expansion of the perivascular PDGFRβ+ cells in the ex vivo human skin culture system. Additional studies in HDMECs showed that siRNA-mediated downregulation of FLI1 and its close homolog ERG resulted in increased expression of OSMRβ in HDMECs. CONCLUSIONS This work provides new insights into the role of the OSM/OSMRβ axis in activation/injury of dermal ECs and supports the involvement of this pathway in SSc vascular disease.
Collapse
Affiliation(s)
- G Marden
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - Q Wan
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
- Department of Rheumatology and Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Wilks
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - K Nevin
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - M Feeney
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - N Wisniacki
- Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline, Stevenage, UK
| | - M Trojanowski
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - A Bujor
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - L Stawski
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA
| | - M Trojanowska
- Arthritis Centre, Boston University School of Medicine, Boston University, 72 East Concord St, E-5, Boston, MA, 02118, USA.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is an autoimmune connective tissue disease in which there is an activation of fibroblast to a myofibroblast that secretes huge amounts of extracellular matrix. Currently, no treatment exists that modifies the fibrosis elements and new therapeutic targets are badly needed. This review examines the current state of treatments and emerging therapeutics. RECENT FINDINGS Nintedanib was found to significantly reduce the rate of decline in SSc associated FVC, although it has no benefit on skin fibrosis. New cannabinoid receptor2 agonist has shown superb effects in phase II and results in phase III are anticipated. Other targets are currently being tested in clinical trials and new targets that are yet to be tested are increasing in the SSc literature. Nintedanib is now licenced for SSc interstitial lung disease but this does not modify the skin fibrosis. Current ongoing trials will determine the role of various targets. New targets are emerging as we gain a deeper understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Section of Rheumatology and allergy, Yale School of medicine, Yale University, New Haven, CT, USA
| | - Steven O'Reilly
- Department of Biosciences, Durham University, Stockton Road, Durham, UK. steven.o'
| |
Collapse
|
28
|
Sun T, Sakata F, Ishii T, Tawada M, Suzuki Y, Kinashi H, Katsuno T, Takei Y, Maruyama S, Mizuno M, Ito Y. Excessive salt intake increases peritoneal solute transport rate via local tonicity-responsive enhancer binding protein in subtotal nephrectomized mice. Nephrol Dial Transplant 2020; 34:2031-2042. [PMID: 30897196 DOI: 10.1093/ndt/gfz045] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/11/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND High peritoneal transport is associated with high mortality and technical failure in peritoneal dialysis (PD). Baseline peritoneal solute transport rate (PSTR) as measured by the peritoneal equilibration test (PET) within 6 months after PD initiation varies between patients. Sodium is reported to be stored in the skin or muscle of dialysis patients. This study investigated whether excessive salt intake in uremic mice caused peritoneal alterations without exposure to PD fluid. METHODS Sham-operated (Sham) and subtotal nephrectomized (Nx) mice were randomly given tap water or 1% sodium chloride (NaCl)-containing water for 8 weeks. PET was then performed to evaluate peritoneal function. Human mesothelial cell line Met-5A was used for in vitro studies. RESULTS We observed higher PSTR in Nx mice with 1% NaCl-containing drinking water (Nx + salt) compared with those with tap water (Nx + water), along with enhanced angiogenesis and inflammation in the peritoneum. Blockade of interleukin (IL)-6 signaling rescued peritoneal transport function in Nx + salt mice. In cultured Met-5A, additional NaCl in the medium upregulated IL-6 as well as vascular endothelial growth factor-A, associated with increased expression and nuclear translocation of tonicity-responsive enhancer binding protein (TonEBP). Knockdown of TonEBP lowered the induction caused by high tonicity. Peritoneal TonEBP expression was higher in Nx + salt mice, while removal of high-salt diet lowered TonEBP level and improved peritoneal transport function. CONCLUSIONS Excessive dietary salt intake caused peritoneal membrane functional and structural changes under uremic status. TonEBP regulated hypertonicity-related inflammatory changes and might play a crucial role in high baseline peritoneal transport.
Collapse
Affiliation(s)
- Ting Sun
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumiko Sakata
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takako Ishii
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuhiro Tawada
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Suzuki
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Yoshifumi Takei
- Department of Medicinal Biochemistry, Aichi Gakuin University School of Pharmacy, Nagoya, Japan
| | - Shoichi Maruyama
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Mizuno
- Department of Nephrology and Renal Replacement Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
29
|
Di Luigi L, Sgrò P, Duranti G, Sabatini S, Caporossi D, Del Galdo F, Dimauro I, Antinozzi C. Sildenafil Reduces Expression and Release of IL-6 and IL-8 Induced by Reactive Oxygen Species in Systemic Sclerosis Fibroblasts. Int J Mol Sci 2020; 21:E3161. [PMID: 32365773 PMCID: PMC7246497 DOI: 10.3390/ijms21093161] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress linked to vascular damage plays an important role in the pathogenesis of systemic sclerosis (SSc). Indeed, vascular damage at nailfold capillaroscopy in patients with Raynaud's Phenomenon (RP) is a major risk factor for the development of SSc together with the presence of specific autoantiobodies. Here, we investigated the effects of the phosphodiesterase type 5 inhibitor (PDE5i) sildenafil, currently used in the management of RP, in modulating the proinflammatory response of dermal fibroblasts to oxidative stress in vitro. Human fibroblasts isolated from SSc patients and healthy controls were exposed to exogenous reactive oxygen species (ROS) (100 µM H2O2), in the presence or absence of sildenafil (1 µM). Treatment with sildenafil significantly reduced dermal fibroblast gene expression and cellular release of IL-6, known to play a central role in the pathogenesis of tissue damage in SSc and IL-8, directly induced by ROS. This reduction was associated with suppression of STAT3-, ERK-, NF-κB-, and PKB/AKT-dependent pathways. Our findings support the notion that the employment of PDE5i in the management of RP may be explored for its efficacy in modulating the oxidative stress-induced proinflammatory activation of dermal fibroblasts in vivo and may ultimately aid in the prevention of tissue damage caused by SSc.
Collapse
Affiliation(s)
- Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.D.L.); (P.S.)
| | - Paolo Sgrò
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.D.L.); (P.S.)
| | - Guglielmo Duranti
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.)
| | - Stefania Sabatini
- Unit of Biochemistry and Molecular Biology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (G.D.); (S.S.)
| | - Daniela Caporossi
- Unit of Biology and Genetic, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Francesco Del Galdo
- Division of Rheumatic and Musculoskeletal Diseases, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Ivan Dimauro
- Unit of Biology and Genetic, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (D.C.); (I.D.)
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (L.D.L.); (P.S.)
| |
Collapse
|
30
|
Abstract
In 1973, IL-6 was identified as a soluble factor that is secreted by T cells and is important for antibody production by B cells. Since its discovery more than 40 years ago, the IL-6 pathway has emerged as a pivotal pathway involved in immune regulation in health and dysregulation in many diseases. Targeting of the IL-6 pathway has led to innovative therapeutic approaches for various rheumatic diseases, such as rheumatoid arthritis, juvenile idiopathic arthritis, adult-onset Still’s disease, giant cell arteritis and Takayasu arteritis, as well as other conditions such as Castleman disease and cytokine release syndrome. Targeting this pathway has also identified avenues for potential expansion into several other indications, such as uveitis, neuromyelitis optica and, most recently, COVID-19 pneumonia. To mark the tenth anniversary of anti-IL-6 receptor therapy worldwide, we discuss the history of research into IL-6 biology and the development of therapies that target IL-6 signalling, including the successes and challenges and with an emphasis on rheumatic diseases. In this Perspective article, the authors recount the earliest stages of translational research into IL-6 biology and the subsequent development of therapeutic IL-6 pathway inhibitors for the treatment of autoimmune rheumatic diseases and potentially numerous other indications.
Collapse
|
31
|
Chung MP, Chung L. Drugs in phase I and phase II clinical trials for systemic sclerosis. Expert Opin Investig Drugs 2020; 29:349-362. [PMID: 32178544 DOI: 10.1080/13543784.2020.1743973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Systemic sclerosis (SSc) is an autoimmune connective tissue disease that is characterized by excessive collagen deposition, vascular dysfunction, and fibrosis of cutaneous and visceral organs. Current therapeutic options are limited and provide only modest benefit.Areas covered: This review summarizes investigational agents in recent Phase I and II clinical trials evaluated for the treatment of SSc with a focus on skin in patients with early diffuse disease and interstitial lung disease. We performed a search on Pubmed and https://clinicaltrials.gov with keywords systemic sclerosis, Phase I clinical trial, and Phase II clinical trial to identify relevant studies from 2015 to 2019.Expert opinion: Therapeutic interventions in SSc should be guided by the level of disease activity and the degree of organ involvement. While most novel agents have failed to meet the primary endpoints of reducing skin thickening as measured by the modified Rodnan skin score, some have shown promise in improving the Composite Response Index for Clinical Trials in Early Diffuse Cutaneous Systemic Sclerosis (CRISS), reducing lung function decline, or improving patient-reported outcomes. However, most of the current evidence is based on small or open-label clinical trials. Well-designed, large, randomized, Phase III clinical trials are necessary to define the roles of investigational agents in treating SSc.
Collapse
Affiliation(s)
- Melody P Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lorinda Chung
- Division of Immunology and Rheumatology, Stanford University School of Medicine, Palo Alto, CA, USA.,Division of Rheumatology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
32
|
Abstract
Systemic sclerosis (SSc) has the highest cause-specific mortality of all the connective tissue diseases, and the aetiology of this complex and heterogeneous condition remains an enigma. Current disease-modifying therapies for SSc predominantly target inflammatory and vascular pathways but have variable and unpredictable clinical efficacy, and none is curative. Moreover, many of these therapies possess undesirable safety profiles and have no appreciable effect on long-term mortality. This Review describes the most promising of the existing therapeutic targets for SSc and places them in the context of our evolving understanding of the pathophysiology of this disease. As well as taking an in-depth look at the immune, inflammatory, vascular and fibrotic pathways implicated in the pathogenesis of SSc, this Review discusses emerging treatment targets and therapeutic strategies. The article concludes with an overview of important unanswered questions in SSc research that might inform the design of future studies of treatments aimed at modifying the course of this disease.
Collapse
|
33
|
Misra DP, Ahmed S, Agarwal V. Is biological therapy in systemic sclerosis the answer? Rheumatol Int 2020; 40:679-694. [PMID: 31960079 DOI: 10.1007/s00296-020-04515-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/07/2020] [Indexed: 12/19/2022]
Abstract
Systemic sclerosis is a systemic fibrosing disorder associated with significant morbidity and mortality, with no universally accepted disease-modifying therapy. Significant advances in the understanding of systemic sclerosis in recent years have guided the exploration of biological drugs in systemic sclerosis. In this narrative review, we summarize the published literature on biologic therapies in systemic sclerosis. A double-blind randomized trial, and an open label trial of tocilizumab (which antagonizes the interleukin 6 receptor), identified potential benefits in skin and lung fibrosis in systemic sclerosis; however, these differences failed to attain statistical significance. Two open-label trials compared rituximab (which depletes B lymphocytes) to conventional treatment/ cyclophosphamide in systemic sclerosis-associated interstitial lung disease (ILD), and revealed significant improvements in lung functions and skin disease with rituximab. Significant observational data also support the use of rituximab in skin, lung, muscle and joint manifestations of systemic sclerosis. Abatacept (which blocks T lymphocyte activation) has demonstrated utility for skin and joint disease in systemic sclerosis; a recent clinical trial failed to demonstrate benefits in improving skin thickness compared to placebo. Agents targeting type I interferons, interleukin 17 pathway, CD19 and plasma cells hold promise in systemic sclerosis; however, high-quality evidence is lacking. The results of different ongoing clinical trials targeting B lymphocytes, T lymphocytes, various cytokines (interleukins 6, 17, 4, 13, IL-1α), platelet-derived growth factor receptor, proteasome, integrins or oncostatin M may help guide future therapeutic regimens with biological agents in systemic sclerosis.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India.
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, 226014, India
| |
Collapse
|
34
|
Asano Y, Varga J. Rationally-based therapeutic disease modification in systemic sclerosis: Novel strategies. Semin Cell Dev Biol 2019; 101:146-160. [PMID: 31859147 DOI: 10.1016/j.semcdb.2019.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Systemic sclerosis (SSc) is a highly challenging chronic condition that is dominated by the pathogenetic triad of vascular damage, immune dysregulation/autoimmunity and fibrosis in multiple organs. A hallmark of SSc is the remarkable degree of molecular and phenotypic disease heterogeneity, which surpasses that of other complex rheumatic diseases. Disease trajectories in SSc are unpredictable and variable from patient to patient. Disease-modifying therapies for SSc are lacking, long-term morbidity is considerable and mortality remains unacceptably high. Currently-used empirical approaches to disease modification have modest and variable clinical efficacy and impact on survival, are expensive and frequently associated with unfavorable side effects, and none can be considered curative. However, research during the past several years is yielding significant advances with therapeutic potential. In particular, the application of unbiased omics-based discovery technologies to large and well-characterized SSc patient cohorts, coupled with hypothesis-testing experimental research using a variety of model systems is revealing new insights into SSc that allow formulation of a more nuanced appreciation of disease heterogeneity, and a deepening understanding of pathogenesis. Indeed, we are now presented with numerous novel and rationally-based strategies for targeted SSc therapy, several of which are currently, or expected to be shortly, undergoing clinical evaluation. In this review, we discuss promising novel therapeutic targets and rationally-based approaches to disease modification that have the potential to improve long-term outcomes in SSc.
Collapse
Affiliation(s)
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| |
Collapse
|
35
|
Błyszczuk P, Kozlova A, Guo Z, Kania G, Distler O. Experimental Mouse Model of Bleomycin-Induced Skin Fibrosis. ACTA ACUST UNITED AC 2019; 126:e88. [PMID: 31483105 DOI: 10.1002/cpim.88] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Systemic sclerosis (SSc) refers to an autoimmune disease, which is manifested by inflammation, vasculopathy, and fibrosis of the skin and internal organs. There are a number of different animal models recapitulating specific aspects of SSc. The experimental mouse model of bleomycin-induced skin fibrosis is commonly used to study the pathogenesis observed in SSc. In this model, repetitive intradermal injections of the cytotoxic agent bleomycin trigger progressive skin thickening, associated with excessive accumulation of collagen, infiltration of immune cells, and formation of α-smooth muscle actin (α-SMA)-positive myofibroblasts. In this article, we provide a detailed protocol for the induction of skin fibrosis in experimental mice by bleomycin. Moreover, we describe procedures for processing and analyzing affected skin tissue, provide troubleshooting, highlight advantages and limitations of the presented model, and critically discuss representative results. © 2019 by John Wiley & Sons, Inc. Basic Protocol 1: Intradermal bleomycin injections to induce skin fibrosis in mice Support Protocol: Mouse tissue collection for fibrosis evaluation and for other molecular assays Basic Protocol 2: Evaluation of mouse skin thickness using Masson's trichrome staining Basic Protocol 3: Measurement of hydroxyproline content in skin tissue using a colorimetric assay Basic Protocol 4: Evaluation of myofibroblasts in mouse skin by immunohistochemistry.
Collapse
Affiliation(s)
- Przemysław Błyszczuk
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Anastasiia Kozlova
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Zhongning Guo
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Xu C, Meng LB, Duan YC, Cheng YJ, Zhang CM, Zhou X, Huang CB. Screening and identification of biomarkers for systemic sclerosis via microarray technology. Int J Mol Med 2019; 44:1753-1770. [PMID: 31545397 PMCID: PMC6777682 DOI: 10.3892/ijmm.2019.4332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/13/2019] [Indexed: 12/25/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease. The pathogenesis of SSc is currently unclear, although like other rheumatic diseases its pathogenesis is complicated. However, the ongoing development of bioinformatics technology has enabled new approaches to research this disease using microarray technology to screen and identify differentially expressed genes (DEGs) in the skin of patients with SSc compared with individuals with healthy skin. Publicly available data were downloaded from the Gene Expression Omnibus (GEO) database and intra-group data repeatability tests were conducted using Pearson's correlation test and principal component analysis. DEGs were identified using an online tool, GEO2R. Functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Finally, the construction and analysis of the protein-protein interaction (PPI) network and identification and analysis of hub genes was carried out. A total of 106 DEGs were detected by the screening of SSc and healthy skin samples. A total of 10 genes [interleukin-6, bone morphogenetic protein 4, calumenin (CALU), clusterin, cysteine rich angiogenic inducer 61, serine protease 23, secretogranin II, suppressor of cytokine signaling 3, Toll-like receptor 4 (TLR4), tenascin C] were identified as hub genes with degrees ≥10, and which could sensitively and specifically predict SSc based on receiver operator characteristic curve analysis. GO and KEGG analysis showed that variations in hub genes were mainly enriched in positive regulation of nitric oxide biosynthetic processes, negative regulation of apoptotic processes, extracellular regions, extracellular spaces, cytokine activity, chemo-attractant activity, and the phosphoinositide 3 kinase-protein kinase B signaling pathway. In summary, bioinformatics techniques proved useful for the screening and identification of biomarkers of disease. A total of 106 DEGs and 10 hub genes were linked to SSc, in particular the TLR4 and CALU genes.
Collapse
Affiliation(s)
- Chen Xu
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Ling-Bing Meng
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yu-Chen Duan
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Yong-Jing Cheng
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Chun-Mei Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Xing Zhou
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| | - Ci-Bo Huang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Beijing 100730, P.R. China
| |
Collapse
|
37
|
Yang T, Zhang X, Chen A, Xiao Y, Sun S, Yan J, Cao Y, Chen J, Li F, Zhang Q, Huang K. Progranulin Promotes Bleomycin-Induced Skin Sclerosis by Enhancing Transforming Growth Factor–β/Smad3 Signaling through Up-Regulation of Transforming Growth Factor–β Type I Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1582-1593. [DOI: 10.1016/j.ajpath.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
38
|
Distler JHW, Feghali-Bostwick C, Soare A, Asano Y, Distler O, Abraham DJ. Review: Frontiers of Antifibrotic Therapy in Systemic Sclerosis. Arthritis Rheumatol 2019; 69:257-267. [PMID: 27636741 DOI: 10.1002/art.39865] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yoshihide Asano
- University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
39
|
Abstract
Systemic sclerosis (SSc) is a connective tissue disease, the pathogenesis of which is thought to involve interleukin-6 (IL-6), an inflammatory cytokine. This is based on findings of its concentration in patient serum, the results of an IL-6 suppression experiment in an animal model, and the results of a pilot study using IL-6 receptor antibody. However, it appears that a number of factors are involved in the pathology of SSc depending on the state of disease progression. In addition, the degree of involvement of IL-6 differs depending on the difference of organs within particular severe symptoms. Based on the findings from measurements of patient serum, the influence of IL-6 on the pathogenesis of SSc is greater in patients at a relatively early phase of the disease and in patients with lung lesions. Interleukin-13 (IL-13) is one of pro-fibrotic factors, and it is afraid that SSc patients with higher IL-13 have already lost the influence of IL-6. Therefore, although a clinical trial using the anti-IL-6 receptor antibody tocilizumab is underway, it is important to recognize the state of SSc patients prior to selecting treatment.
Collapse
Affiliation(s)
- Yoshihito Shima
- a Department of Thermo-therapeutics for vascular dysfunction, Clinical Immunology , Osaka University Graduate School of Medicine , Osaka , Japan
| |
Collapse
|
40
|
Kim S, Chun SH, Park HJ, Lee SI. Systemic Sclerosis and Microbiota: Overview of Current Research Trends and Future Perspective. JOURNAL OF RHEUMATIC DISEASES 2019. [DOI: 10.4078/jrd.2019.26.4.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suhee Kim
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Hee Jin Park
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Korea
| |
Collapse
|
41
|
Brown M, O'Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin Exp Immunol 2018; 195:310-321. [PMID: 30430560 DOI: 10.1111/cei.13238] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is an idiopathic systemic autoimmune disease. It is characterized by a triad of hallmarks: immune dysfunction, fibrosis and vasculopathy. Immune dysfunction in SSc is characterized by the activation and recruitment of immune cells and the production of autoantibodies and cytokines. How immune abnormalities link the fibrosis and vasculopathy in SSc is poorly understood. A plethora of immune cell types are implicated in the immunopathogenesis of SSc, including T cells, B cells, dendritic cells, mast cells and macrophages. How these different cell types interact to contribute to SSc is complicated, and can involve cell-to-cell interactions and communication via cytokines, including transforming growth factor (TGF)-β, interleukin (IL)-6 and IL-4. We will attempt to review significant and recent research demonstrating the importance of immune cell regulation in the immunopathogenesis of SSc with a particular focus on fibrosis.
Collapse
Affiliation(s)
- M Brown
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - S O'Reilly
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
42
|
van Caam A, Vonk M, van den Hoogen F, van Lent P, van der Kraan P. Unraveling SSc Pathophysiology; The Myofibroblast. Front Immunol 2018; 9:2452. [PMID: 30483246 PMCID: PMC6242950 DOI: 10.3389/fimmu.2018.02452] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022] Open
Abstract
Systemic sclerosis (SSc) is a severe auto-immune disease, characterized by vasculopathy and fibrosis of connective tissues. SSc has a high morbidity and mortality and unfortunately no disease modifying therapy is currently available. A key cell in the pathophysiology of SSc is the myofibroblast. Myofibroblasts are fibroblasts with contractile properties that produce a large amount of pro-fibrotic extracellular matrix molecules such as collagen type I. In this narrative review we will discuss the presence, formation, and role of myofibroblasts in SSc, and how these processes are stimulated and mediated by cells of the (innate) immune system such as mast cells and T helper 2 lymphocytes. Furthermore, current novel therapeutic approaches to target myofibroblasts will be highlighted for future perspective.
Collapse
Affiliation(s)
- Arjan van Caam
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | - Madelon Vonk
- Department of Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | | - Peter van Lent
- Experimental Rheumatology, Radboudumc, Nijmegen, Netherlands
| | | |
Collapse
|
43
|
The Two-Faced Cytokine IL-6 in Host Defense and Diseases. Int J Mol Sci 2018; 19:ijms19113528. [PMID: 30423923 PMCID: PMC6274717 DOI: 10.3390/ijms19113528] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023] Open
Abstract
Interleukein-6 (IL-6), is produced locally from infectious or injured lesions and is delivered to the whole body via the blood stream, promptly activating the host defense system to perform diverse functions. However, excessive or sustained production of IL-6 is involved in various diseases. In diseases, the IL-6 inhibitory strategy begins with the development of the anti-IL-6 receptor antibody, tocilizumab (TCZ). This antibody has shown remarkable effects on Castleman disease, rheumatoid arthritis and juvenile idiopathic arthritis. In 2017, TCZ was proven to work effectively against giant cell arteritis, Takayasu arteritis and cytokine releasing syndrome, initiating a new era for the treatment of these diseases. In this study, the defensive functions of IL-6 and various pathological conditions are compared. Further, the diseases of which TCZ has been approved for treatment are summarized, the updated results of increasing off-label use of TCZ for various diseases are reviewed and the conditions for which IL-6 inhibition might have a beneficial role are discussed. Given the involvement of IL-6 in many pathologies, the diseases that can be improved by IL-6 inhibition will expand. However, the important role of IL-6 in host defense should always be kept in mind in clinical practice.
Collapse
|
44
|
Dufour AM, Alvarez M, Russo B, Chizzolini C. Interleukin-6 and Type-I Collagen Production by Systemic Sclerosis Fibroblasts Are Differentially Regulated by Interleukin-17A in the Presence of Transforming Growth Factor-Beta 1. Front Immunol 2018; 9:1865. [PMID: 30150989 PMCID: PMC6099180 DOI: 10.3389/fimmu.2018.01865] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Functional cytokine networks have been poorly characterized in systemic sclerosis (SSc). While interleukin-17A (IL-17A) is increased in SSc skin and other organs, its role is still debated, particularly considering fibrogenesis. We uncover here a dual function of IL-17A in the presence of transforming growth factor-β 1 (TGF-β), the master pro-fibrotic cytokine. In the one hand, we report an unexpected synergic activity resulting in enhanced production of IL-6 by dermal fibroblasts; in the other hand, a substantial inhibition of type I collagen (col-I) production. IL-17A or TGF-β enhanced the production of IL-6 by 8- to 16-folds when compared to control in healthy donors (HD) and SSc cultures. However, the joint presence of IL-17A and TGF-β resulted in robustly exuberant responses with levels of IL-6 up to 100-folds higher than those observed in untreated cells. Inhibition of NFκB signaling pathway preferentially inhibited the production of IL-6 driven by IL-17A in HD fibroblasts, while inhibition of PI3K preferentially inhibited the production of IL-6 driven by TGF-β. Interestingly, when p38 MAPK was inhibited, substantial reduction of IL-6 production was observed for both IL-17A and TGF-β. Consistently with the inhibition experiments, the combined stimulation of fibroblasts by IL-17A and TGF-β resulted in 1.8-fold increase in p38 MAPK phosphorylation (P = 0.025), when compared to levels of phosphorylated p38 MAPK induced by IL-17A alone. Furthermore, the enhanced phosphorylation of p38 MAPK in the joint presence of IL-17A and TGF-β was unique among the signaling molecules we examined. As expected, TGF-β induced SMAD2 phosphorylation and col-I production. However, in fibroblasts cultured in the joint presence of TGF-β and IL-17A, SMAD2 phosphorylation was decreased by 0.6-folds (P = 0.022) when compared to that induced by TGF-β alone. Remarkably, in this condition, the production of col-I and fibronectin was significantly decreased in both HD and SSc. Thus, IL-17A and TGF-β reciprocally influence each other effector functions in fibroblasts. Intracellular molecular switches may favor synergic or antagonistic activities, which are revealed by specific readouts. The implications of these data in the context of SSc are far reaching, particularly in terms of therapeutic approaches since IL-6, IL-17A, and TGF-β are all putative targets of treatment.
Collapse
Affiliation(s)
- Aleksandra Maria Dufour
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Montserrat Alvarez
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Barbara Russo
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| | - Carlo Chizzolini
- Department of Immunology & Allergy, University Hospital and School of Medicine, Geneva, Switzerland.,Department of Pathology & Immunology, University Hospital and School of Medicine, Geneva, Switzerland
| |
Collapse
|
45
|
Do NN, Willenborg S, Eckes B, Jüngst C, Sengle G, Zaucke F, Eming SA. Myeloid Cell–Restricted STAT3 Signaling Controls a Cell-Autonomous Antifibrotic Repair Program. THE JOURNAL OF IMMUNOLOGY 2018; 201:663-674. [DOI: 10.4049/jimmunol.1701791] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
|
46
|
Hayashi T, Fujita K, Nojima S, Hayashi Y, Nakano K, Ishizuya Y, Wang C, Yamamoto Y, Kinouchi T, Matsuzaki K, Jingushi K, Kato T, Kawashima A, Nagahara A, Ujike T, Uemura M, Pena MDCR, Gordetsky JB, Morii E, Tsujikawa K, Netto GJ, Nonomura N. High-Fat Diet-Induced Inflammation Accelerates Prostate Cancer Growth via IL6 Signaling. Clin Cancer Res 2018; 24:4309-4318. [PMID: 29776955 DOI: 10.1158/1078-0432.ccr-18-0106] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 04/19/2018] [Accepted: 05/14/2018] [Indexed: 01/22/2023]
Abstract
Purpose: High-fat diet (HFD) could induce prostate cancer progression. The aim of this study is to identify mechanisms of HFD-induced prostate cancer progression, focusing on inflammation.Experimental Design: We administered HFD and celecoxib to autochthonous immunocompetent Pb-Cre+;Pten(fl/fl) model mice for prostate cancer. Tumor growth was evaluated by tumor weight and Ki67 stain, and local immune cells were assessed by flow cytometry at 22 weeks of age. Cytokines which correlated with tumor growth were identified, and the changes of tumor growth and local immune cells after inhibition of the cytokine signals were evaluated in the mice. IHC analyses using prostatectomy specimens of obese patients were performed.Results: HFD accelerated tumor growth and increased the myeloid-derived suppressor cells (MDSCs) fraction and M2/M1 macrophage ratio in the model mice. Celecoxib-suppressed tumor growth, and decreased both local MDSCs and M2/M1 macrophage ratio in HFD-fed mice. HFD-induced tumor growth was associated with IL6 secreted by prostatic macrophages, as were phosphorylated STAT3 (pSTAT3)-positive tumor cells. Anti-IL6 receptor antibody administration suppressed tumor growth, and decreased local MDSCs and pSTAT3-positive cell fractions in HFD-fed mice. The tumor-infiltrating CD11b-positive cell count was significantly higher in prostatectomy specimens of obese than those of nonobese patients with prostate cancer.Conclusions: HFD increased MDSCs and accelerated prostate cancer tumor growth via IL6/pSTAT3 signaling in the mice. This mechanism could exist in obese patients with prostate cancer. IL6-mediated inflammation could be a therapeutic target for prostate cancer. Clin Cancer Res; 24(17); 4309-18. ©2018 AACR.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.
| | - Satoshi Nojima
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kosuke Nakano
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yu Ishizuya
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Cong Wang
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Yoshiyuki Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Toshiro Kinouchi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kyosuke Matsuzaki
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kentaro Jingushi
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Nagahara
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takeshi Ujike
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan.,Department of Therapeutic Urologic Oncology, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutake Tsujikawa
- Laboratory of Cell Biology and Physiology, Osaka University Graduate School of Pharmaceutical Sciences, Suita, Japan
| | - George J Netto
- Department of Pathology, UAB School of Medicine, Birmingham, Alabama
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
47
|
Shima Y, Kawaguchi Y, Kuwana M. Add-on tocilizumab versus conventional treatment for systemic sclerosis, and cytokine analysis to identify an endotype to tocilizumab therapy. Mod Rheumatol 2018. [PMID: 29529897 DOI: 10.1080/14397595.2018.1452178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVES To evaluate the anti-interleukin (IL)-6 receptor antibody tocilizumab (TCZ) as a treatment of systemic sclerosis (SSc), a randomised parallel group study was conducted, and compared their results and baseline cytokine/chemokine profiles. METHODS Patients were assigned to a TCZ add-on group (TCZ group, n = 7) and a conventional therapy group (Conv group, n = 6). TCZ (8 mg/kg/month) for 6 months, and the modified Rodnan total skin score (mRSS) were used to compare the efficacy. The association of medical history, baseline pulmonary function tests, blood cell counts, serum C-reactive protein (CRP) and 26 cytokines/chemokines and decrease in mRSS were analysed. RESULTS The mean change in mRSS was larger in the TCZ group (6.3) than in the Conv group (3.4), but the difference was not statistically significant because of high variance in the TCZ group. Patients with shorter disease histories and higher CRP had larger decreases in mRSS, and the decrease in mRSS was negatively correlated with IL-13 and C-C motif chemokine ligand (CCL)5. CONCLUSION Although significant between-group differences were not observed, some patients had a decrease in mRSS. Short disease duration, high CRP, low IL-13 and low CCL5 may represent an SSc endotype responsive to TCZ therapy.
Collapse
Affiliation(s)
- Yoshihito Shima
- a Department of Respiratory Medicine and Clinical Immunology , Osaka University Graduate School of Medicine , Osaka , Japan
| | - Yasushi Kawaguchi
- b Institute of Rheumatology , Tokyo Women's Medical University , Tokyo , Japan
| | - Masataka Kuwana
- c Department of Allergy and Rheumatology , Nippon Medical School Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|
48
|
Schett G. Physiological effects of modulating the interleukin-6 axis. Rheumatology (Oxford) 2018; 57:ii43-ii50. [DOI: 10.1093/rheumatology/kex513] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/18/2022] Open
Affiliation(s)
- Georg Schett
- Department of Internal Medicine 3 – Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
49
|
Interleukin 6-Mediated Endothelial Barrier Disturbances Can Be Attenuated by Blockade of the IL6 Receptor Expressed in Brain Microvascular Endothelial Cells. Transl Stroke Res 2018; 9:631-642. [PMID: 29429002 DOI: 10.1007/s12975-018-0614-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/01/2018] [Indexed: 01/01/2023]
Abstract
Compromised blood-brain barrier (BBB) by dysregulation of cellular junctions is a hallmark of many cerebrovascular disorders due to the pro-inflammatory cytokines action. Interleukin 6 (IL6) is implicated in inflammatory processes and in secondary brain injury after subarachnoid hemorrhage (SAH) but its role in the maintenance of cerebral endothelium still requires a precise elucidation. Although IL6 has been shown to exert pro-inflammatory action on brain microvascular endothelial cells (ECs), the expression of one of the IL6 receptors, the IL6R is controversially discussed. In attempt to reach more clarity in this issue, we present here an evident baseline expression of the IL6R in BBB endothelium in vivo and in an in vitro model of the BBB, the cEND cell line. A significantly increased expression of IL6R and its ligand was observed in BBB capillaries 2 days after experimental SAH in mice. In vitro, we saw IL6 administration resulting in an intracellular and extracellular elevation of IL6 protein, which was accompanied by a reduced expression of tight and adherens junctions, claudin-5, occludin, and vascular-endothelial (VE-) cadherin. By functional assays, we could demonstrate IL6-incubated brain ECs to lose their endothelial integrity that can be attenuated by inhibiting the IL6R. Blockade of the IL6R by a neutralizing antibody has reconstituted the intercellular junction expression to the control level and caused a restoration of the transendothelial electrical resistance of the cEND cell monolayer. Our findings add depth to the current understanding of the involvement of the endothelial IL6R in the loss of EC integrity implicating potential therapy options.
Collapse
|
50
|
Contribution of Interleukin-6 to the Pathogenesis of Systemic Sclerosis. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2017. [DOI: 10.5301/jsrd.5000258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic sclerosis (SSc) is a connective tissue disease of unknown etiology, manifesting in patients as tissue fibrosis, endothelial dysfunction, and inflammation. The disease is characterized by autoantibodies, a hallmark of autoimmunity. Various cytokines and growth factors are elevated in the systemic circulation and fibrotic lesions of patients with SSc. In particular, several studies over the past 2 decades have shown that interleukin-6 (IL-6) appears to be involved in the pathogenesis of SSc. Based on the association between aberrant IL-6 production and tissue fibrosis in patients with SSc, the anti-IL-6 receptor antibody, tocilizumab, is being investigated in clinical trials. This article reviews the biological features of IL-6 and the IL-6 receptor; the role of IL-6 in the pathogenesis of SSc; and the potential for IL-6 inhibition to be used in the treatment of patients with SSc.
Collapse
|