1
|
Hoeft K, Koch L, Ziegler S, Zhang L, Luetke S, Tanzer MC, Mohanta D, Schumacher D, Schreibing F, Long Q, Kim H, Klinkhammer BM, Schikarski C, Maryam S, Baens M, Hermann J, Krieg S, Peisker F, De Laporte L, Schaefer GJ, Menzel S, Jankowski J, Humphreys BD, Wahida A, Schneider RK, Versele M, Boor P, Mann M, Sengle G, Hayat S, Kramann R. ADAMTS12 promotes fibrosis by restructuring extracellular matrix to enable activation of injury-responsive fibroblasts. J Clin Invest 2024; 134:e170246. [PMID: 39286973 PMCID: PMC11405035 DOI: 10.1172/jci170246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/10/2024] [Indexed: 09/19/2024] Open
Abstract
Fibrosis represents the uncontrolled replacement of parenchymal tissue with extracellular matrix (ECM) produced by myofibroblasts. While genetic fate-tracing and single-cell RNA-Seq technologies have helped elucidate fibroblast heterogeneity and ontogeny beyond fibroblast to myofibroblast differentiation, newly identified fibroblast populations remain ill defined, with respect to both the molecular cues driving their differentiation and their subsequent role in fibrosis. Using an unbiased approach, we identified the metalloprotease ADAMTS12 as a fibroblast-specific gene that is strongly upregulated during active fibrogenesis in humans and mice. Functional in vivo KO studies in mice confirmed that Adamts12 was critical during fibrogenesis in both heart and kidney. Mechanistically, using a combination of spatial transcriptomics and expression of catalytically active or inactive ADAMTS12, we demonstrated that the active protease of ADAMTS12 shaped ECM composition and cleaved hemicentin 1 (HMCN1) to enable the activation and migration of a distinct injury-responsive fibroblast subset defined by aberrant high JAK/STAT signaling.
Collapse
Affiliation(s)
- Konrad Hoeft
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Lars Koch
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Susanne Ziegler
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Ling Zhang
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Steffen Luetke
- Department of Pediatrics and Adolescent Medicine
- Center for Biochemistry, Medical Faculty, and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Maria C. Tanzer
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Debashish Mohanta
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - David Schumacher
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Department of Anesthesiology, RWTH Aachen University, Aachen, Germany
| | - Felix Schreibing
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Sequantrix GmbH, Aachen, Germany
| | - Qingqing Long
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Hyojin Kim
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | - Carla Schikarski
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sidrah Maryam
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | | | - Juliane Hermann
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sarah Krieg
- Institute of Biochemistry and Molecular Biology, and
| | - Fabian Peisker
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Laura De Laporte
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
- Institute of Applied Medical Engineering, Department of Advanced Materials for Medicine, University Hospital RWTH Aachen, Aachen, Germany
- DWI-Leibniz Institute of Interactive Materials, Aachen, Germany
| | - Gideon J.L. Schaefer
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Sylvia Menzel
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Rebekka K. Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Cell Biology, Institute for Biomedical Technologies, RWTH Aachen University, Aachen, Germany
| | | | - Peter Boor
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Matthias Mann
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Gerhard Sengle
- Department of Pediatrics and Adolescent Medicine
- Center for Biochemistry, Medical Faculty, and
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), Cologne, Germany
| | - Sikander Hayat
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Rafael Kramann
- Department of Medicine 2 (Nephrology, Rheumatology, Clinical Immunology and Hypertension), RWTH Aachen University, Medical Faculty, Aachen, Germany
| |
Collapse
|
2
|
Kundu G, Ghasemi M, Yim S, Rohil A, Xin C, Ren L, Srivastava S, Akinfolarin A, Kumar S, Srivastava GP, Sabbisetti VS, Murugaiyan G, Ajay AK. STAT3 Protein-Protein Interaction Analysis Finds P300 as a Regulator of STAT3 and Histone 3 Lysine 27 Acetylation in Pericytes. Biomedicines 2024; 12:2102. [PMID: 39335615 PMCID: PMC11428717 DOI: 10.3390/biomedicines12092102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) is a member of the cytoplasmic inducible transcription factors and plays an important role in mediating signals from cytokines, chemokines, and growth factors. We and others have found that STAT3 directly regulates pro-fibrotic signaling in the kidney. The STAT3 protein-protein interaction plays an important role in activating its transcriptional activity. It is necessary to identify these interactions to investigate their function in kidney disease. Here, we investigated the protein-protein interaction among three species to find crucial interactions that can be targeted to alleviate kidney disease. METHOD In this study, we examined common protein-protein interactions leading to the activation or downregulation of STAT3 among three different species: humans (Homo sapiens), mice (Mus musculus), and rabbits (Oryctolagus cuniculus). Further, we chose to investigate the P300 and STAT3 interaction and performed studies of the activation of STAT3 using IL-6 and inhibition of the P300 by its specific inhibitor A-485 in pericytes. Next, we performed immunoprecipitation to confirm whether A-485 inhibits the binding of P300 to STAT3. RESULTS Using the STRING application from ExPASy, we found that six proteins, including PIAS3, JAK1, JAK2, EGFR, SRC, and EP300, showed highly confident interactions with STAT3 in humans, mice, and rabbits. We also found that IL-6 treatment increased the acetylation of STAT3 and increased histone 3 lysine acetylation (H3K27ac). Furthermore, we found that the disruption of STAT3 and P300 interaction by the P300 inhibitor A-485 decreased STAT3 acetylation and H3K27ac. Finally, we confirmed that the P300 inhibitor A-485 inhibited the binding of STAT3 with P300, which inhibited its transcriptional activity by reducing the expression of Ccnd1 (Cyclin D1). CONCLUSIONS Targeting the P300 protein interaction with STAT3 may alleviate STAT3-mediated fibrotic signaling in humans and other species.
Collapse
Affiliation(s)
- Gautam Kundu
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- US Military HIV Research Program (MHRP), Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Maryam Ghasemi
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seungbin Yim
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ayanna Rohil
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Cuiyan Xin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Leo Ren
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | | - Akinwande Akinfolarin
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Subodh Kumar
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gyan P. Srivastava
- Department of Electrical Engineering & Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Venkata S. Sabbisetti
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amrendra K. Ajay
- Division of Renal Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Polycystic Kidney Disease, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Gui Y, Fu H, Palanza Z, Tao J, Lin YH, Min W, Qiao Y, Bonin C, Hargis G, Wang Y, Yang P, Kreutzer DL, Wang Y, Liu Y, Yu Y, Liu Y, Zhou D. Fibroblast expression of transmembrane protein smoothened governs microenvironment characteristics after acute kidney injury. J Clin Invest 2024; 134:e165836. [PMID: 38713523 PMCID: PMC11213467 DOI: 10.1172/jci165836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/02/2024] [Indexed: 05/09/2024] Open
Abstract
The smoothened (Smo) receptor facilitates hedgehog signaling between kidney fibroblasts and tubules during acute kidney injury (AKI). Tubule-derived hedgehog is protective in AKI, but the role of fibroblast-selective Smo is unclear. Here, we report that Smo-specific ablation in fibroblasts reduced tubular cell apoptosis and inflammation, enhanced perivascular mesenchymal cell activities, and preserved kidney function after AKI. Global proteomics of these kidneys identified extracellular matrix proteins, and nidogen-1 glycoprotein in particular, as key response markers to AKI. Intriguingly, Smo was bound to nidogen-1 in cells, suggesting that loss of Smo could affect nidogen-1 accessibility. Phosphoproteomics revealed that the 'AKI protector' Wnt signaling pathway was activated in these kidneys. Mechanistically, nidogen-1 interacted with integrin β1 to induce Wnt in tubules to mitigate AKI. Altogether, our results support that fibroblast-selective Smo dictates AKI fate through cell-matrix interactions, including nidogen-1, and offers a robust resource and path to further dissect AKI pathogenesis.
Collapse
Affiliation(s)
- Yuan Gui
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Haiyan Fu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zachary Palanza
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jianling Tao
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Han Lin
- National Center for Advancing Translational Sciences, Rockville, Maryland, USA
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Christopher Bonin
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Geneva Hargis
- University of Connecticut, School of Medicine, Farmington, Connecticut, USA
| | - Yuanyuan Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
| | | | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut, USA
- Department of Pharmacology, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yanbao Yu
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dong Zhou
- Division of Nephrology, Department of Medicine, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
4
|
Chung E, Deacon P, Hu YC, Lim HW, Park JS. Hedgehog signaling is required for the maintenance of mesenchymal nephron progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.12.553098. [PMID: 37645929 PMCID: PMC10461989 DOI: 10.1101/2023.08.12.553098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mesenchymal nephron progenitors (mNPs) give rise to all nephron tubules in the mammalian kidney. Since premature depletion of these cells leads to low nephron numbers, high blood pressure, and various renal diseases, it is critical that we understand how mNPs are maintained. While Fgf, Bmp, and Wnt signaling pathways are known to be required for the maintenance of these cells, it is unclear if any other signaling pathways also play roles. In this report, we explored the role of Hedgehog signaling in mNPs. We found that loss of either Shh in the collecting duct or Smo from the nephron lineage resulted in premature depletion of mNPs. Transcriptional profiling of mNPs with different Smo dosages suggested that Hedgehog signaling inhibited Notch signaling and upregulated the expression of Fox transcription factors such as Foxc1 and Foxp4. Consistent with these observations, we found that ectopic expression of Jag1 caused the premature depletion of mNPs as seen in the Smo mutant kidney. We also found that Foxc1 was capable of binding to mitotic condensed chromatin, a feature of a mitotic bookmarking factor. Our study demonstrates a previously unappreciated role of Hedgehog signaling in preventing premature depletion of mNPs by repressing Notch signaling and likely by activating the expression of Fox factors.
Collapse
Affiliation(s)
- Eunah Chung
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Deacon
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Joo-Seop Park
- Division of Nephrology and Hypertension, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- The Feinberg Cardiovascular and Renal Research Institute, Chicago, Illinois
- Division of Pediatric Urology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
5
|
Niu X, Xu X, Xu C, Cheuk YC, Rong R. Recent Advances of MSCs in Renal IRI: From Injury to Renal Fibrosis. Bioengineering (Basel) 2024; 11:432. [PMID: 38790298 PMCID: PMC11117619 DOI: 10.3390/bioengineering11050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Renal fibrosis is a pathological endpoint of maladaptation after ischemia-reperfusion injury (IRI), and despite many attempts, no good treatment has been achieved so far. At the core of renal fibrosis is the differentiation of various types of cells into myofibroblasts. MSCs were once thought to play a protective role after renal IRI. However, growing evidence suggests that MSCs have a two-sided nature. In spite of their protective role, in maladaptive situations, MSCs start to differentiate towards myofibroblasts, increasing the myofibroblast pool and promoting renal fibrosis. Following renal IRI, it has been observed that Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs) and Renal Resident Mesenchymal Stem Cells (RR-MSCs) play important roles. This review presents evidence supporting their involvement, discusses their potential mechanisms of action, and suggests several new targets for future research.
Collapse
Affiliation(s)
- Xinhao Niu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xiaoqing Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Cuidi Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Yin Celeste Cheuk
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| |
Collapse
|
6
|
Ren F, Aliper A, Chen J, Zhao H, Rao S, Kuppe C, Ozerov IV, Zhang M, Witte K, Kruse C, Aladinskiy V, Ivanenkov Y, Polykovskiy D, Fu Y, Babin E, Qiao J, Liang X, Mou Z, Wang H, Pun FW, Torres-Ayuso P, Veviorskiy A, Song D, Liu S, Zhang B, Naumov V, Ding X, Kukharenko A, Izumchenko E, Zhavoronkov A. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 2024:10.1038/s41587-024-02143-0. [PMID: 38459338 DOI: 10.1038/s41587-024-02143-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/16/2024] [Indexed: 03/10/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aggressive interstitial lung disease with a high mortality rate. Putative drug targets in IPF have failed to translate into effective therapies at the clinical level. We identify TRAF2- and NCK-interacting kinase (TNIK) as an anti-fibrotic target using a predictive artificial intelligence (AI) approach. Using AI-driven methodology, we generated INS018_055, a small-molecule TNIK inhibitor, which exhibits desirable drug-like properties and anti-fibrotic activity across different organs in vivo through oral, inhaled or topical administration. INS018_055 possesses anti-inflammatory effects in addition to its anti-fibrotic profile, validated in multiple in vivo studies. Its safety and tolerability as well as pharmacokinetics were validated in a randomized, double-blinded, placebo-controlled phase I clinical trial (NCT05154240) involving 78 healthy participants. A separate phase I trial in China, CTR20221542, also demonstrated comparable safety and pharmacokinetic profiles. This work was completed in roughly 18 months from target discovery to preclinical candidate nomination and demonstrates the capabilities of our generative AI-driven drug-discovery pipeline.
Collapse
Affiliation(s)
- Feng Ren
- Insilico Medicine Shanghai Ltd., Shanghai, China
- Insilico Medicine AI Limited, Abu Dhabi, UAE
| | - Alex Aliper
- Insilico Medicine AI Limited, Abu Dhabi, UAE
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Jian Chen
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Heng Zhao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Sujata Rao
- Insilico Medicine US Inc., New York, NY, USA
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
- Department of Nephrology, University Clinic RWTH Aachen, Aachen, Germany
| | - Ivan V Ozerov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Man Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Klaus Witte
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Chris Kruse
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yan Ivanenkov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | | | - Yanyun Fu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | | | - Junwen Qiao
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Xing Liang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Zhenzhen Mou
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Hui Wang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Frank W Pun
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Pedro Torres-Ayuso
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, PA, USA
| | | | - Dandan Song
- Department of Clinical Pharmacology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Sang Liu
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Bei Zhang
- Insilico Medicine Shanghai Ltd., Shanghai, China
| | - Vladimir Naumov
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Xiaoqiang Ding
- Division of Nephrology, Zhongshan Hospital Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrey Kukharenko
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China
| | - Evgeny Izumchenko
- Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Alex Zhavoronkov
- Insilico Medicine AI Limited, Abu Dhabi, UAE.
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong SAR, China.
- Insilico Medicine US Inc., New York, NY, USA.
- Insilico Medicine Canada Inc, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Marstrand-Jørgensen AB, Sembach FE, Bak ST, Ougaard M, Christensen-Dalsgaard M, Rønn Madsen M, Jensen DM, Secher T, Heimbürger SMN, Fink LN, Hansen D, Hansen HH, Østergaard MV, Christensen M, Dalbøge LS. Shared and Distinct Renal Transcriptome Signatures in 3 Standard Mouse Models of Chronic Kidney Disease. Nephron Clin Pract 2024; 148:487-502. [PMID: 38354720 DOI: 10.1159/000535918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION Several mouse models with diverse disease etiologies are used in preclinical research for chronic kidney disease (CKD). Here, we performed a head-to-head comparison of renal transcriptome signatures in standard mouse models of CKD to assess shared and distinct molecular changes in three mouse models commonly employed in preclinical CKD research and drug discovery. METHODS All experiments were conducted on male C57BL/6J mice. Mice underwent sham, unilateral ureter obstruction (UUO), or unilateral ischemic-reperfusion injury (uIRI) surgery and were terminated two- and 6-weeks post-surgery, respectively. The adenine-supplemented diet-induced (ADI) model of CKD was established by feeding with adenine diet for 6 weeks and compared to control diet feeding. For all models, endpoints included plasma biochemistry, kidney histology, and RNA sequencing. RESULTS All models displayed increased macrophage infiltration (F4/80 IHC) and fibrosis (collagen 1a1 IHC). Compared to corresponding controls, all models were characterized by an extensive number of renal differentially expressed genes (≥11,000), with a notable overlap in transcriptomic signatures across models. Gene expression markers of fibrosis, inflammation, and kidney injury supported histological findings. Interestingly, model-specific transcriptome signatures included several genes representing current drug targets for CKD, emphasizing advantages and limitations of the three CKD models in preclinical target and drug discovery. CONCLUSION The UUO, uIRI, and ADI mouse models of CKD have significant commonalities in their renal global transcriptome profile. Model-specific renal transcriptional signatures should be considered when selecting the specific model in preclinical target and drug discovery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas Secher
- Gubra A/S, Hørsholm, Denmark
- Cell Imaging and Pharmacology, Cell Therapy R&D, Novo Nordisk A/S, Måløv, Denmark
| | | | - Lisbeth N Fink
- Gubra A/S, Hørsholm, Denmark
- Biotherapeutics Screening, Ferring Pharmaceuticals A/S, Kastrup, Denmark
| | - Ditte Hansen
- Department of Nephrology, Herlev-Gentofte Hospital, University of Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
8
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Cep120 is essential for kidney stromal progenitor cell growth and differentiation. EMBO Rep 2024; 25:428-454. [PMID: 38177914 PMCID: PMC10897188 DOI: 10.1038/s44319-023-00019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Mutations in genes that disrupt centrosome structure or function can cause congenital kidney developmental defects and lead to fibrocystic pathologies. Yet, it is unclear how defective centrosome biogenesis impacts renal progenitor cell physiology. Here, we examined the consequences of impaired centrosome duplication on kidney stromal progenitor cell growth, differentiation, and fate. Conditional deletion of the ciliopathy gene Cep120, which is essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of interstitial lineages including pericytes, fibroblasts and mesangial cells. These phenotypes were caused by a combination of delayed mitosis, activation of the mitotic surveillance pathway leading to apoptosis, and changes in both Wnt and Hedgehog signaling that are key for differentiation of stromal cells. Cep120 ablation resulted in small hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, Cep120 and centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis after renal injury via enhanced TGF-β/Smad3-Gli2 signaling. Our study defines the cellular and developmental defects caused by loss of Cep120 and aberrant centrosome biogenesis in the embryonic kidney stroma.
Collapse
Affiliation(s)
- Ewa Langner
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Tao Cheng
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Eirini Kefaloyianni
- Department of Medicine (Rheumatology Division), Washington University, St Louis, MO, USA
| | - Charles Gluck
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA
| | - Baolin Wang
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division), Washington University, St Louis, MO, USA.
- Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA.
| |
Collapse
|
9
|
Tanaka S, Portilla D, Okusa MD. Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nat Rev Nephrol 2023; 19:721-732. [PMID: 37608184 DOI: 10.1038/s41581-023-00752-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/24/2023]
Abstract
Perivascular niches in the kidney comprise heterogeneous cell populations, including pericytes and fibroblasts, with distinct functions. These perivascular cells have crucial roles in preserving kidney homeostasis as they maintain microvascular networks by stabilizing the vasculature and regulating capillary constriction. A subset of kidney perivascular cells can also produce and secrete erythropoietin; this ability can be enhanced with hypoxia-inducible factor-prolyl hydroxylase inhibitors, which are used to treat anaemia in chronic kidney disease. In the pathophysiological state, kidney perivascular cells contribute to the progression of kidney fibrosis, partly via transdifferentiation into myofibroblasts. Moreover, perivascular cells are now recognized as major innate immune sentinels in the kidney that produce pro-inflammatory cytokines and chemokines following injury. These mediators promote immune cell infiltration, leading to persistent inflammation and progression of kidney fibrosis. The crosstalk between perivascular cells and tubular epithelial, immune and endothelial cells is therefore a key process in physiological and pathophysiological states. Here, we examine the multiple roles of kidney perivascular cells in health and disease, focusing on the latest advances in this field of research.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Didier Portilla
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Sarrand J, Soyfoo MS. Involvement of Epithelial-Mesenchymal Transition (EMT) in Autoimmune Diseases. Int J Mol Sci 2023; 24:14481. [PMID: 37833928 PMCID: PMC10572663 DOI: 10.3390/ijms241914481] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a complex reversible biological process characterized by the loss of epithelial features and the acquisition of mesenchymal features. EMT was initially described in developmental processes and was further associated with pathological conditions including metastatic cascade arising in neoplastic progression and organ fibrosis. Fibrosis is delineated by an excessive number of myofibroblasts, resulting in exuberant production of extracellular matrix (ECM) proteins, thereby compromising organ function and ultimately leading to its failure. It is now well acknowledged that a significant number of myofibroblasts result from the conversion of epithelial cells via EMT. Over the past two decades, evidence has accrued linking fibrosis to many chronic autoimmune and inflammatory diseases, including systemic sclerosis (SSc), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), Sjögren's syndrome (SS), and inflammatory bowel diseases (IBD). In addition, chronic inflammatory states observed in most autoimmune and inflammatory diseases can act as a potent trigger of EMT, leading to the development of a pathological fibrotic state. In the present review, we aim to describe the current state of knowledge regarding the contribution of EMT to the pathophysiological processes of various rheumatic conditions.
Collapse
Affiliation(s)
- Julie Sarrand
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Muhammad S. Soyfoo
- Department of Rheumatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
11
|
Chou LF, Yang HY, Hung CC, Tian YC, Hsu SH, Yang CW. Leptospirosis kidney disease: Evolution from acute to chronic kidney disease. Biomed J 2023; 46:100595. [PMID: 37142093 PMCID: PMC10345244 DOI: 10.1016/j.bj.2023.100595] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
Leptospirosis is a neglected bacterial disease caused by leptospiral infection that carries a substantial mortality risk in severe cases. Research has shown that acute, chronic, and asymptomatic leptospiral infections are closely linked to acute and chronic kidney disease (CKD) and renal fibrosis. Leptospires affect renal function by infiltrating kidney cells via the renal tubules and interstitium and surviving in the kidney by circumventing the immune system. The most well-known pathogenic molecular mechanism of renal tubular damage caused by leptospiral infection is the direct binding of the bacterial outer membrane protein LipL32 to toll-like receptor-2 expressed in renal tubular epithelial cells (TECs) to induce intracellular inflammatory signaling pathways. These pathways include the production of tumor necrosis factor (TNF)-α and nuclear factor kappa activation, resulting in acute and chronic leptospirosis-related kidney injury. Few studies have investigated the relationship between acute and chronic renal diseases and leptospirosis and further evidence is necessary. In this review, we intend to discuss the roles of acute kidney injury (AKI) to/on CKD in leptospirosis. This study reviews the molecular pathways underlying the pathogenesis of leptospirosis kidney disease, which will assist in concentrating on potential future research directions.
Collapse
Affiliation(s)
- Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Graduate Institute of Biomedical Sciences, Department of Microbiology and Immunology, Department of Biochemistry, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shen-Hsing Hsu
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
12
|
Greenberg D, D’Cruz R, Lacanlale JL, Rowan CJ, Rosenblum ND. Hedgehog-GLI mediated control of renal formation and malformation. FRONTIERS IN NEPHROLOGY 2023; 3:1176347. [PMID: 37675356 PMCID: PMC10479618 DOI: 10.3389/fneph.2023.1176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 09/08/2023]
Abstract
CAKUT is the leading cause of end-stage kidney disease in children and comprises a broad spectrum of phenotypic abnormalities in kidney and ureter development. Molecular mechanisms underlying the pathogenesis of CAKUT have been elucidated in genetic models, predominantly in the mouse, a paradigm for human renal development. Hedgehog (Hh) signaling is critical to normal embryogenesis, including kidney development. Hh signaling mediates the physiological development of the ureter and stroma and has adverse pathophysiological effects on the metanephric mesenchyme, ureteric, and nephrogenic lineages. Further, disruption of Hh signaling is causative of numerous human developmental disorders associated with renal malformation; Pallister-Hall Syndrome (PHS) is characterized by a diverse spectrum of malformations including CAKUT and caused by truncating variants in the middle-third of the Hh signaling effector GLI3. Here, we outline the roles of Hh signaling in regulating murine kidney development, and review human variants in Hh signaling genes in patients with renal malformation.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert D’Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jon L. Lacanlale
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J. Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Norman D. Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Langner E, Cheng T, Kefaloyianni E, Gluck C, Wang B, Mahjoub MR. Impaired centrosome biogenesis in kidney stromal progenitors reduces abundance of interstitial lineages and accelerates injury-induced fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.04.535583. [PMID: 37066241 PMCID: PMC10104024 DOI: 10.1101/2023.04.04.535583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Defective centrosome function can disrupt embryonic kidney development, by causing changes to the renal interstitium that leads to fibrocystic disease pathologies. Yet, it remains unknown how mutations in centrosome genes impact kidney interstitial cells. Here, we examined the consequences of defective centrosome biogenesis on stromal progenitor cell growth, differentiation and fate. Conditional deletion of Cep120 , a ciliopathy gene essential for centrosome duplication, in the stromal mesenchyme resulted in reduced abundance of pericytes, interstitial fibroblasts and mesangial cells. This was due to delayed mitosis, increased apoptosis, and changes in Wnt and Hedgehog signaling essential for differentiation of stromal lineages. Cep120 ablation resulted in hypoplastic kidneys with medullary atrophy and delayed nephron maturation. Finally, centrosome loss in the interstitium sensitized kidneys of adult mice, causing rapid fibrosis via enhanced TGF-β/Smad3-Gli2 signaling after renal injury. Our study defines the cellular and developmental defects caused by centrosome dysfunction in embryonic kidney stroma. Highlights Defective centrosome biogenesis in kidney stroma causes:Reduced abundance of stromal progenitors, interstitial and mesangial cell populationsDefects in cell-autonomous and paracrine signalingAbnormal/delayed nephrogenesis and tubular dilationsAccelerates injury-induced fibrosis via defective TGF-β/Smad3-Gli2 signaling axis.
Collapse
|
14
|
Huang R, Fu P, Ma L. Kidney fibrosis: from mechanisms to therapeutic medicines. Signal Transduct Target Ther 2023; 8:129. [PMID: 36932062 PMCID: PMC10023808 DOI: 10.1038/s41392-023-01379-7] [Citation(s) in RCA: 134] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/12/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Chronic kidney disease (CKD) is estimated to affect 10-14% of global population. Kidney fibrosis, characterized by excessive extracellular matrix deposition leading to scarring, is a hallmark manifestation in different progressive CKD; However, at present no antifibrotic therapies against CKD exist. Kidney fibrosis is identified by tubule atrophy, interstitial chronic inflammation and fibrogenesis, glomerulosclerosis, and vascular rarefaction. Fibrotic niche, where organ fibrosis initiates, is a complex interplay between injured parenchyma (like tubular cells) and multiple non-parenchymal cell lineages (immune and mesenchymal cells) located spatially within scarring areas. Although the mechanisms of kidney fibrosis are complicated due to the kinds of cells involved, with the help of single-cell technology, many key questions have been explored, such as what kind of renal tubules are profibrotic, where myofibroblasts originate, which immune cells are involved, and how cells communicate with each other. In addition, genetics and epigenetics are deeper mechanisms that regulate kidney fibrosis. And the reversible nature of epigenetic changes including DNA methylation, RNA interference, and chromatin remodeling, gives an opportunity to stop or reverse kidney fibrosis by therapeutic strategies. More marketed (e.g., RAS blockage, SGLT2 inhibitors) have been developed to delay CKD progression in recent years. Furthermore, a better understanding of renal fibrosis is also favored to discover biomarkers of fibrotic injury. In the review, we update recent advances in the mechanism of renal fibrosis and summarize novel biomarkers and antifibrotic treatment for CKD.
Collapse
Affiliation(s)
- Rongshuang Huang
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fu
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Liang Ma
- Kidney Research Institute, Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Scotland KB, Almutairi K, Park E, Wang L, Kung SHY, Haegert A, Adomat H, Bell R, LeBihan S, Chew BH, Lange D. Indwelling stents cause obstruction and induce ureteral injury and fibrosis in a porcine model. BJU Int 2023; 131:367-375. [PMID: 36181708 DOI: 10.1111/bju.15912] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate global changes in ureters at the transcriptional, translational and functional levels, both while stents are indwelling and after removal and recovery, and to study the effects of targeting pathways that play a potential role. METHODS Pig ureters were stented for varying amounts of time (48 h, 72 h, 14 days) and the impact on peristalsis, dilatation and hydronephrosis were assessed. RNAseq, proteomic, histological and smooth muscle (SM) function analyses were performed on ureteric and kidney tissues to assess changes induced by stenting and recovery. Pathway analysis was performed using Ingenuity Pathway Analysis software. To study the impact of possible interventions, the effects of erythropoeitin (EPO) and a Gli1 inhibitor were assessed. RESULTS Stenting triggers massive ureteric dilatation, aperistalsis and moderate hydronephrosis within 48 h. Pathways associated with obstruction, fibrosis and kidney injury were upregulated by stenting. Increased expression of GLI1, clusterin-α (a kidney injury marker) and collagen 4A2 (a fibrosis marker) was found in stented vs contralateral unstented ureters. EPO did not improve peristalsis or contraction force but did decrease non-purposeful spasming seen exclusively in stented ureters. Tamsulosin administration increased contractility but not rate of peristalsis in stented ureters. CONCLUSIONS Ureters respond to stents similarly to how they respond to an obstruction, that is, with activation of pathways associated with hydronephrosis, fibrosis and kidney injury. This is driven by significant dilatation and associated ureteric SM dysfunction. EPO and tamsulosin induced mild favourable changes in SM physiology, suggesting that targeting specific pathways has potential to address stent-induced complications.
Collapse
Affiliation(s)
- Kymora B Scotland
- Department of Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - Khaled Almutairi
- Department of Urologic Sciences, The Stone Centre at Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada.,College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.,King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Elliya Park
- Department of Urologic Sciences, The Stone Centre at Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Lu Wang
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Sonia H Y Kung
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Anne Haegert
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Hans Adomat
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Robert Bell
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Stephane LeBihan
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ben H Chew
- Department of Urologic Sciences, The Stone Centre at Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Dirk Lange
- Department of Urologic Sciences, The Stone Centre at Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
Das F, Ghosh-Choudhury N, Maity S, Kasinath BS, Ghosh Choudhury G. TGFβ instructs mTORC2 to activate PKCβII for increased TWIST1 expression in proximal tubular epithelial cell injury. FEBS Lett 2023; 597:1300-1316. [PMID: 36775967 DOI: 10.1002/1873-3468.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/14/2023]
Abstract
The plasticity of proximal tubular epithelial cells in response to TGFβ contributes to the expression of TWIST1 to drive renal fibrosis. The mechanism of TWIST1 expression is not known. We show that both PI3 kinase and its target mTORC2 increase TGFβ-induced TWIST1 expression. TGFβ enhances phosphorylation on Ser-660 in the protein kinase C βII (PKCβII) hydrophobic motif site. Remarkably, phosphorylation-deficient PKCβIIS660A, kinase-dead PKCβII, and PKCβII knockdown blocked TWIST1 expression by TGFβ. Inhibition of TWIST1 arrested TGFβ-induced tubular cell hypertrophy and the expression of fibronectin, collagen I (α2), and α-smooth muscle actin. By contrast, TWIST1 overexpression induced these pathologies. Interestingly, the inhibition of PKCβII reduced these phenomena, which were countered by the expression of TWIST1. These results provide the first evidence for the involvement of the mTORC2-PKCβII axis in TWIST1 expression to promote tubular cell pathology.
Collapse
Affiliation(s)
- Falguni Das
- 1VA Research and 4Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.,Department of Medicine, UT Health San Antonio, TX, USA
| | | | - Soumya Maity
- Department of Medicine, UT Health San Antonio, TX, USA
| | | | - Goutam Ghosh Choudhury
- 1VA Research and 4Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, 7400 Merton Minter Boulevard, San Antonio, TX, 78229, USA.,Department of Medicine, UT Health San Antonio, TX, USA.,Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
17
|
Wang D, Yin L, Chen R, Tan W, Liang L, Xiang J, Zhang H, Zhou X, Deng H, Guo B, Wang Y. Senescent renal tubular epithelial cells activate fibroblasts by secreting Shh to promote the progression of diabetic kidney disease. Front Med (Lausanne) 2023; 9:1018298. [PMID: 36760880 PMCID: PMC9905119 DOI: 10.3389/fmed.2022.1018298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023] Open
Abstract
Introduction Diabetic kidney disease (DKD) is one of the complications of diabetes; however, the pathogenesis is not yet clear. A recent study has shown that senescence is associated with the course of DKD. In the present study, we explored whether senescent renal tubular cells promote renal tubulointerstitial fibrosis by secreting Sonic hedgehog (Shh) which mediates fibroblast activation and proliferation in DKD. Methods A 36-week-old db/db mice model and the renal tubular epithelial cells were cultured in high glucose (HG, 60 mmol/L) medium for in vivo and in vitro experiments. Results Compared to db/m mice, blood glucose, microalbuminuria, serum creatinine, urea nitrogen, and UACR (microalbuminuria/urine creatinine) were markedly increased in db/db mice. Collagen III, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α) were also increased in db/db mice kidneys, suggesting fibrosis and inflammation in the organ. Moreover, the detection of SA-β-galactosidase (SA-β-Gal) showed that the activity of SA-β-Gal in the cytoplasm of renal tubular epithelial cells increased, and the cell cycle inhibition of the expression of senescence-related gene cell cycle inhibitor p16 INK4A protein and p21 protein increased, indicating that renal fibrosis in db/db mice was accompanied by cell senescence. Furthermore, Shh is highly expressed in the injured renal tubules and in the kidney tissue of db/db mice, as detected by enzyme-linked immunosorbent assay (ELISA). The results of immunofluorescence staining showed increased positive staining for Shh in renal tubular epithelial cells of db/db mice and decreased positive staining for Lamin B1, but increased positive staining for γH2A.X in cells with high Shh expression; similar results were obtained in vitro. In addition, HG stimulated renal tubular epithelial cells to secrete Shh in the supernatant of the medium. D-gal treatment of renal tubular epithelial cells increased the protein levels of Shh and p21. We also found enhanced activation and proliferation of fibroblasts cultured with the supernatant of renal tubular epithelial cells stimulated by HG medium but the proliferative effect was significantly diminished when co-cultured with cyclopamine (CPN), an inhibitor of the Shh pathway. Discussion In conclusion, HG induces renal tubular epithelial cell senescence, and the secretion of senescence-associated proteins and Shh mediates inflammatory responses and fibroblast activation and proliferation, ultimately leading to renal fibrosis.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China,International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China
| | - Ling Yin
- Division of Nephrology, Jiangsu Provincial Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rongyu Chen
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Wanlin Tan
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Luqun Liang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jiayi Xiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huifang Zhang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingcheng Zhou
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huaqing Deng
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China,Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou, China
| | - Bing Guo
- Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,*Correspondence: Bing Guo, ; orcid.org/0000-0001-8998-2597
| | - Yuanyuan Wang
- International Scientific and Technological Cooperation Base of Pathogenesis and Drug Research on Common Major Diseases, Guizhou Medical University, Guiyang, China,Guizhou Province Innovation Base of Common Major Chronic Disease Pathogenesis and Drug Development and Application, Guiyang, Guizhou, China,Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou, China,Yuanyuan Wang, ; orcid.org/0000-0002-6693-643X
| |
Collapse
|
18
|
Guan Y, Quan D, Chen K, Kang L, Yang D, Wu H, Yan M, Wu S, Lv L, Zhang G. Kaempferol inhibits renal fibrosis by suppression of the sonic hedgehog signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154246. [PMID: 36274411 DOI: 10.1016/j.phymed.2022.154246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Most chronic kidney diseases (CKDs) develop to end-stage renal disease (ESRD), which is characterized by fibrosis and permanent tissue and function loss. As a result, better and more effective remedies are essential. Kaempferol (KAE) is a common flavonoid extracted from plants. It can control the progression of kidney fibrosis and the epithelial-to-mesenchymal transition (EMT) of the renal tubular system. PURPOSE We aim to investigate the effect of KAE therapy on extracellular matrix deposition and stimulation of EMT in vitro and in vivo to elucidate the treatment mechanisms regulating these effects. STUDY DESIGN Chronic hypertension-induced kidney fibrosis was studied in spontaneously hypertensive rats with chronic kidney disease. Biochemical analysis, histological staining, and the expression level of relative proteins were used to assess the effect of KAE on renal function and fibrosis. The direct impact of KAE on proliferation and migration was evaluated using human renal tubular epithelial cells (HK-2) induced by transforming growth factor-β1 (TGF-β1), which can then induce EMT. The molecular mechanism of KAE was verified using co-IP assay and immunofluorescence. RESULTS KAE could reduce blood pressure and decrease the extracellular matrix (ECM) components (including collagen I and collagen Ш), TGF-β1, and α-SMA in the kidneys of hypertension-induced rats with chronic kidney disease. Moreover, in HK-2 cell treated with TGF-β1, KAE administration significantly suppressed proliferation, migration, and EMT via increasing the expression of E-cadherin, while reducing the N-cadherin and α-SMA. Sufu was exceedingly repressed in HK-2 cells treated with TGF-β1. KAE inhibited the activation of Shh and Gli through increasing the expression of Sufu, thereby blocking the nuclear translocation of Gli1 in vitro. CONCLUSION KAE ameliorated kidney fibrosis and EMT by inhibiting the sonic hedgehog signaling pathway, thereby to attenuate the pathological progression of hypertensive kidney fibrosis.
Collapse
Affiliation(s)
- Yiqing Guan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Dongling Quan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Kai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Liangqi Kang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Danni Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Huanxian Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Mengqiu Yan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Shaoyu Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China
| | - Lin Lv
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
| | - Guohua Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
19
|
Saifi MA, Bansod S, Godugu C. COVID-19 and fibrosis: Mechanisms, clinical relevance, and future perspectives. Drug Discov Today 2022; 27:103345. [PMID: 36075378 PMCID: PMC9444298 DOI: 10.1016/j.drudis.2022.103345] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023]
Abstract
Coronavirus 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has had significant impacts worldwide since its emergence in December, 2019. Despite a high recovery rate, there is a growing concern over its residual, long-term effects. However, because of a lack of long-term data, we are still far from establishing a consensus on post-COVID-19 complications. The deposition of excessive extracellular matrix (ECM), known as fibrosis, has been observed in numerous survivors of COVID-19. Given the exceptionally high number of individuals affected, there is an urgent need to address the emergence of fibrosis post-COVID-19. In this review, we discuss the clinical relevance of COVID-19-associated fibrosis, the current status of antifibrotic agents, novel antifibrotic targets, and challenges to its management.
Collapse
Affiliation(s)
- Mohd Aslam Saifi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India
| | - Sapana Bansod
- Department of Internal Medicine, Oncology Division, Washington University, School of Medicine, St Louis, MO 63110, USA
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500 037, India.
| |
Collapse
|
20
|
Li L, Gan H. Intact Fibroblast Growth Factor 23 Regulates Chronic Kidney Disease–Induced Myocardial Fibrosis by Activating the Sonic Hedgehog Signaling Pathway. J Am Heart Assoc 2022; 11:e026365. [DOI: 10.1161/jaha.122.026365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD‐induced myocardial fibrosis have not been clarified.
Methods and Results
In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli‐1) inhibitor GANT‐61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli‐1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen‐1 and collagen‐3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli‐1 inhibitor GANT‐61, the degree of myocardial fibrosis was reduced, and Gli‐1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin‐eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli‐1 mRNAs and Shh, Smoothened, and Gli‐1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α‐smooth muscle actin, which are also markers of transdifferentiation, collagen‐1, and collagen‐3, were increased.
Conclusions
On the basis of these results, intact fibroblast growth factor 23 promotes CKD‐induced myocardial fibrosis by activating the Shh signaling pathway.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
21
|
Hsieh CL, Jerman SJ, Sun Z. Non-cell-autonomous activation of hedgehog signaling contributes to disease progression in a mouse model of renal cystic ciliopathy. Hum Mol Genet 2022; 31:4228-4240. [PMID: 35904445 PMCID: PMC9759329 DOI: 10.1093/hmg/ddac175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/10/2022] [Accepted: 07/26/2022] [Indexed: 01/21/2023] Open
Abstract
Polycystic kidney disease (PKD) is a ciliopathy characterized by fluid-filled epithelial cysts in the kidney. Although it is well established that the primary cilium is essential for hedgehog (HH) signaling and HH signaling is abnormally activated in multiple PKD models, the mechanism and function of HH activation in PKD pathogenesis remain incompletely understood. Here we used a transgenic HH reporter mouse line to identify the target tissue of HH signaling in Arl13f/f;Ksp-Cre mutant kidney, in which the cilia biogenesis gene Arl13b is specifically deleted in epithelial cells of the distal nephron. In addition, we used a co-culture system to dissect cross-talk between epithelial and mesenchymal cells in the absence of expanding cysts. Finally, we treated Arl13bf/f;Ksp-Cre mice with the GLI inhibitor GANT61 and analyzed its impact on PKD progression in this model. We found that deletion of Arl13b in epithelial cells in the mouse kidney, in vivo, led to non-cell-autonomous activation of the HH pathway in the interstitium. In vitro, when co-cultured with mesenchymal cells, Arl13b-/- epithelial cells produced more sonic hedgehog in comparison to cells expressing Arl13b. Reciprocally, HH signaling was activated in mesenchymal cells co-cultured with Arl13b-/- epithelial cells. Finally, whole body inhibition of the HH pathway by GANT61 reduced the number of proliferating cells, inhibited cyst progression and fibrosis and preserved kidney function in Arl13bf/f;Ksp-Cre mice. Our results reveal non-cell-autonomous activation of HH signaling in the interstitium of the Arl13bf/f;Ksp-Cre kidney and suggest that abnormal activation of the HH pathway contributes to disease progression.
Collapse
Affiliation(s)
- Chia-Ling Hsieh
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Stephanie Justine Jerman
- Department of Genetics, Yale University School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | - Zhaoxia Sun
- To whom correspondence should be addressed. Tel: +1 2037853589; Fax: +1 2037857227;
| |
Collapse
|
22
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
23
|
Manshouri T, Veletic I, Li P, Yin CC, Post SM, Verstovsek S, Estrov Z. GLI1 activates pro-fibrotic pathways in myelofibrosis fibrocytes. Cell Death Dis 2022; 13:481. [PMID: 35595725 PMCID: PMC9122946 DOI: 10.1038/s41419-022-04932-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Bone marrow (BM) fibrosis was thought to be induced exclusively by mesenchymal stromal cells (MSCs). However, we and others found that neoplastic fibrocytes induce BM fibrosis in myelofibrosis (MF). Because glioma-associated oncogene-1 (GLI1), an effector of the Hedgehog pathway, plays a role in the induction of BM fibrosis, we wondered whether GLI1 affects fibrocyte-induced BM fibrosis in MF. Multiplexed fluorescence immunohistochemistry analysis of MF patients' BM detected high levels of GLI1 in MF fibrocytes compared to MSCs or normal fibrocytes. Immunostaining, RNA in situ hybridization, gene expression analysis, and western immunoblotting detected high levels of GLI1 and GLI1-induced matrix metalloproteases (MMP) 2 and 9 in MF patients BM-derived cultured fibrocytes. Similarly, MF patients' BM-derived GLI1+ fibrocytes were found in BMs and spleens of MF xenograft mice. GLI1 silencing reduced the levels of MMP2/9, phosphorylated SMAD2/3, and procollagen-I, and knockdown or inhibition of GLI1 decreased fibrocyte formation and induced apoptosis of both fibrocytes and fibrocyte progenitors. Because Janus kinase (JAK)2-induced STAT3 is constitutively activated in MF and because STAT3 induces GLI1 expression, we sought to determine whether STAT3 activates GLI1 in MF fibrocytes. Imaging analysis detected phosphotyrosine STAT3 in MF patients' BM fibrocytes, and transfection of fibrocytes with STAT3-siRNA or treatment with a JAK1/2 inhibitor ruxolitinib reduced GLI1 and MMP2/9 levels. Chromatin immunoprecipitation and a luciferase assay revealed that STAT3 induced the expression of the GLI1 gene in both MF BM fibrocytes and fibrocyte progenitors. Together, our data suggest that STAT3-activated GLI1 contributes to the induction of BM fibrosis in MF.
Collapse
Affiliation(s)
- Taghi Manshouri
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - C Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sean M Post
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
24
|
Serowoky MA, Kuwahara ST, Liu S, Vakhshori V, Lieberman JR, Mariani FV. A murine model of large-scale bone regeneration reveals a selective requirement for Sonic Hedgehog. NPJ Regen Med 2022; 7:30. [PMID: 35581202 PMCID: PMC9114339 DOI: 10.1038/s41536-022-00225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Building and maintaining skeletal tissue requires the activity of skeletal stem and progenitor cells (SSPCs). Following injury, local pools of these SSPCs become active and coordinate to build new cartilage and bone tissues. While recent studies have identified specific markers for these SSPCs, how they become activated in different injury contexts is not well-understood. Here, using a model of large-scale rib bone regeneration in mice, we demonstrate that the growth factor, Sonic Hedgehog (SHH), is an early and essential driver of large-scale bone healing. Shh expression is broadly upregulated in the first few days following rib bone resection, and conditional knockout of Shh at early but not late post-injury stages severely inhibits cartilage callus formation and later bone regeneration. Whereas Smoothened (Smo), a key transmembrane component of the Hh pathway, is required in Sox9+ lineage cells for rib regeneration, we find that Shh is required in a Prrx1-expressing, Sox9-negative mesenchymal population. Intriguingly, upregulation of Shh expression and requirements for Shh and Smo may be unique to large-scale injuries, as they are dispensable for both complete rib and femur fracture repair. In addition, single-cell RNA sequencing of callus tissue from animals with deficient Hedgehog signaling reveals a depletion of Cxcl12-expressing cells, which may indicate failed recruitment of Cxcl12-expressing SSPCs during the regenerative response. These results reveal a mechanism by which Shh expression in the local injury environment unleashes large-scale regenerative abilities in the murine rib.
Collapse
Affiliation(s)
- Maxwell A Serowoky
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Stephanie T Kuwahara
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Shuwan Liu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1520 San Pablo Street, Los Angeles, CA, 90089, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo Street, Los Angeles, CA, 90089, USA.
| |
Collapse
|
25
|
Zhang Y, Wang Y, Zheng G, Liu Y, Li J, Huang H, Xu C, Zeng Y, Zhang X, Qin J, Dai C, Hambrock HO, Hartmann U, Feng B, Mak KK, Liu Y, Lan HY, Huang Y, Zheng ZH, Xia Y. Follistatin-like 1 (FSTL1) interacts with Wnt ligands and Frizzled receptors to enhance Wnt/β-catenin signaling in obstructed kidneys in vivo. J Biol Chem 2022; 298:102010. [PMID: 35525270 PMCID: PMC9234244 DOI: 10.1016/j.jbc.2022.102010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
Follistatin (FS)-like 1 (FSTL1) is a member of the FS-SPARC (secreted protein, acidic and rich in cysteine) family of secreted and extracellular matrix proteins. The functions of FSTL1 have been studied in heart and lung injury as well as in wound healing; however, the role of FSTL1 in the kidney is largely unknown. Here, we show using single-cell RNA-Seq that Fstl1 was enriched in stromal cells in obstructed mouse kidneys. In addition, immunofluorescence demonstrated that FSTL1 expression was induced in fibroblasts during kidney fibrogenesis in mice and human patients. We demonstrate that FSTL1 overexpression increased renal fibrosis and activated the Wnt/β-catenin signaling pathway, known to promote kidney fibrosis, but not the transforming growth factor β (TGF-β), Notch, Hedgehog, or Yes-associated protein (YAP) signaling pathways in obstructed mouse kidneys, whereas inhibition of FSTL1 lowered Wnt/β-catenin signaling. Importantly, we show that FSTL1 interacted with Wnt ligands and the Frizzled (FZD) receptors but not the coreceptor lipoprotein receptor–related protein 6 (LRP6). Specifically, we found FSTL1 interacted with Wnt3a through its extracellular calcium–binding (EC) domain and von Willebrand factor type C–like (VWC) domain, and with FZD4 through its EC domain. Furthermore, we show that FSTL1 increased the association of Wnt3a with FZD4 and promoted Wnt/β-catenin signaling and fibrogenesis. The EC domain interacting with both Wnt3a and FZD4 also enhanced Wnt3a signaling. Therefore, we conclude that FSTL1 is a novel extracellular enhancer of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guoxun Zheng
- iHuman Institute, Shanghai Tech University, Shanghai 201210, China
| | - Yang Liu
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jinhong Li
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Huihui Huang
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Chunhua Xu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yelin Zeng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jinzhong Qin
- The Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Chunsun Dai
- Center for Kidney Disease, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Harald O Hambrock
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Ursula Hartmann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, 50931 Cologne, Germany
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kingston Kinglun Mak
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Youhua Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Nephrology and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Ajay AK, Zhao L, Vig S, Fujiwara M, Thakurela S, Jadhav S, Cho A, Chiu IJ, Ding Y, Ramachandran K, Mithal A, Bhatt A, Chaluvadi P, Gupta MK, Shah SI, Sabbisetti VS, Waaga-Gasser AM, Frank DA, Murugaiyan G, Bonventre JV, Hsiao LL. Deletion of STAT3 from Foxd1 cell population protects mice from kidney fibrosis by inhibiting pericytes trans-differentiation and migration. Cell Rep 2022; 38:110473. [PMID: 35263586 PMCID: PMC10027389 DOI: 10.1016/j.celrep.2022.110473] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
Signal transduction and activator of transcription 3 (STAT3) is a key transcription factor implicated in the pathogenesis of kidney fibrosis. Although Stat3 deletion in tubular epithelial cells is known to protect mice from fibrosis, vFoxd1 cells remains unclear. Using Foxd1-mediated Stat3 knockout mice, CRISPR, and inhibitors of STAT3, we investigate its function. STAT3 is phosphorylated in tubular epithelial cells in acute kidney injury, whereas it is expanded to interstitial cells in fibrosis in mice and humans. Foxd1-mediated deletion of Stat3 protects mice from folic-acid- and aristolochic-acid-induced kidney fibrosis. Mechanistically, STAT3 upregulates the inflammation and differentiates pericytes into myofibroblasts. STAT3 activation increases migration and profibrotic signaling in genome-edited, pericyte-like cells. Conversely, blocking Stat3 inhibits detachment, migration, and profibrotic signaling. Furthermore, STAT3 binds to the Collagen1a1 promoter in mouse kidneys and cells. Together, our study identifies a previously unknown function of STAT3 that promotes kidney fibrosis and has therapeutic value in fibrosis.
Collapse
Affiliation(s)
- Amrendra K Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Li Zhao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Renal Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Shruti Vig
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mai Fujiwara
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sudhir Thakurela
- Broad Institute of MIT and Harvard, Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Shreyas Jadhav
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Cho
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - I-Jen Chiu
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yan Ding
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Krithika Ramachandran
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Arushi Mithal
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Aanal Bhatt
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pratyusha Chaluvadi
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Manoj K Gupta
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center and Harvard Medical School, Boston, MA 02215, USA
| | - Sujal I Shah
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Venkata S Sabbisetti
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ana Maria Waaga-Gasser
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David A Frank
- Department of Medical Oncology, Dana Farber Cancer Research Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gopal Murugaiyan
- Ann Romney Centre for Neurological Disease, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph V Bonventre
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Li-Li Hsiao
- Department of Medicine, Division of Renal Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Chen YY, Chen XG, Zhang S. Druggability of lipid metabolism modulation against renal fibrosis. Acta Pharmacol Sin 2022; 43:505-519. [PMID: 33990764 PMCID: PMC8888625 DOI: 10.1038/s41401-021-00660-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/16/2021] [Indexed: 02/08/2023] Open
Abstract
Renal fibrosis contributes to progressive damage to renal structure and function. It is a common pathological process as chronic kidney disease develops into kidney failure, irrespective of diverse etiologies, and eventually leads to death. However, there are no effective drugs for renal fibrosis treatment at present. Lipid aggregation in the kidney and consequent lipotoxicity always accompany chronic kidney disease and fibrosis. Numerous studies have revealed that restoring the defective fatty acid oxidation in the kidney cells can mitigate renal fibrosis. Thus, it is an important strategy to reverse the dysfunctional lipid metabolism in the kidney, by targeting critical regulators of lipid metabolism. In this review, we highlight the potential "druggability" of lipid metabolism to ameliorate renal fibrosis and provide current pre-clinical evidence, exemplified by some representative druggable targets and several other metabolic regulators with anti-renal fibrosis roles. Then, we introduce the preliminary progress of noncoding RNAs as promising anti-renal fibrosis drug targets from the perspective of lipid metabolism. Finally, we discuss the prospects and deficiencies of drug targeting lipid reprogramming in the kidney.
Collapse
Affiliation(s)
- Yuan-yuan Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Xiao-guang Chen
- grid.506261.60000 0001 0706 7839State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050 China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|
28
|
Bai X, Nie P, Lou Y, Zhu Y, Jiang S, Li B, Luo P. Pirfenidone is a renal protective drug: Mechanisms, signalling pathways, and preclinical evidence. Eur J Pharmacol 2021; 911:174503. [PMID: 34547247 DOI: 10.1016/j.ejphar.2021.174503] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022]
Abstract
Renal fibrosis, a characteristic of all chronic kidney diseases, lacks effective therapeutic drugs currently. Pirfenidone (PFD), a small molecule drug with good oral bioavailability, is widely used in idiopathic pulmonary fibrosis and exerts anti-fibrotic, anti-inflammatory, antioxidant, and anti-apoptotic effects. These effects have been attributed to the suppression of cell growth factors (in particular, but not exclusively, transforming growth factor-β) and the epithelial-mesenchymal transition, as well as the possible down-regulation of pro-inflammatory mediators (such as tumour necrosis factor-α), the protection of mitochondrial function, and the regulation of inflammatory cells. Considering the activation of similar anti-fibrotic pathways in lung and kidney disease and the broad activity of PFD, this drug has improved the treatment of the renal fibrotic disease. In this review, we briefly summarize the pharmacokinetics and safety of PFD as well as the mechanisms of PFD focusing on kidney disease. We summarize the effects of PFD on renal function and pathological alterations based on animal experiments, as well as changes in growth factors based on both animal and renal cell experiments. Moreover, given the activation of similar profibrotic pathways in pulmonary diseases and other disorders, we reviewed in-depth the possible signalling pathways targeted by PFD to attenuate renal fibrosis and protect renal function. Finally, we provide an overview of the current clinical trials of PFD for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
29
|
Abstract
The postnatal kidney is predominantly composed of nephron epithelia with the interstitial components representing a small proportion of the final organ, except in the diseased state. This is in stark contrast to the developing organ, which arises from the mesoderm and comprises an expansive stromal population with distinct regional gene expression. In many organs, the identity and ultimate function of an epithelium is tightly regulated by the surrounding stroma during development. However, although the presence of a renal stromal stem cell population has been demonstrated, the focus has been on understanding the process of nephrogenesis whereas the role of distinct stromal components during kidney morphogenesis is less clear. In this Review, we consider what is known about the role of the stroma of the developing kidney in nephrogenesis, where these cells come from as well as their heterogeneity, and reflect on how this information may improve human kidney organoid models.
Collapse
Affiliation(s)
- Sean B. Wilson
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Melissa H. Little
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC 3000, Australia
| |
Collapse
|
30
|
Yuan X, Zhang L, Du J. Tbx18-positive cells-derived myofibroblasts contribute to renal interstitial fibrosis via transforming growth factor-β signaling. Exp Cell Res 2021; 405:112682. [PMID: 34118250 DOI: 10.1016/j.yexcr.2021.112682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
It has been demonstrated that the T-box family transcription factor 18 (Tbx18) -positive cells give rise to renal mesenchymal cells and contribute to the development of the urinary system. However, it is unclear whether Tbx18-positive cells are the origin of the myofibroblasts during renal fibrosis. The present study aimed to determine the contribution of Tbx18-positive cells in kidney fibrosis and their underlying mechanism. We show that Tbx18-positive cells contribute to the development of the urinary system, especially renal fibroblasts. Following unilateral ureteral obstruction (UUO), genetic fate tracing results demonstrated that Tbx18-positive cells not only proliferate but also expand and differentiate into fibroblasts and myofibroblasts, indicating that they may act as profibrotic progenitors. Cell culture results suggest that transforming growth factor (TGF)-β promotes Tbx18-positive cells differentiation into myofibroblasts and assist their contribution to kidney fibrosis. Overall, the present study demonstrated that Tbx18-positive cells may act as profibrotic progenitor cells in a pathological condition of UUO-induced injury. Moreover, TGF-β may play a role in differentiation of Tbx18-positive cells into myofibroblasts in kidney fibrosis. These findings may provide a potential target on Tbx18-positive myofibroblast progenitors in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
31
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
32
|
Abstract
Renal epithelial cells show remarkable regenerative capacity to recover from acute injury, which involves specific phenotypic changes, but also significant profibrotic tubule-interstitial crosstalk. Tubule-derived profibrotic stimuli and subsequent myofibroblast activation and extracellular matrix deposition have been linked closely with decline of renal function and nephron loss. However, recent data have questioned the view of purely detrimental effects of myofibroblast activation in the injured kidney and even suggested its beneficial role for epithelial regeneration. This article reviews the current understanding of the underlying mechanisms of tubular cell turnover, new suggested pathways of proregenerative tubular-interstitial crosstalk, and relevant insights of proliferation-enhancing effects of myofibroblasts on epithelial cells in nonrenal tissues.
Collapse
|
33
|
Pan SY, Tsai PZ, Chou YH, Chang YT, Chang FC, Chiu YL, Chiang WC, Hsu T, Chen YM, Chu TS, Lin SL. Kidney pericyte hypoxia-inducible factor regulates erythropoiesis but not kidney fibrosis. Kidney Int 2021; 99:1354-1368. [PMID: 33812664 DOI: 10.1016/j.kint.2021.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/03/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
Abstract
Prolyl hydroxylase domain enzyme (PHD) inhibitors are effective in the treatment of chronic kidney disease (CKD)-associated anemia by stabilizing hypoxia inducible factor (HIF), thereby increasing erythropoietin and consequently erythropoiesis. However, concern for CKD progression needs to be addressed in clinical trials. Although pre-clinical studies showed an anti-inflammatory effect in kidney disease models, the effect of PHD inhibitors on kidney fibrosis was inconsistent probably because the effects of HIF are cell type and context dependent. The major kidney erythropoietin-producing cells are pericytes that produce erythropoietin through HIF-2α-dependent gene transcription. The concern for the impact of HIF in pericytes on kidney fibrosis arises from the fact that pericytes are the major precursor cells of myofibroblasts in CKD. Since cells expressing Gli1 fulfill the morphologic and anatomic criteria for pericytes, we induced Gli1+ cell-specific HIF stabilization or knockout to study the impact of HIF in pericytes on kidney pathology of mice with or without fibrotic injury induced by unilateral ureteral obstruction. Compared with the littermate controls, mice with pericyte-specific HIF stabilization due to von Hippel-Lindau protein or PHD2 knockout showed increased serum erythropoietin and polycythemia rather than a discernible difference in kidney fibrosis. Compared with Gli1+ pericytes sorted from littermate controls, Gli1+ pericytes sorted from PHD2 knockout mice showed increased erythropoietin gene expression rather than discernible changes in Col1a1 or Acta2 expression. Furthermore, pericyte-specific knockout of HIF-1α or HIF-2α did not affect kidney fibrosis. Thus, our study supports the absence of negative effects of PHD inhibitors on kidney fibrosis of mice despite HIF stabilization in pericytes.
Collapse
Affiliation(s)
- Szu-Yu Pan
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Zhen Tsai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Yu-Ting Chang
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fan-Chi Chang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan; Graduate Program in Biomedical Informatics, Department of Computer Science and Engineering, College of Informatics, Yuan Ze University, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wen-Chih Chiang
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yung-Ming Chen
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tzong-Shinn Chu
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shuei-Liong Lin
- Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Integrated Diagnostics and Therapeutics, National Taiwan University Hospital, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
34
|
Li L, Zhou G, Fu R, He Y, Xiao L, Peng F, Yuan C. Polysaccharides extracted from balanophora polyandra Griff (BPP) ameliorate renal Fibrosis and EMT via inhibiting the Hedgehog pathway. J Cell Mol Med 2021; 25:2828-2840. [PMID: 33507617 PMCID: PMC7957266 DOI: 10.1111/jcmm.16313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/02/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a crucial pathological change leading to chronic kidney disease (CKD). Currently, no effective medicines have been available for treating it. In our research, we examined the effects of polysaccharides extracted from Balanophora polyandra Griff (BPPs) on kidney fibrosis and epithelial to mesenchymal transition (EMT) in vivo and in vitro, aiming to explore the underlying mechanisms. By using the mice with unilateral urethral obstruction (UUO) as experimental subjects, we examined the medicinal values of BPPs on alleviating RIF. The effects of BPPs were evaluated by examining the histological staining and relative mRNA and protein expression levels of the related genes. The possible underlying mechanisms were further explored with human normal renal proximal tubular epithelia (HK‐2 cells) as in vitro model. In UUO mice, BPP treatment could significantly alleviate interstitial fibrosis through reducing the components (Collagens I, III and IV) of extracellular matrix (ECM), and reducing the activation of fibroblasts producing these components, as revealed by inhibiting the hallmarks (fibronectin and α‐SMA) of fibroblast activation. Furthermore, BPP administration increased the expression levels of matrix metalloproteinases (MMPs) and declined those of tissue inhibitors of metalloproteinases (TIMPs). BPPs markedly ameliorated EMT in both the kidneys of UUO mice and TGF‐β1 treated HK‐2 cells. Moreover, BPP treatment decreased the expression levels of several transcriptional factors involved in regulating E‐cadherin expression, including snail, twist and ZEB1. Additionally, the Hedgehog pathway was found to be closely correlated with renal fibrosis and EMT. Altogether, our results clearly demonstrated that BPP treatment effectively inhibited the Hedgehog pathway both in renal tissues of UUO mice and TGF‐β1‐treated HK‐2 cells. Thus, BPPs ameliorated RIF and EMT in vivo and in vitro via suppressing Hedgehog signalling pathway.
Collapse
Affiliation(s)
- Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, China.,Yichang Hospital of Traditional Chinese Medicine, Yichang, China
| | - Rui Fu
- Department of Psychiatry and Psychology, Stomatological Hospital of Jingmen City, Jingmen, China
| | - Yumin He
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| | - Li Xiao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fan Peng
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, China
| |
Collapse
|
35
|
High-Fat Diet Induced Hedgehog Signaling Modifications during Chronic Kidney Damage. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8073926. [PMID: 33294454 PMCID: PMC7718043 DOI: 10.1155/2020/8073926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Excessive consumption of dietary fats leads to the deposition of unnecessary metabolites and multiple organ damage. Lipids, important key regulators of Hedgehog signaling, are involved in triggering fibrotic chronic kidney disease. The present study encompasses the assessment of renal morphofunctional modifications and alteration of lipid metabolism influencing the changes in gene expression of hedgehog signaling pathway genes. Fifteen male Rattus norvegicus of 200 ± 25 grams weight were equally divided into three groups: control (standard rat chow), D-1 (unsaturated high-fat diet) and D-2 (saturated high-fat diet). Animals were provided with respective diets and were followed for 16 weeks. Both HFD-fed groups did not show overall body weight gain as compared to the control. While significant downregulation of hedgehog pathway genes was found in fatty diet groups. In comparison with the control group, Shh, Gli1, Gli2, and Gli3 were downregulated after the consumption of both unsaturated and saturated fatty diets. Ihh and Smo exhibit a similar downregulation in the D-1 group, but an upregulation was detected in the D-2 group. D-2 group also had an increased serum urea concentration as compared to the control (P = 0.0023). Furthermore, renal histopathology revealed tubular necrosis, glomerular edema, glomerular shrinkage, and hypocellularity. Collagen deposition in both HFD groups marks the extent of fibrosis summary figure. Extravagant intake of dietary fats impaired normal kidney functioning and morphofunctionally anomalous kidney triggers on Hh signaling in adult rats. These anomalies can be linked to an escalated risk of chronic kidney disease in adults strongly recommending the reduced uptake of fatty diets to prevent impaired metabolism and renal lipotoxicity.
Collapse
|
36
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
37
|
Zhu Z, Xu X, Wang F, Song Y, Zhu Y, Quan W, Zhang X, Bi C, He H, Li S, Li X. Integrative microRNA and mRNA expression profiling in acute aristolochic acid nephropathy in mice. Mol Med Rep 2020; 22:3367-3377. [PMID: 32945497 PMCID: PMC7453650 DOI: 10.3892/mmr.2020.11444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
In acute aristolochic acid nephropathy (AAN), aristolochic acid (AA) induces renal injury and tubulointerstitial fibrosis. However, the roles of microRNAs (miRNAs/miRs) and mRNAs involved in AAN are not clearly understood. The aim of the present study was to examine AA‑induced genome‑wide differentially expressed (DE) miRNAs and DE mRNAs using deep sequencing in mouse kidneys, and to analyze their regulatory networks. In the present self‑controlled study, mice were treated with 5 mg/kg/day AA for 5 days, following unilateral nephrectomy. AA‑induced renal injury and tubulointerstitial fibrosis were detected using hematoxylin and eosin staining and Masson's trichrome staining in the mouse kidneys. A total of 82 DE miRNAs and 4,605 DE mRNAs were identified between the AA‑treated group and the self‑control group. Of these DE miRNAs and mRNAs, some were validated using reverse transcription‑quantitative PCR. Expression levels of the profibrotic miR‑21, miR‑433 and miR‑132 families were significantly increased, whereas expression levels of the anti‑fibrotic miR‑122‑5p and let‑7a‑1‑3p were significantly decreased. Functions and signaling pathways associated with the DE miRNAs and mRNAs were analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG). A total of 767 DE pairs (in opposing directions) of miRNAs and their mRNA targets were identified. Among these, regulatory networks of miRNAs and mRNAs were analyzed using KEGG to identify enriched signaling pathways and extracellular matrix‑associated pathways. In conclusion, the present study identified genome‑wide DE miRNAs and mRNAs in the kidneys of AA‑treated mice, as well as their regulatory pairs and signaling networks. The present results may improve the understanding of the role of DE miRNAs and their mRNA targets in the pathophysiology of acute AAN.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinxing Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Fengying Wang
- Department of Pediatrics, Sir Run Hospital, Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| | - Yongrui Song
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yanping Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Wei Quan
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueli Zhang
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
- School of Medicine, Institute of Medical Sciences, Örebro University, SE-70182 Örebro, Sweden
| | - Cheng Bi
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hongxin He
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shuang Li
- Centre for Systems Biology, Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
38
|
Yu G, Guo M, Zou J, Zhou X, Ma Y. The efficacy of taking traditional Chinese medicine orally in renal interstitial fibrosis: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22181. [PMID: 32957343 PMCID: PMC7505365 DOI: 10.1097/md.0000000000022181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND By now, the incidence of chronic kidney disease (CKD) is increasing. The development of various CKD is attributed to the continuous aggravation of renal interstitial fibrosis (RIF) in the process of end-stage renal disease (ESRD). Oral treatment of traditional Chinese medicine (TCM) is one of the therapies for RIF. Randomized controlled trials (RCTs) of TCM treatment RIF have been reported, but its effectiveness and safety have yet been systematically investigated. Therefore, through the systematic analysis and meta-analysis, our study will summarize the effectiveness and safety of oral treatment RIF of TCM, in order to provides scientific reference for clinical practice. METHODS This protocol follows Preferred Reporting Items for Systematic Evaluation and Meta-Analysis. RCTs will be only selected. Such databases as the PubMed, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), Excerpt Medical Database (Embase), WanFan Data, Chinese Biomedical Literature Database (CBM), WHO International Clinical Trials Registry Platform will be searched from the inception to June, 2020 to collect the RCTs about taking TCM orally in treating RIF. The literature according to the inclusion and exclusion criteria, data-extracted and the methodological quality evaluated will be performed independently by 2 reviewers. The clinical outcomes including renal function indices (Scr, BUN, 24-hour urinary protein quantity) and Indicators of RIF (TGF-β1, Notch1, Jagged-1). The risk of bias included in the RCTs will be evaluated by the bias risk assessment tool provided in the Cochrane System Evaluation Manual 5.1.0. Review Manager 5.3 provided by the Cochrane collaboration network will be used to process the data. RESULTS AND CONCLUSION Some more targeted and practical results about the efficacy of taking TCM orally in RIF have been provided by our study. The available evidence suggests that the therapeutic effects of combining TCM with Western medicine therapies is much better for RIF than Western medicine therapies only.
Collapse
Affiliation(s)
- Guang Yu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Mao Guo
- Pain Clinic, The People's Hospital of Luzhou, Luzhou
| | - Junju Zou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Xiaotao Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Yuerong Ma
- Pathology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
39
|
Affiliation(s)
- Sirin Nazan Cakir
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Lisandra E de Castro Brás
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| |
Collapse
|
40
|
Arai H, Yanagita M. Janus-Faced: Molecular Mechanisms and Versatile Nature of Renal Fibrosis. KIDNEY360 2020; 1:697-704. [PMID: 35372942 PMCID: PMC8815544 DOI: 10.34067/kid.0001972020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/14/2020] [Indexed: 04/23/2023]
Abstract
Renal fibrosis is a major hallmark of CKD, regardless of the underlying etiology. In fibrosis development and progression, myofibroblasts play a pivotal role, producing extracellular matrix and interacting with various resident cells in the kidney. Over the past decade, the origin of myofibroblasts has been thoroughly investigated. Emerging evidence suggests that renal myofibroblasts originate from several cellular sources, including resident fibroblasts, pericytes, and bone marrow-derived cells. The contribution of resident fibroblasts is most crucial, and currently available data strongly suggest the importance of functional heterogeneity and plasticity of fibroblasts in kidney disease progression. Resident fibroblasts acquire distinct phenotypes based on their local microenvironment and exert multifactorial functions. For example, age-dependent alterations of renal fibroblasts make a significant contribution to the formation of tertiary lymphoid tissues, which promote local inflammation after injury in the aged kidney. In conjunction with fibrosis development, dysfunction of resident fibroblasts provokes unique pathologic conditions including renal anemia and peritubular capillary loss, both of which are major complications of CKD. Although renal fibrosis is considered detrimental in general, recent studies suggest it has beneficial roles, such as maintaining functional crosstalk with injured proximal tubular cells and supporting their regeneration. These findings provide novel insight into the mechanisms of renal fibrosis, which could be regarded as an adaptive process of kidney injury and repair. Precise understanding of the functional heterogeneity of resident fibroblasts and myofibroblasts has the potential to facilitate the development of novel therapeutics against kidney diseases. In this review, we describe the current perspective on the origin of myofibroblasts and fibroblast heterogeneity, with special emphasis on the dual aspects of renal fibrosis, both beneficial and detrimental, in CKD progression.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
42
|
Exploring Key Challenges of Understanding the Pathogenesis of Kidney Disease in Bardet-Biedl Syndrome. Kidney Int Rep 2020; 5:1403-1415. [PMID: 32954066 PMCID: PMC7486190 DOI: 10.1016/j.ekir.2020.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a rare pleiotropic inherited disorder known as a ciliopathy. Kidney disease is a cardinal clinical feature; however, it is one of the less investigated traits. This study is a comprehensive analysis of the literature aiming to collect available information providing mechanistic insights into the pathogenesis of kidney disease by analyzing clinical and basic science studies focused on this issue. The analysis revealed that the syndrome is either clinically and genetically heterogenous, with 24 genes discovered to date, but with 3 genes (BBS1, BBS2, and BBS10) accounting for almost 50% of diagnoses; genotype–phenotype correlation studies showed that patients with BBS1 mutations have a less severe renal phenotype than the other 2 most common loci; in addition, truncating rather than missense mutations are more likely to cause kidney disease. However, significant intrafamilial clinical variability has been described, with no clear explanation to date. In mice kidneys, Bbs genes have relative low expression levels, in contrast with other common affected organs, like the retina; surprisingly, Bbs1 is the only locus with basal overexpression in the kidney. In vitro studies indicate that signalling pathways involved in embryonic kidney development and repair are affected in the context of BBS depletion; in mice, kidney disease does not have a full penetrance; when present, it resembles human phenotype and shows an age-dependent progression. Data on the exact contribution of local versus systemic consequences of Bbs dysfunction are scanty and further investigations are required to get firm conclusions.
Collapse
|
43
|
Development of a new macrophage-specific TRAP mouse (Mac TRAP) and definition of the renal macrophage translational signature. Sci Rep 2020; 10:7519. [PMID: 32372032 PMCID: PMC7200716 DOI: 10.1038/s41598-020-63514-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tissue macrophages play an important role in organ homeostasis, immunity and the pathogenesis of various inflammation-driven diseases. One major challenge has been to selectively study resident macrophages in highly heterogeneous organs such as kidney. To address this problem, we adopted a Translational Ribosome Affinity Purification (TRAP)- approach and designed a transgene that expresses an eGFP-tagged ribosomal protein (L10a) under the control of the macrophage-specific c-fms promoter to generate c-fms-eGFP-L10a transgenic mice (MacTRAP). Rigorous characterization found no gross abnormalities in MacTRAP mice and confirmed transgene expression across various organs. Immunohistological analyses of MacTRAP kidneys identified eGFP-L10a expressing cells in the tubulointerstitial compartment which stained positive for macrophage marker F4/80. Inflammatory challenge led to robust eGFP-L10a upregulation in kidney, confirming MacTRAP responsiveness in vivo. We successfully extracted macrophage-specific polysomal RNA from MacTRAP kidneys and conducted RNA sequencing followed by bioinformatical analyses, hereby establishing a comprehensive and unique in vivo gene expression and pathway signature of resident renal macrophages. In summary, we created, validated and applied a new, responsive macrophage-specific TRAP mouse line, defining the translational profile of renal macrophages and dendritic cells. This new tool may be of great value for the study of macrophage biology in different organs and various models of injury and disease.
Collapse
|
44
|
Lineage-specific roles of hedgehog-GLI signaling during mammalian kidney development. Pediatr Nephrol 2020; 35:725-731. [PMID: 30923969 DOI: 10.1007/s00467-019-04240-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 01/20/2023]
Abstract
Aberrant hedgehog (Hh) signaling during embryogenesis results in various severe congenital abnormalities, including renal malformations. The molecular mechanisms that underlie congenital renal malformations remain poorly understood. Here, we review the current understanding of the lineage-specific roles of Hh signaling during renal morphogenesis and how aberrant Hh signaling during embryonic kidney development contributes to renal malformation.
Collapse
|
45
|
Origin and role of hepatic myofibroblasts in hepatocellular carcinoma. Oncotarget 2020; 11:1186-1201. [PMID: 32284794 PMCID: PMC7138168 DOI: 10.18632/oncotarget.27532] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
46
|
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the second leading cause of cancer-related death worldwide. Fibrosis and cirrhosis are important risk factors for the development of HCC. Hepatic myofibroblasts are the cells responsible for extracellular matrix deposition, which is the hallmark of liver fibrosis. It is believed that myofibroblasts are predominantly derived from hepatic stellate cells (HSCs), also known as Ito cells. Nevertheless, depending on the nature of insult to the liver, it is thought that myofibroblasts may also originate from a variety of other cell types such as the portal fibroblasts (PFs), fibrocytes, hepatocytes, hepatic progenitor cells (HPCs), and mesothelial cells. Liver myofibroblasts are believed to transform into cancer-associated fibroblasts (CAFs) while HCC is developing. There is substantial evidence suggesting that activated HSCs (aHSCs)/cancer-associated fibroblasts (CAFs) may play an important role in HCC initiation and progression. In this paper, we aim to review current literature on cellular origins of myofibroblasts with a focus on hepatitis B virus (HBV)- and hepatitis C virus (HCV)-induced hepatic fibrosis. We also address the role of aHSCs/CAFs in HCC progression through the regulation of immune cells as well as mechanisms of evolvement of drug resistance.
Collapse
|
47
|
Abstract
Chronic kidney disease (CKD) is a devastating condition that is reaching epidemic levels owing to the increasing prevalence of diabetes mellitus, hypertension and obesity, as well as ageing of the population. Regardless of the underlying aetiology, CKD is slowly progressive and leads to irreversible nephron loss, end-stage renal disease and/or premature death. Factors that contribute to CKD progression include parenchymal cell loss, chronic inflammation, fibrosis and reduced regenerative capacity of the kidney. Current therapies have limited effectiveness and only delay disease progression, underscoring the need to develop novel therapeutic approaches to either stop or reverse progression. Preclinical studies have identified several approaches that reduce fibrosis in experimental models, including targeting cytokines, transcription factors, developmental and signalling pathways and epigenetic modulators, particularly microRNAs. Some of these nephroprotective strategies are now being tested in clinical trials. Lessons learned from the failure of clinical studies of transforming growth factor β1 (TGFβ1) blockade underscore the need for alternative approaches to CKD therapy, as strategies that target a single pathogenic process may result in unexpected negative effects on simultaneously occurring processes. Additional promising avenues include preventing tubular cell injury and anti-fibrotic therapies that target activated myofibroblasts, the main collagen-producing cells.
Collapse
|
48
|
Ren D, Luo J, Li Y, Zhang J, Yang J, Liu J, Zhang X, Cheng N, Xin H. Saikosaponin B2 attenuates kidney fibrosis via inhibiting the Hedgehog Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 67:153163. [PMID: 31901891 DOI: 10.1016/j.phymed.2019.153163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/11/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Renal interstitial fibrosis is a common pathway through which chronic kidney disease progresses to end-stage renal disease. There are currently no effective drugs available to treat kidney fibrosis, so traditional medicine is likely to be a candidate. The therapeutic potential of saikosaponin B2 (SSB2), a biologically active ingredient of Radix Bupleuri, on renal fibrosis has not been reported. METHODS A unilateral ureteral obstruction (UUO) model was conducted to induce renal interstitial fibrosis in mice. SSB2's effect was valuated by histological staining and exploring the changes in expression of relative proteins and mRNAs. A conditional medium containing sonic hedgehog variant protein stimulating normal rat kidney interstitial fibroblast cells (NRK-49F) was used in an in vitro model to determine the possible mechanism. The molecular target of SSB2 was verified using several mutation plasmids. RESULTS SSB2 administration reduced kidney injury and alleviated interstitial fibrosis by decreasing excessive accumulation of extracellular matrix components in UUO mice. It could also reduce the expression of α-SMA, fibronectin and Gli1, a crucial molecule of the hedgehog (Hh) signaling pathway both in vivo and in vitro. In NIH-3T3 cells simulated by conditional medium containing sonic hedgehog variant protein, SSB2 showed the ability to decrease the expression of Gli1 and Ptch1 mRNA. Using a dual-luciferase reporter assay, SSB2 suppressed the Gli-luciferase reporter activity in NIH-3T3 cells, and the IC50 was 0.49 μM, but had no effect on the TNF-α/NF-κB and Wnt/β-catenin signaling pathways, indicating the inhibition selectivity on the Hh signaling pathway. Furthermore, SSB2 failed to inhibit the Hh pathway activity evoked by ectopic expression of Gli2ΔN and Smo D473H, suggesting that SSB2 might potentially act on smoothened receptors. CONCLUSION SSB2 could attenuate renal fibrosis and decrease fibroblast activation by inhibiting the Hh signaling pathway.
Collapse
Affiliation(s)
- Dadui Ren
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jia Luo
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Yingxue Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jing Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Jiahong Yang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Junqiu Liu
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, PR China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Nengneng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
49
|
Tan RJ, Li Y, Rush BM, Cerqueira DM, Zhou D, Fu H, Ho J, Beer Stolz D, Liu Y. Tubular injury triggers podocyte dysfunction by β-catenin-driven release of MMP-7. JCI Insight 2019; 4:122399. [PMID: 31743113 DOI: 10.1172/jci.insight.122399] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/14/2019] [Indexed: 01/19/2023] Open
Abstract
Proteinuric chronic kidney disease (CKD) remains a major health problem worldwide. While it is well established that the progression of primary glomerular disease induces tubulointerstitial lesions, how tubular injury triggers glomerular damage is poorly understood. We hypothesized that injured tubules secrete mediators that adversely affect glomerular health. To test this, we used conditional knockout mice with tubule-specific ablation of β-catenin (Ksp-β-cat-/-) and subjected them to chronic angiotensin II (Ang II) infusion or Adriamycin. Compared with control mice, Ksp-β-cat-/- mice were dramatically protected from proteinuria and glomerular damage. MMP-7, a downstream target of β-catenin, was upregulated in treated control mice, but this induction was blunted in the Ksp-β-cat-/- littermates. Incubation of isolated glomeruli with MMP-7 ex vivo led to nephrin depletion and impaired glomerular permeability. Furthermore, MMP-7 specifically and directly degraded nephrin in cultured glomeruli or cell-free systems, and this effect was dependent on its proteolytic activity. In vivo, expression or infusion of exogenous MMP-7 caused proteinuria, and genetic ablation of MMP-7 protected mice from Ang II-induced proteinuria and glomerular injury. Collectively, these results demonstrate that β-catenin-driven MMP-7 release from renal tubules promotes glomerular injury via direct degradation of the key slit diaphragm protein nephrin.
Collapse
Affiliation(s)
| | | | | | - Débora Malta Cerqueira
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Haiyan Fu
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jacqueline Ho
- Division of Pediatric Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Donna Beer Stolz
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Youhua Liu
- Department of Pathology, and.,Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Liu X, Sun N, Mo N, Lu S, Song E, Ren C, Li Z. Quercetin inhibits kidney fibrosis and the epithelial to mesenchymal transition of the renal tubular system involving suppression of the Sonic Hedgehog signaling pathway. Food Funct 2019; 10:3782-3797. [PMID: 31180394 DOI: 10.1039/c9fo00373h] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Quercetin is the most ubiquitous flavonoid in fruits, herbs, vegetables and products made from them. It shows the potential to inhibit the progression of kidney fibrosis and the epithelial to mesenchymal transition (EMT) of the renal tubular system, but the molecular mechanism behind this is still not known. In our study, we explored the effect of quercetin treatment on extracellular matrix (ECM) deposition and stimulation of the EMT in vitro and in vivo and tried to deduce the mechanisms regulating these effects. In rats having unilateral ureter obstruction (UUO), quercetin treatment significantly prevented renal function decline. Quercetin reduced the TGF-β1 expression and inhibited the epithelial cell to mesenchymal cell phenotypic switch, as well as ECM deposition in rats with UUO. In cultured epithelial cells of the renal tubular region (NRK-52E), quercetin markedly ameliorated the EMT and ECM synthesis induced by TGF-β1. Activation of the Hedgehog pathway was closely related to EMT induction. Quercetin effectively suppressed the hyperactive Hedgehog pathway in NRK-52E cells treated with TGF-β1 and in kidney obstructed rats, which reduced the EMT, ECM deposition and cellular proliferation. Moreover, we examined certain transcriptional factors (slug, snail, ZEB-1 and twist) that govern the E-cadherin expression at the level of transcription. The results unveiled that the four transcriptional factors were highly repressed in NRK-52E cells treated with TGF-β1 and also in obstructed kidneys by quercetin-mediated inhibition. Therefore, these outcomes indicate that quercetin could alleviate fibrosis and the EMT in vitro and in vivo by inhibiting the activation of Hedgehog signaling and could act as a therapeutic agent for patients having several kinds of renal fibrotic diseases.
Collapse
Affiliation(s)
- Xianghua Liu
- Scientific Research and Experiment Center, Henan University of Chinese Medicine, China
| | | | | | | | | | | | | |
Collapse
|