1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Chen J, Hu L, Liu Z. Medical treatments for abdominal aortic aneurysm: an overview of clinical trials. Expert Opin Investig Drugs 2024; 33:979-992. [PMID: 38978286 DOI: 10.1080/13543784.2024.2377747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm is a progressive, segmental, abdominal aortic dilation associated with a high mortality rate. Abdominal aortic aneurysms with diameters larger than 55 mm are associated with a high risk of rupture, and the most effective treatment options are surgical repair. Close observation and lifestyle adjustments are recommended for smaller abdominal aortic aneurysms with lower rupture risk. The development of medical therapies that limit or prevent the progression, expansion, and eventual rupture of abdominal aortic aneurysms remains an unmet clinical need. AREAS COVERED This review provides an overview of completed and ongoing clinical trials examining the efficacies of various drug classes, including antibiotics, antihypertensive drugs, hypolipidemic drugs, hypoglycemic drugs, and other potential therapies for abdominal aortic aneurysms. A search of PubMed, Web of Science, Clinical Trials, and another six clinical trial registries was conducted in January 2024. EXPERT OPINION None of the drugs have enough evidence to indicate that they can effectively inhibit the dilation of abdominal aortic aneurysm. More clinical trial data is required to support the efficacy of propranolol. Future research should also explore different drug delivery mechanisms, such as nanoparticles, to elevate drug concentration at the aneurysm wall.
Collapse
Affiliation(s)
- Jinyi Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lanting Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Liu Y, Wang H, Yu M, Cai L, Zhao Y, Cheng Y, Deng Y, Zhao Y, Lu H, Wu X, Zhao G, Xue C, Liu H, Surakka I, Schwendeman A, Lu HS, Daugherty A, Chang L, Zhang J, Temel RE, Chen YE, Guo Y. Hypertriglyceridemia as a Key Contributor to Abdominal Aortic Aneurysm Development and Rupture: Insights from Genetic and Experimental Models. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.07.24311621. [PMID: 39211871 PMCID: PMC11361217 DOI: 10.1101/2024.08.07.24311621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease without effective medications. This study integrated genetic, proteomic, and metabolomic data to identify causation between increased triglyceride (TG)-rich lipoproteins and AAA risk. Three hypertriglyceridemia mouse models were employed to test the hypothesis that increased plasma TG concentrations accelerate AAA development and rupture. In the angiotensin II-infusion AAA model, most Lpl -deficient mice with severely high plasma TG concentrations died of aortic rupture. Consistently, Apoa5 -deficient mice with moderately increased TG concentrations had accelerated AAA development, while human APOC3 transgenic mice with dramatically increased TG concentrations exhibited aortic dissection and rupture. Increased TG concentrations and palmitate inhibited lysyl oxidase maturation. Administration of antisense oligonucleotide targeting Angptl3 profoundly inhibited AAA progression in human APOC3 transgenic mice and Apoe -deficient mice. These results indicate that hypertriglyceridemia is a key contributor to AAA pathogenesis, highlighting the importance of triglyceride-rich lipoprotein management in treating AAA.
Collapse
|
4
|
Poteryaeva ON, Usynin IF. Molecular mechanisms of the regulatory action of high-density lipoproteins on the endothelial function. BIOMEDITSINSKAIA KHIMIIA 2024; 70:206-217. [PMID: 39239895 DOI: 10.18097/pbmc20247004206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Endothelial dysfunction underlies the pathogenesis of many diseases, primarily cardiovascular diseases. Epidemiological studies have shown an inverse dependence between the plasma level of high-density lipoproteins (HDL) and cardiovascular diseases. The results of experimental studies indicate that the antiatherogenic effect of HDL is associated not only with their participation in the reverse transport of excess cholesterol, but also with their regulatory effect on the functions of cells of various organs and tissues, including endothelial cells. The purpose of this review is to consider recent data on the participation of plasma receptors and related intracellular signaling pathways in the mechanism of protective effect of HDL on endothelial cell functions. Understanding the mechanisms of cell function regulation under the influence of HDL is an important step for the development of new ways of pharmacological correction of impaired endothelial functions and creation of effective endothelial protection drugs.
Collapse
Affiliation(s)
- O N Poteryaeva
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| | - I F Usynin
- Institute of Biochemistry, Federal Research Center of Fundamental and Translation Medicine, Novosibirsk, Russia
| |
Collapse
|
5
|
Golledge J, Lu HS, Curci JA. Small AAAs: Recommendations for Rodent Model Research for the Identification of Novel Therapeutics. Arterioscler Thromb Vasc Biol 2024; 44:1467-1473. [PMID: 38924435 PMCID: PMC11384288 DOI: 10.1161/atvbaha.124.320823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
CLINICAL PROBLEM Most abdominal aortic aneurysms (AAAs) are small with low rupture risk (<1%/y) when diagnosed but slowly expand to ≥55 mm and undergo surgical repair. Patients and clinicians require medications to limit AAA growth and rupture, but drugs effective in animal models have not translated to patients. RECOMMENDATIONS FOR INCREASING TRANSLATION FROM MOUSE MODELS Use models that simulate human AAA tissue pathology, growth patterns, and rupture; focus on the clinically relevant outcomes of growth and rupture; design studies with the rigor required of human clinical trials; monitor AAA growth using reproducible ultrasound; and perform studies in both males and females. SUMMARY OF STRENGTHS AND WEAKNESSES OF MOUSE MODELS The aortic adventitial elastase oral β-aminopropionitrile model has many strengths including simulating human AAA pathology and modeling prolonged aneurysm growth. The Ang II (angiotensin II) model performed less well as it better simulates acute aortic syndrome than AAA. The elastase plus TGFβ (transforming growth factor-β) blocking antibody model displays a high rupture rate, making prolonged monitoring of AAA growth not feasible. The elastase perfusion and calcium chloride models both display limited AAA growth.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
- The Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia
- The Australian Institute of Tropical Health and Medicine, Townsville, Queensland, Australia
| | - Hong S. Lu
- Saha Cardiovascular Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - John A. Curci
- Department of Vascular Surgery, Vanderbilt Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Section of Vascular Surgery, Department of Surgery, Tennessee Valley Health System, VA Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
6
|
Crane A, Shanahan RM, Hudson JS, Nowicki KW, Gersey ZC, Agarwal P, Jacobs RC, Lang MJ, Gross B. Pharmaceutical Modulation of Intracranial Aneurysm Development and Rupture. J Clin Med 2024; 13:3324. [PMID: 38893035 PMCID: PMC11173282 DOI: 10.3390/jcm13113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Management of intracranial aneurysms (IAs) is determined by patient age, risk of rupture, and comorbid conditions. While endovascular and microsurgical interventions offer solutions to mitigate the risk of rupture, pharmacological management strategies may complement these approaches or serve as alternatives in appropriate cases. The pathophysiology of IAs allows for the targeting of inflammation to prevent the development and rupture of IAs. The aim of this review is to provide an updated summary of different pharmaceutical management strategies for IAs. Acetylsalicylic acid and renin-angiotensin-aldosterone system (RAAS) inhibitor antihypertensives have some evidence supporting their protective effect. Studies of selective cyclooxygenase-2 (COX-2) inhibitors, statins, ADP inhibitors, and other metabolism-affecting drugs have demonstrated inconclusive findings regarding their association with aneurysm growth or rupture. In this manuscript, we highlight the evidence supporting each drug's effectiveness.
Collapse
Affiliation(s)
- Alex Crane
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Regan M. Shanahan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Joseph S. Hudson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Kamil W. Nowicki
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Zachary C. Gersey
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Prateek Agarwal
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Rachel C. Jacobs
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Michael J. Lang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| | - Bradley Gross
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA (Z.C.G.); (M.J.L.)
| |
Collapse
|
7
|
Han Q, Qiao L, Yin L, Sui X, Shao W, Wang Q. The effect of exercise training intervention for patients with abdominal aortic aneurysm on cardiovascular and cardiorespiratory variables: an updated meta-analysis of randomized controlled trials. BMC Cardiovasc Disord 2024; 24:80. [PMID: 38291355 PMCID: PMC10829311 DOI: 10.1186/s12872-024-03745-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE The purpose of this meta-analysis was to evaluate the effect of exercise training intervention in patients with abdominal aortic aneurysm (AAA). METHODS Eight randomized controlled trials (RCTs) that recruited 588 AAA patients were extracted using 4 databases (PubMed, Embase, Wanfang Data, and Cochrane Library). Physiological and biochemistry parameters that included in this study are high-sensitivity C-reactive protein (hs-CRP), respiratory peak oxygen uptake rate (VO2peak), triglyceride (TG), total cholesterol (TC), anaerobic threshold (AT), the diameter of AAA, high density lipoprotein cholesterol (HDL), low density lipoprotein cholesterol (LDL), and matrix metalloproteinase-9 (MMP-9). Standard mean difference (SMD) was used to assess the between group effect. RESULTS This meta-analysis was synthesized with findings from RCTs and found that hs-CRP (SMD, - 0.56 mg/dL; 95% CI: - 0.90 to 0.22; P = 0.001), VO2peak (SMD, 0.4 mL/kg/min; 95% CI, 0.21 to 0.60; P < 0.001), TG (SMD, - 0.39 mg/dL; 95% CI: - 0.02 to 0.77; P = 0.04), and AT (SMD, 0.75 mL/kg/min; 95% CI, 0.54 to 0.96; P < 0.001) were significantly improved in the exercise groups, while the size of AAA (SMD, - 0.15; 95% CI: - 0.36 to 0.06; P = 0.15), TC (SMD, 0.16 mg/dL; 95% CI: - 0.10 to 0.42; P = 0.23), HDL/LDL ratio (SMD, - 0.06; 95% CI: - 0.32 to 0.20; P = 0.64), HDL (SMD, - 0.09; 95% CI: - 0.39 to 0.20; P = 0.54), LDL (SMD, 0.08; 95% CI: - 0.21 to 0.38; P = 0.59), and MMP-9 (SMD, - 0.23 mg/dL; 95% CI: - 0.53 to 0.06; P = 0.12) did not differ in the exercise groups compared with the controls. CONCLUSION Exercise intervention improved some of the CVD risk factors but not all, hs-CRP, VO2peak and AT were significantly improved after exercise intervention, while, changes of MMP-9, the size of AAA, and the overall lipids profile were not. Exercise intervention provides an additional solution for improving cardiorespiratory capacity and health status among AAA patients, and might lead to a delay of AAA progression.
Collapse
Affiliation(s)
- Qi Han
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, 100029, China
- Beijing Sport University, Beijing, 100084, China
| | - Li Qiao
- Beijing Competitor Sports Nutrition Research Institute, Beijing, 100029, China
| | - Li Yin
- Department of Vascular Surgery, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, 310020, China
- Department of Surgery, Northwestern University, Chicago, IL, 60611, USA
| | - Xuemei Sui
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, USA
| | - Wenjuan Shao
- Beijing Sport University, Beijing, 100084, China
- Minzu University of China, Beijing, 100081, China
| | - Qirong Wang
- Sports Nutrition Center, National Institute of Sports Medicine, Beijing, 100029, China.
| |
Collapse
|
8
|
Golledge J, Thanigaimani S, Powell JT, Tsao PS. Pathogenesis and management of abdominal aortic aneurysm. Eur Heart J 2023:ehad386. [PMID: 37387260 PMCID: PMC10393073 DOI: 10.1093/eurheartj/ehad386] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) causes ∼170 000 deaths annually worldwide. Most guidelines recommend asymptomatic small AAAs (30 to <50 mm in women; 30 to <55 mm in men) are monitored by imaging and large asymptomatic, symptomatic, and ruptured AAAs are considered for surgical repair. Advances in AAA repair techniques have occurred, but a remaining priority is therapies to limit AAA growth and rupture. This review outlines research on AAA pathogenesis and therapies to limit AAA growth. Genome-wide association studies have identified novel drug targets, e.g. interleukin-6 blockade. Mendelian randomization analyses suggest that treatments to reduce low-density lipoprotein cholesterol such as proprotein convertase subtilisin/kexin type 9 inhibitors and smoking reduction or cessation are also treatment targets. Thirteen placebo-controlled randomized trials have tested whether a range of antibiotics, blood pressure-lowering drugs, a mast cell stabilizer, an anti-platelet drug, or fenofibrate slow AAA growth. None of these trials have shown convincing evidence of drug efficacy and have been limited by small sample sizes, limited drug adherence, poor participant retention, and over-optimistic AAA growth reduction targets. Data from some large observational cohorts suggest that blood pressure reduction, particularly by angiotensin-converting enzyme inhibitors, could limit aneurysm rupture, but this has not been evaluated in randomized trials. Some observational studies suggest metformin may limit AAA growth, and this is currently being tested in randomized trials. In conclusion, no drug therapy has been shown to convincingly limit AAA growth in randomized controlled trials. Further large prospective studies on other targets are needed.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, 100 Angus Smith Drive, Douglas, QLD, Australia
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, 1 James Cook Drive, Douglas, Townsville, QLD, Australia
| | - Janet T Powell
- Department of Surgery & Cancer, Imperial College London, Fulham Palace Road, London, UK
| | - Phil S Tsao
- Department of Cardiovascular Medicine, Stanford University, 450 Serra Mall, Stanford, CA, USA
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, USA
- Stanford Cardiovascular Institute, Stanford University, 450 Serra Mall, Stanford, CA, USA
| |
Collapse
|
9
|
Akman TC, Kadioglu Y, Senol O, Erkayman B. A metabolomics study: Could plasma metabolites be a guide for the prevention of tamsulosin side effects? ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:220-232. [PMID: 36126750 DOI: 10.1016/j.pharma.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The understanding of precision medicine, which aims for high efficacy and low toxicity in treatments, has gained more importance with omics technologies. In this study, it was aimed to reach new suggestions for low-toxicity treatment by clarifying the relationship between tamsulosin side effects and metabolome profiles. MATERIALS AND METHODS Plasma samples of control and tamsulosin-treated rats were analyzed by LC-Q-TOF/MS/MS. MS/MS data was processed in XCMS software for the identification of metabolite and metabolic pathway analysis. Data were classified with MATLAB 2019b for multivariate data analysis. 34m/z values were found to be significantly different between the drug and control groups (P≤0.01 and fold analysis≥1.5) and identified by comparing METLIN and HMDB databases. RESULTS According to multivariate data analysis, α-Linolenic Acid, Thiamine, Retinoic acid, 1.25-Dihydroxyvitamin D3-26.23-Lactone, L-Glutamine, L-Serine, Retinaldehyde, Sphingosine 1-phosphate, L-Lysine, 23S.25-Dihydroxyvitamin D3, Sphinganine, L-Cysteine, Uridine 5'-diphosphate, Calcidiol, L-Tryptophan, L-Alanine levels changed significantly compared to the control group. Differences in the metabolisms of Retinol, Sphingolipid, Alanine-Aspartate-Glutamate, Glutathione, Fatty Acid, Tryptophan, and biosynthesis of Aminoacyl-tRNA, and Unsaturated Fatty Acid have been successfully demonstrated by metabolic pathway analysis. According to our study, vitamin A and D supplements can be recommended to prevent side effects such as asthenia, rhinitis, nasal congestion, dizziness and IFIS in the treatment of tamsulosin. Alteration of aminoacyl-tRNA biosynthesis and sphingolipid metabolism pathways during tamsulosin treatment is effective in the occurrence of nasal congestion. CONCLUSIONS Our study provides important information for tamsulosin therapy with high efficacy and low side effects in precision medicine.
Collapse
Affiliation(s)
- T C Akman
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey.
| | - Y Kadioglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| | - O Senol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| | - B Erkayman
- Department of Pharmacology, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
10
|
Li R, Liu Y, Jiang J. Research advances in drug therapy for abdominal aortic aneurysms over the past five years: An updated narrative review. Int J Cardiol 2023; 372:93-100. [PMID: 36462700 DOI: 10.1016/j.ijcard.2022.11.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/16/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Abdominal aortic aneurysms (AAA) rupture can lead to patient death. Surgical treatment is currently the optimal treatment for AAA with large diameter (≥50 mm). For AAA with small diameter (30-50 mm), how to administer effective pharmacological treatment to reduce aneurysm expansion rate and rupture risk is the current focus in the field of vascular surgery. There is still no effective drug for the treatment of asymptomatic AAA. METHODS This article searches the PubMed, Web of Science, Embase, and Cochrane databases for clinical studies on the drug treatment of abdominal aortic aneurysms in the past 5 years. The latest progress in the drug treatment of AAA was reviewed, including antibiotics, antihypertensive drugs, antiplatelet drugs, hypoglycemic drugs, hypolipidemic drugs, mast cell inhibitors and corticosteroids. RESULTS 25 studies were included in this narrative review. Among them, metformin revealed therapeutic effect in 2 prospective cohort study and 3 retrospective cohort study. The therapeutic effect of statins was controversial in 3 retrospective cohort study. However, the definite therapeutic effects of antihypertensive agents, antibiotics, mast cell inhibitors, antiplatelet agents and corticosteroids on abdominal aortic aneurysms have not been verified in prospective studies. CONCLUSION Metformin provided a positive effect in reducing expansion rate, rupture risk, and perioperative mortality. The therapeutic effect of statins was controversial, which warrant further validation in prospective cohorts. However, there is still a lack of effective agents for the treatment of AAA based on recent studies.
Collapse
Affiliation(s)
- Ruihua Li
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| | - Jianjun Jiang
- Department of General Surgery, Vascular Surgery, Qilu Hospital of Shandong University, No.107, Road Wen Hua Xi, Jinan, Shandong 250012, China.
| |
Collapse
|
11
|
Weaver LM, Loftin CD, Zhan CG. Development of pharmacotherapies for abdominal aortic aneurysms. Biomed Pharmacother 2022; 153:113340. [PMID: 35780618 PMCID: PMC9514980 DOI: 10.1016/j.biopha.2022.113340] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
The cardiovascular field is still searching for a treatment for abdominal aortic aneurysms (AAA). This inflammatory disease often goes undiagnosed until a late stage and associated rupture has a high mortality rate. No pharmacological treatment options are available. Three hallmark factors of AAA pathology include inflammation, extracellular matrix remodeling, and vascular smooth muscle dysfunction. Here we discuss drugs for AAA treatment that have been studied in clinical trials by examining the drug targets and data present for each drug's ability to regulate the aforementioned three hallmark pathways in AAA progression. Historically, drugs that were examined in interventional clinical trials for treatment of AAA were repurposed therapeutics. Novel treatments (biologics, small-molecule compounds etc.) have not been able to reach the clinic, stalling out in pre-clinical studies. Here we discuss the backgrounds of previous investigational drugs in hopes of better informing future development of potential therapeutics. Overall, the highlighted themes discussed here stress the importance of both centralized anti-inflammatory drug targets and rigor of translatability. Exceedingly few murine studies have examined an intervention-based drug treatment in halting further growth of an established AAA despite interventional treatment being the therapeutic approach taken to treat AAA in a clinical setting. Additionally, data suggest that a potentially successful drug target may be a central inflammatory biomarker. Specifically, one that can effectively modulate all three hallmark factors of AAA formation, not just inflammation. It is suggested that inhibiting PGE2 formation with an mPGES-1 inhibitor is a leading drug target for AAA treatment to this end.
Collapse
Affiliation(s)
- Lauren M Weaver
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Charles D Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
12
|
Amioka N, Miyoshi T, Yonezawa T, Kondo M, Akagi S, Yoshida M, Saito Y, Nakamura K, Ito H. Pemafibrate Prevents Rupture of Angiotensin II-Induced Abdominal Aortic Aneurysms. Front Cardiovasc Med 2022; 9:904215. [PMID: 35845076 PMCID: PMC9280056 DOI: 10.3389/fcvm.2022.904215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a life-threatening disease that lacks effective preventive therapies. This study aimed to evaluate the effect of pemafibrate, a selective peroxisome proliferator-activated receptor alpha (PPARα) agonist, on AAA formation and rupture. Methods Experimental AAA was induced by subcutaneous angiotensin II (AngII) infusion in ApoE - / - mice for 4 weeks. Pemafibrate (0.1 mg/kg/day) was administered orally. Dihydroethidium staining was used to evaluate the reactive oxygen species (ROS). Results The size of the AngII-induced AAA did not differ between pemafibrate- and vehicle-treated groups. However, a decreased mortality rate due to AAA rupture was observed in pemafibrate-treated mice. Pemafibrate ameliorated AngII-induced ROS and reduced the mRNA expression of interleukin-6 and tumor necrosis factor-α in the aortic wall. Gelatin zymography analysis demonstrated significant inhibition of matrix metalloproteinase-2 activity by pemafibrate. AngII-induced ROS production in human vascular smooth muscle cells was inhibited by pre-treatment with pemafibrate and was accompanied by an increase in catalase activity. Small interfering RNA-mediated knockdown of catalase or PPARα significantly attenuated the anti-oxidative effect of pemafibrate. Conclusion Pemafibrate prevented AAA rupture in a murine model, concomitant with reduced ROS, inflammation, and extracellular matrix degradation in the aortic wall. The protective effect against AAA rupture was partly mediated by the anti-oxidative effect of catalase induced by pemafibrate in the smooth muscle cells.
Collapse
Affiliation(s)
- Naofumi Amioka
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toru Miyoshi
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Megumi Kondo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoshi Akagi
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
13
|
The Role of Obesity, Inflammation and Sphingolipids in the Development of an Abdominal Aortic Aneurysm. Nutrients 2022; 14:nu14122438. [PMID: 35745168 PMCID: PMC9229568 DOI: 10.3390/nu14122438] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/03/2022] [Accepted: 06/11/2022] [Indexed: 02/06/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a local dilatation of the vessel equal to or exceeding 3 cm. It is a disease with a long preclinical period commonly without any symptoms in its initial stage. Undiagnosed for years, aneurysm often leads to death due to vessel rupture. The basis of AAA pathogenesis is inflammation, which is often associated with the excess of adipose tissue, especially perivascular adipose tissue, which synthesizes adipocytokines that exert a significant influence on the formation of aneurysms. Pro-inflammatory cytokines such as resistin, leptin, and TNFα have been shown to induce changes leading to the formation of aneurysms, while adiponectin is the only known compound that is secreted by adipose tissue and limits the development of aneurysms. However, in obesity, adiponectin levels decline. Moreover, inflammation is associated with an increase in the amount of macrophages infiltrating adipose tissue, which are the source of matrix metalloproteinases (MMP) involved in the degradation of the extracellular matrix, which are an important factor in the formation of aneurysms. In addition, an excess of body fat is associated with altered sphingolipid metabolism. It has been shown that among sphingolipids, there are compounds that play an opposite role in the cell: ceramide is a pro-apoptotic compound that mediates the development of inflammation, while sphingosine-1-phosphate exerts pro-proliferative and anti-inflammatory effects. It has been shown that the increase in the level of ceramide is associated with a decrease in the concentration of adiponectin, an increase in the concentration of TNFα, MMP-9 and reactive oxygen species (which contribute to the apoptosis of vascular smooth muscle cell). The available data indicate a potential relationship between obesity, inflammation and disturbed sphingolipid metabolism with the formation of aneurysms; therefore, the aim of this study was to systematize the current knowledge on the role of these factors in the pathogenesis of abdominal aortic aneurysm.
Collapse
|
14
|
Fibrates: A Possible Treatment Option for Patients with Abdominal Aortic Aneurysm? Biomolecules 2022; 12:biom12010074. [PMID: 35053222 PMCID: PMC8773940 DOI: 10.3390/biom12010074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening disease; however, there is no established treatment for patients with AAA. Fibrates are agonists of peroxisome proliferator-activated receptor alpha (PPARα) that are widely used as therapeutic agents to treat patients with hypertriglyceridemia. They can regulate the pathogenesis of AAA in multiple ways, for example, by exerting anti-inflammatory and anti-oxidative effects and suppressing the expression of matrix metalloproteinases. Previously, basic and clinical studies have evaluated the effects of fenofibrate on AAA. In this paper, we summarize the results of these studies and discuss the problems associated with using fenofibrate as a therapeutic agent for patients with AAA. In addition, we discuss a new perspective on the regulation of AAA by PPARα agonists.
Collapse
|
15
|
Toral M, de la Fuente-Alonso A, Campanero MR, Redondo JM. The NO signalling pathway in aortic aneurysm and dissection. Br J Pharmacol 2021; 179:1287-1303. [PMID: 34599830 DOI: 10.1111/bph.15694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
Recent studies have shown that NO is a central mediator in diseases associated with thoracic aortic aneurysm, such as Marfan syndrome. The progressive dilation of the aorta in thoracic aortic aneurysm ultimately leads to aortic dissection. Unfortunately, current medical treatments have neither halt aortic enlargement nor prevented rupture, leaving surgical repair as the only effective treatment. There is therefore a pressing need for effective therapies to delay or even avoid the need for surgical repair in thoracic aortic aneurysm patients. Here, we summarize the mechanisms through which NO signalling dysregulation causes thoracic aortic aneurysm, particularly in Marfan syndrome. We discuss recent advances based on the identification of new Marfan syndrome mediators related to pathway overactivation that represent potential disease biomarkers. Likewise, we propose iNOS, sGC and PRKG1, whose pharmacological inhibition reverses aortopathy in Marfan syndrome mice, as targets for therapeutic intervention in thoracic aortic aneurysm and are candidates for clinical trials.
Collapse
Affiliation(s)
- Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Andrea de la Fuente-Alonso
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Miguel R Campanero
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.,Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
16
|
Rodríguez-Carrio J, Cerro-Pardo I, Lindholt JS, Bonzon-Kulichenko E, Martínez-López D, Roldán-Montero R, Escolà-Gil JC, Michel JB, Blanco-Colio LM, Vázquez J, Suárez A, Martín-Ventura JL. Malondialdehyde-modified HDL particles elicit a specific IgG response in abdominal aortic aneurysm. Free Radic Biol Med 2021; 174:171-181. [PMID: 34364980 DOI: 10.1016/j.freeradbiomed.2021.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
High Density Lipoprotein (HDL) plays a protective role in abdominal aortic aneurysm (AAA); however, recent findings suggest that oxidative modifications could lead to dysfunctional HDL in AAA. This study aimed at testing the effect of oxidized HDL on aortic lesions and humoral immune responses in a mouse model of AAA induced by elastase, and evaluating whether antibodies against modified HDL can be found in AAA patients. HDL particles were oxidized with malondialdehyde (HDL-MDA) and the changes were studied by biochemical and proteomics approaches. Experimental AAA was induced in mice by elastase perfusion and then mice were treated with HDL-MDA, HDL or vehicle for 14 days. Aortic lesions were studied by histomorphometric analysis. Levels of anti-HDL-MDA IgG antibodies were measured by an in-house immunoassay in the mouse model, in human tissue-supernatants and in plasma samples from the VIVA cohort. HDL oxidation with MDA was confirmed by enhanced susceptibility to diene formation. Proteomics demonstrated the presence of MDA adducts on Lysine residues of HDL proteins, mainly ApoA-I. MDA-modification of HDL abrogated the protective effect of HDL on cultured endothelial cells as well as on AAA dilation in mice. Exposure to HDL-MDA elicited an anti-HDL-MDA IgG response in mice. Anti-HDL-MDA were also detected in tissue-conditioned media from AAA patients, mainly in intraluminal thrombus. Higher plasma levels of anti-HDL-MDA IgG antibodies were found in AAA patients compared to controls. Anti-HDL-MDA levels were associated with smoking and were independent predictors of overall mortality in AAA patients. Overall, MDA-oxidized HDL trigger a specific humoral immune response in mice. Besides, antibodies against HDL-MDA can be detected in tissue and plasma of AAA patients, suggesting its potential use as surrogate stable biomarkers of oxidative stress in AAA.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | | | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Elena Bonzon-Kulichenko
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Joan-Carles Escolà-Gil
- Institut de Investigació Biomédica Sant Pau, Spain; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), Barcelona, Spain
| | | | - Luis Miguel Blanco-Colio
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Jesús Vázquez
- Laboratorio de Proteómica Cardiovascular, CNIC, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana Suárez
- Area of Immunology, University of Oviedo, Instituto de Salud Del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - José Luis Martín-Ventura
- IIS-Fundación Jiménez-Díaz, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
17
|
Krishna SM, Li J, Wang Y, Moran CS, Trollope A, Huynh P, Jose R, Biros E, Ma J, Golledge J. Kallistatin limits abdominal aortic aneurysm by attenuating generation of reactive oxygen species and apoptosis. Sci Rep 2021; 11:17451. [PMID: 34465809 PMCID: PMC8408144 DOI: 10.1038/s41598-021-97042-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Inflammation, vascular smooth muscle cell apoptosis and oxidative stress are believed to play important roles in abdominal aortic aneurysm (AAA) pathogenesis. Human kallistatin (KAL; gene SERPINA4) is a serine proteinase inhibitor previously shown to inhibit inflammation, apoptosis and oxidative stress. The aim of this study was to investigate the role of KAL in AAA through studies in experimental mouse models and patients. Serum KAL concentration was negatively associated with the diagnosis and growth of human AAA. Transgenic overexpression of the human KAL gene (KS-Tg) or administration of recombinant human KAL (rhKAL) inhibited AAA in the calcium phosphate (CaPO4) and subcutaneous angiotensin II (AngII) infusion mouse models. Upregulation of KAL in both models resulted in reduction in the severity of aortic elastin degradation, reduced markers of oxidative stress and less vascular smooth muscle apoptosis within the aorta. Administration of rhKAL to vascular smooth muscle cells incubated in the presence of AngII or in human AAA thrombus-conditioned media reduced apoptosis and downregulated markers of oxidative stress. These effects of KAL were associated with upregulation of Sirtuin 1 activity within the aortas of both KS-Tg mice and rodents receiving rhKAL. These results suggest KAL-Sirtuin 1 signalling limits aortic wall remodelling and aneurysm development through reductions in oxidative stress and vascular smooth muscle cell apoptosis. Upregulating KAL may be a novel therapeutic strategy for AAA.
Collapse
Affiliation(s)
- Smriti Murali Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Yutang Wang
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia, Horsham, VIC, Australia
| | - Corey S Moran
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Alexandra Trollope
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia.,Division of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
| | - Pacific Huynh
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Roby Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Erik Biros
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jianxing Ma
- Department of Physiology, Health Sciences Centre, University of Oklahoma, Oklahoma City, OK, 73104, USA
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia. .,Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia.
| |
Collapse
|
18
|
Robert J, Osto E, von Eckardstein A. The Endothelium Is Both a Target and a Barrier of HDL's Protective Functions. Cells 2021; 10:1041. [PMID: 33924941 PMCID: PMC8146309 DOI: 10.3390/cells10051041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
The vascular endothelium serves as a barrier between the intravascular and extravascular compartments. High-density lipoproteins (HDL) have two kinds of interactions with this barrier. First, bloodborne HDL must pass the endothelium to access extravascular tissues, for example the arterial wall or the brain, to mediate cholesterol efflux from macrophages and other cells or exert other functions. To complete reverse cholesterol transport, HDL must even pass the endothelium a second time to re-enter circulation via the lymphatics. Transendothelial HDL transport is a regulated process involving scavenger receptor SR-BI, endothelial lipase, and ATP binding cassette transporters A1 and G1. Second, HDL helps to maintain the integrity of the endothelial barrier by (i) promoting junction closure as well as (ii) repair by stimulating the proliferation and migration of endothelial cells and their progenitor cells, and by preventing (iii) loss of glycocalix, (iv) apoptosis, as well as (v) transmigration of inflammatory cells. Additional vasoprotective functions of HDL include (vi) the induction of nitric oxide (NO) production and (vii) the inhibition of reactive oxygen species (ROS) production. These vasoprotective functions are exerted by the interactions of HDL particles with SR-BI as well as specific agonists carried by HDL, notably sphingosine-1-phophate (S1P), with their specific cellular counterparts, e.g., S1P receptors. Various diseases modify the protein and lipid composition and thereby the endothelial functionality of HDL. Thorough understanding of the structure-function relationships underlying the multiple interactions of HDL with endothelial cells is expected to elucidate new targets and strategies for the treatment or prevention of various diseases.
Collapse
Affiliation(s)
| | | | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, 8091 Zurich, Switzerland; (J.R.); (E.O.)
| |
Collapse
|
19
|
Moran CS, Biros E, Krishna SM, Morton SK, Sexton DJ, Golledge J. Kallikrein-1 Blockade Inhibits Aortic Expansion in a Mouse Model and Reduces Prostaglandin E2 Secretion From Human Aortic Aneurysm Explants. J Am Heart Assoc 2021; 10:e019372. [PMID: 33599139 PMCID: PMC8174241 DOI: 10.1161/jaha.120.019372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. The kinin B2 receptor agonist, bradykinin, has been implicated in AAA pathogenesis through promoting inflammation. Bradykinin is generated from high- and low-molecular-weight kininogen by the serine protease kallikrein-1. The aims of this study were first to examine the effect of neutralizing kallikrein-1 on AAA development in a mouse model and second to test how blocking kallikrein-1 affected cyclooxygenase-2 and prostaglandin E2 in human AAA explants. Methods and Results Neutralization of kallikrein-1 in apolipoprotein E-deficient (ApoE-/-) mice via administration of a blocking antibody inhibited suprarenal aorta expansion in response to angiotensin (Ang) II infusion. Kallikrein-1 neutralization decreased suprarenal aorta concentrations of bradykinin and prostaglandin E2 and reduced cyclooxygenase-2 activity. Kallikrein-1 neutralization also decreased protein kinase B and extracellular signal-regulated kinase 1/2 phosphorylation and reduced levels of active matrix metalloproteinase 2 and matrix metalloproteinase 9. Kallikrein-1 blocking antibody reduced levels of cyclooxygenase-2 and secretion of prostaglandin E2 and active matrix metalloproteinase 2 and matrix metalloproteinase 9 from human AAA explants and vascular smooth muscle cells exposed to activated neutrophils. Conclusions These findings suggest that kallikrein-1 neutralization could be a treatment target for AAA.
Collapse
Affiliation(s)
- Corey S Moran
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Erik Biros
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | - Susan K Morton
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia
| | | | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Australia.,Department of Vascular and Endovascular Surgery Townsville University Hospital Townsville Australia
| |
Collapse
|
20
|
Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars) 2020; 15:457-463. [PMID: 33336003 PMCID: PMC7712403 DOI: 10.1515/med-2020-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Osteoprotegerin (OPG) appears to be a very promising marker both in the diagnosis of abdominal aortic aneurysms (AAAs) and as a potential target in its treatment. This article presents an overview of the current literature that discusses the role of OPG in the pathogenesis of atherosclerosis and its potential value as a prognostic factor in AAA. Pharmacological modulation of OPG expression has been considered. In conclusion, it seems that further research designed to assess the relationship between OPG and AAA is needed as this may contribute to improved AAA monitoring and more effective treatment of patients with AAA.
Collapse
Affiliation(s)
- Maciej Migacz
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Agata Janoska-Gawrońska
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Michał Holecki
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Jerzy Chudek
- Department and Clinic of Internal Medicine and Cancer Chemotherapy, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
21
|
Guo Y, Wan S, Han M, Zhao Y, Li C, Cai G, Zhang S, Sun Z, Hu X, Cao H, Li Z. Plasma Metabolomics Analysis Identifies Abnormal Energy, Lipid, and Amino Acid Metabolism in Abdominal Aortic Aneurysms. Med Sci Monit 2020; 26:e926766. [PMID: 33257643 PMCID: PMC7718721 DOI: 10.12659/msm.926766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a complicated aortic dilatation disease. Metabolomics is an emerging system biology method. This aim of this study was to identify abnormal metabolites and metabolic pathways associated with AAA and to discover potential biomarkers that could affect the size of AAAs. Material/Methods An untargeted metabolomic method was used to analyze the plasma metabolic profiles of 39 patients with AAAs and 30 controls. Multivariate analysis methods were used to perform differential metabolite screening and metabolic pathway analysis. Cluster analysis and univariate analysis were performed to identify potential metabolites that could affect the size of an AAA. Results Forty-five different metabolites were identified with an orthogonal projection to latent squares-discriminant analysis model and the differences between them in the patients with AAAs and the control group were compared. A variable importance in the projection score >1 and P<0.05 were considered statistically significant. In patients with AAAs, the pathways involving metabolism of alanine, aspartate, glutamate, D-glutamine, D-glutamic acid, arginine, and proline; tricarboxylic acid cycling; and biosynthesis of arginine are abnormal. The progression of an AAA may be related to 13 metabolites: citric acid, 2-oxoglutarate, succinic acid, coenzyme Q1, pyruvic acid, sphingosine-1-phosphate, platelet-activating factor, LysoPC (16: 00), lysophosphatidylcholine (18: 2(9Z,12Z)/0: 0), arginine, D-aspartic acid, and L- and D-glutamine. Conclusions An untargeted metabolomic analysis using ultraperformance liquid chromatography-tandem mass spectrometry identified metabolites that indicate disordered metabolism of energy, lipids, and amino acids in AAAs.
Collapse
Affiliation(s)
- Yaming Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuwei Wan
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Mingli Han
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yubo Zhao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Chuang Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Gaopo Cai
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Shuai Zhang
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Xinhua Hu
- Department of Endovascular Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Hui Cao
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Zhen Li
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
22
|
Factor XII blockade inhibits aortic dilatation in angiotensin II-infused apolipoprotein E-deficient mice. Clin Sci (Lond) 2020; 134:1049-1061. [PMID: 32309850 DOI: 10.1042/cs20191020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 12/23/2022]
Abstract
Abdominal aortic aneurysm (AAA) is an important cause of mortality in older adults. Chronic inflammation and excessive matrix remodelling are considered important in AAA pathogenesis. Kinins are bioactive peptides important in regulating inflammation. Stimulation of the kinin B2 receptor has been previously reported to promote AAA development and rupture in a mouse model. The endogenous B2 receptor agonist, bradykinin, is generated from the kallikrein-kinin system following activation of plasma kallikrein by Factor XII (FXII). In the current study whole-body FXII deletion, or neutralisation of activated FXII (FXIIa), inhibited expansion of the suprarenal aorta (SRA) of apolipoprotein E-deficient mice in response to angiotensin II (AngII) infusion. FXII deficiency or FXIIa neutralisation led to decreased aortic tumor necrosis factor-α-converting enzyme (TACE/a disintegrin and metalloproteinase-17 (aka tumor necrosis factor-α-converting enzyme) (ADAM-17)) activity, plasma kallikrein concentration, and epithelial growth factor receptor (EGFR) phosphorylation compared with controls. FXII deficiency or neutralisation also reduced Akt1 and Erk1/2 phosphorylation and decreased expression and levels of active matrix metalloproteinase (Mmp)-2 and Mmp-9. The findings suggest that FXII, kallikrein, ADAM-17, and EGFR are important molecular mediators by which AngII induces aneurysm in apolipoprotein E-deficient mice. This could be a novel pathway to target in the design of drugs to limit AAA progression.
Collapse
|
23
|
Golledge J, Krishna SM, Wang Y. Mouse models for abdominal aortic aneurysm. Br J Pharmacol 2020; 179:792-810. [PMID: 32914434 DOI: 10.1111/bph.15260] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) rupture is estimated to cause 200,000 deaths each year. Currently, the only treatment for AAA is surgical repair; however, this is only indicated for large asymptomatic, symptomatic or ruptured aneurysms, is not always durable, and is associated with a risk of serious perioperative complications. As a result, patients with small asymptomatic aneurysms or who are otherwise unfit for surgery are treated conservatively, but up to 70% of small aneurysms continue to grow, increasing the risk of rupture. There is thus an urgent need to develop drug therapies effective at slowing AAA growth. This review describes the commonly used mouse models for AAA. Recent research in these models highlights key roles for pathways involved in inflammation and cell turnover in AAA pathogenesis. There is also evidence for long non-coding RNAs and thrombosis in aneurysm pathology. Further well-designed research in clinically relevant models is expected to be translated into effective AAA drugs.
Collapse
Affiliation(s)
- Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Smriti Murali Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Yutang Wang
- Discipline of Life Sciences, School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria, Australia
| |
Collapse
|
24
|
Moxon JV, Rowbotham SE, Pinchbeck JL, Lazzaroni SM, Morton SK, Moran CS, Quigley F, Jenkins JS, Reid CM, Cavaye D, Jaeggi R, Golledge J. A Randomised Controlled Trial Assessing the Effects of Peri-operative Fenofibrate Administration on Abdominal Aortic Aneurysm Pathology: Outcomes From the FAME Trial. Eur J Vasc Endovasc Surg 2020; 60:452-460. [PMID: 32703634 DOI: 10.1016/j.ejvs.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Experimental studies suggest that fenofibrate prevents abdominal aortic aneurysm (AAA) development by lowering aortic osteopontin (OPN) concentration and reducing the number of macrophages infiltrating the aortic wall. The current study examined the effects of a short course of fenofibrate on AAA pathology in people with large AAAs awaiting aortic repair. METHODS This randomised double blind parallel trial included male and female participants aged ≥ 60 years who had an asymptomatic AAA measuring ≥ 50 mm and were scheduled to undergo open AAA repair. Participants were allocated to fenofibrate (145 mg/day) or matching placebo for at least two weeks before elective AAA repair. Blood samples were collected at recruitment and immediately prior to surgery. AAA biopsies were obtained during aortic surgery. The primary outcomes were (1) AAA OPN concentration; (2) serum OPN concentration; and (3) number of AAA macrophages. Exploratory outcomes included circulating and aortic concentrations of other proteins previously associated with AAA. Outcomes assessed at a single time point were compared using logistic regression. Longitudinal outcomes were compared using linear mixed effects models. RESULTS Forty-three participants were randomised. After three withdrawals, 40 were followed until the time of surgery (21 allocated fenofibrate and 19 allocated placebo). As expected, serum triglycerides reduced significantly from recruitment to the time of surgery in participants allocated fenofibrate. No differences in any of the primary and exploratory outcomes were observed between groups. CONCLUSION A short course of 145 mg of fenofibrate/day did not lower concentrations of OPN or aortic macrophage density in people with large AAAs.
Collapse
Affiliation(s)
- Joseph V Moxon
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
| | - Sophie E Rowbotham
- The University of Queensland, UQ Centre for Clinical Research, Herston, Queensland, Australia; Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Jenna L Pinchbeck
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Sharon M Lazzaroni
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Susan K Morton
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Corey S Moran
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Frank Quigley
- Mater Medical Centre, Pimlico, Queensland, Australia
| | - Jason S Jenkins
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Christopher M Reid
- School of Public Health, Curtin University, Perth, Western Australia, Australia; School of Public Health and Preventative Medicine, Monash University, Melbourne, Victoria, Australia
| | - Doug Cavaye
- St Vincent's Private Hospital Northside, Chermside, Queensland, Australia
| | - Rene Jaeggi
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia; Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia; Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
25
|
Golledge J, Moxon JV, Singh TP, Bown MJ, Mani K, Wanhainen A. Lack of an effective drug therapy for abdominal aortic aneurysm. J Intern Med 2020; 288:6-22. [PMID: 31278799 DOI: 10.1111/joim.12958] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abdominal aortic aneurysm (AAA) rupture is a common cause of death in adults. Current AAA treatment is by open surgical or endovascular aneurysm repair. Rodent model and human epidemiology, and genetic and observational studies over the last few decades have highlighted the potential of a number of drug therapies, including medications that lower blood pressure, correct dyslipidaemia, or inhibit thrombosis, inflammation or matrix remodelling, as approaches to managing small AAA. This review summarizes prior AAA pathogenesis data from animal and human studies aimed at identifying targets for the development of drug therapies. The review also systematically assesses past randomized placebo-controlled drug trials in patients with small AAAs. Eleven previously published randomized-controlled clinical trials testing different drug therapies aimed at slowing AAA progression were identified. Five of the trials tested antibiotics and three trials assessed medications that lower blood pressure. Meta-analyses of these trials suggested that neither of these approaches limit AAA growth. Allocation to blood pressure-lowering medication was associated with a small reduction in AAA rupture or repair, compared to placebo (relative risk 0.94, 95% confidence intervals 0.89, 1.00, P = 0.047). Three further trials assessed the effect of a mast cell inhibitor, fibrate or platelet aggregation inhibition and reported no effect on AAA growth or clinical events. Past trials were noted to have a number of design issues, particularly small sample sizes and limited follow-up. Much larger trials are needed to properly test potential therapeutic approaches if a convincingly effective medical therapy for AAA is to be identified.
Collapse
Affiliation(s)
- J Golledge
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - J V Moxon
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,Centre for Molecular Therapeutics, The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Qld, Australia
| | - T P Singh
- From the, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Qld, Australia.,The Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Qld, Australia
| | - M J Bown
- Department of Cardiovascular Sciences and NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - K Mani
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| | - A Wanhainen
- Department of Surgical Sciences, Vascular Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Depletion of CD11c+ dendritic cells in apolipoprotein E-deficient mice limits angiotensin II-induced abdominal aortic aneurysm formation and growth. Clin Sci (Lond) 2020; 133:2203-2215. [PMID: 31696215 DOI: 10.1042/cs20190924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The role of chronic inflammation in abdominal aortic aneurysm (AAA) is controversial. CD11c+ antigen-presenting cells (APCs) (dendritic cells (DCs)) have been reported in human AAA samples but their role is unclear. The effect of conditional depletion of CD11c+ cells on experimental AAA was investigated in the angiotensin II (AngII)-infused apolipoprotein E-deficient (ApoE-/-) mouse model. APPROACH CD11c-diphtheria toxin (DT or D.tox) receptor (DTR), ovalbumin (OVA) fragment aa 140-386, and enhanced green fluorescent protein (eGFP)-ApoE-/- (CD11c.DOG.ApoE-/-) mice were generated and CD11c+ cell depletion achieved with D.tox injections (8 ng/g body weight, i.p., every-other-day). AAA formation and growth were assessed by measurement of supra-renal aortic (SRA) diameter in vivo by serial ultrasound and by morphometry assessment of harvested aortas at the end of the study. RESULTS Depletion of CD11c+ cells by administration of D.tox on alternative days was shown to reduce the maximum diameter of AAAs induced by 28 days AngII infusion compared with controls (D.tox, 1.58 ± 0.03 mm vs Vehicle control, 1.81 ± 0.06 mm, P<0.001). CD11c+ depletion commencing after AAA establishment by 14 days of AngII infusion, was also shown to lead to smaller AAAs than controls after a further 14 days (D.tox, 1.54 ± 0.04 mm vs Vehicle control, 1.80 ± 0.03 mm, P<0.001). Flow cytometry revealed significantly lower numbers of circulating CD44hi CD62Llo effector CD4 T cells, CD44hi CD62Llo effector CD8 T cells and B220+ B cells in CD11c+ cell-depleted mice versus controls. CD11c+ depletion attenuated SRA matrix degradation indicated by decreased neutrophil elastase activity (P=0.014), lower elastin degradation score (P=0.012) and higher collagen content (P=0.002). CONCLUSION CD11c+ cell-depletion inhibited experimental AAA development and growth associated with down-regulation of circulating effector T cells and attenuated matrix degradation. The findings suggest involvement of autoreactive immune cells in AAA pathogenesis.
Collapse
|
27
|
Krishna SM, Omer SM, Li J, Morton SK, Jose RJ, Golledge J. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease. Sci Rep 2020; 10:3449. [PMID: 32103073 PMCID: PMC7044206 DOI: 10.1038/s41598-020-60352-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022] Open
Abstract
Peripheral arterial disease (PAD) develops due to the narrowing or blockage of arteries supplying blood to the lower limbs. Surgical and endovascular interventions are the main treatments for advanced PAD but alternative and adjunctive medical therapies are needed. Currently the main preclinical experimental model employed in PAD research is based on induction of acute hind limb ischemia (HLI) by a 1-stage procedure. Since there are concerns regarding the ability to translate findings from this animal model to patients, we aimed to develop a novel clinically relevant animal model of PAD. HLI was induced in male Apolipoprotein E (ApoE-/-) deficient mice by a 2-stage procedure of initial gradual femoral artery occlusion by ameroid constrictors for 14 days and subsequent excision of the femoral artery. This 2-stage HLI model was compared to the classical 1-stage HLI model and sham controls. Ischemia severity was assessed using Laser Doppler Perfusion Imaging (LDPI). Ambulatory ability was assessed using an open field test, a treadmill test and using established scoring scales. Molecular markers of angiogenesis and shear stress were assessed within gastrocnemius muscle tissue samples using quantitative polymerase chain reaction. HLI was more severe in mice receiving the 2-stage compared to the 1-stage ischemia induction procedure as assessed by LDPI (p = 0.014), and reflected in a higher ischemic score (p = 0.004) and lower average distance travelled on a treadmill test (p = 0.045). Mice undergoing the 2-stage HLI also had lower expression of angiogenesis markers (vascular endothelial growth factor, p = 0.004; vascular endothelial growth factor- receptor 2, p = 0.008) and shear stress response mechano-transducer transient receptor potential vanilloid 4 (p = 0.041) within gastrocnemius muscle samples, compared to animals having the 1-stage HLI procedure. Mice subjected to the 2-stage HLI receiving an exercise program showed significantly greater improvement in their ambulatory ability on a treadmill test than a sedentary control group. This study describes a novel model of HLI which leads to more severe and sustained ischemia than the conventionally used model. Exercise therapy, which has established efficacy in PAD patients, was also effective in this new model. This new model maybe useful in the evaluation of potential novel PAD therapies.
Collapse
Affiliation(s)
- Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Safraz Mohamed Omer
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Susan K Morton
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Roby J Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, School of Medicine and Dentistry, James Cook University, Townsville, Queensland, 4811, Australia.
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
28
|
Abstract
Abdominal aortic aneurysms (AAA) pose a considerable health burden and at present are only managed surgically since there is no proven pharmacotherapy that will retard their expansion or reduce the incidence of fatal rupture. This pathology shares several pathophysiological mechanisms with atherosclerosis, such as macrophage infiltration, inflammation, and degradation of extracellular matrix. Therefore, therapeutic targets proven effective in the treatment of atherosclerosis could also be considered for treatment of AAA. Different members of the nuclear receptor (NR) superfamily have been extensively studied as potential targets in the treatment of cardiovascular disease (CVD) and therefore might also be suited for AAA treatment. In this context, this review summarizes the role of different NRs in CVD, mostly atherosclerosis, and discusses in detail the current knowledge of their implications in AAA. From this overview it becomes apparent that NRs that were attributed a beneficial or adverse role in CVD have similar roles in AAA. Together, this overview provides compelling evidence to consider several NRs as attractive targets for future treatment of AAA.
Collapse
|
29
|
IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. J Clin Med 2019; 9:jcm9010067. [PMID: 31888089 PMCID: PMC7019833 DOI: 10.3390/jcm9010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins cholesterol (HDLc) levels are decreased in abdominal aortic aneurysm (AAA), which is hallmarked by autoimmunity and lipid aortic deposits. To investigate whether IgG anti-HDL antibodies were present in AAA and their potential association with clinical features, IgG anti-HDL and total IgG along with HDLc plasma levels were measured in 488 AAA patients and 184 controls from the Viborg Vascular (VIVA) study, and in tissue-conditioned media from AAA intraluminal thrombus and media layer samples compared to control aortas. Higher IgG anti-HDL levels were found in AAA compared to controls, even after correcting for total IgG, and after adjusting for potential confounders. IgG anti-HDL levels were correlated with aortic diameter in univariate and adjusted multivariate analyses. IgG anti-HDL antibodies were negatively associated with HDLc levels before and after correcting for potential confounders. Increased anti-HDL antibodies were identified in tissue-conditioned media from AAA samples compared to healthy aortas, with higher levels being observed in the media layer. In conclusion, increased IgG anti-HDL levels (both in plasma and in tissue) are linked to AAA, associated with aortic diameter and HDLc levels. These data suggest a potential immune response against HDL in AAA and support an emerging role of anti-HDL antibodies in AAA.
Collapse
|
30
|
Pinchbeck JL, Moxon JV, Rowbotham SE, Bourke M, Lazzaroni S, Morton SK, Matthews EO, Hendy K, Jones RE, Bourke B, Jaeggi R, Favot D, Quigley F, Jenkins JS, Reid CM, Velu R, Golledge J. Randomized Placebo-Controlled Trial Assessing the Effect of 24-Week Fenofibrate Therapy on Circulating Markers of Abdominal Aortic Aneurysm: Outcomes From the FAME -2 Trial. J Am Heart Assoc 2019; 7:e009866. [PMID: 30371299 PMCID: PMC6404864 DOI: 10.1161/jaha.118.009866] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background There is no drug therapy for abdominal aortic aneurysm (AAA). FAME‐2 (Fenofibrate in the Management of Abdominal Aortic Aneurysm 2) was a placebo‐controlled randomized trial designed to assess whether administration of 145 mg of fenofibrate/d for 24 weeks favorably modified circulating markers of AAA. Methods and Results Patients with AAAs measuring 35 to 49 mm and no contraindication were randomized to fenofibrate or identical placebo. The primary outcome measures were the differences in serum osteopontin and kallistatin concentrations between groups. Secondary analyses compared changes in the circulating concentration of AAA‐associated proteins, and AAA growth, between groups using multivariable linear mixed‐effects modeling. A total of 140 patients were randomized to receive fenofibrate (n=70) or placebo (n=70). By the end of the study 3 (2.1%) patients were lost to follow‐up and 18 (12.9%) patients had ceased trial medication. A total of 85% of randomized patients took ≥80% of allocated tablets and were deemed to have complied with the medication regimen. Patients’ allocated fenofibrate had expected reductions in serum triglycerides and estimated glomerular filtration rate, and increases in serum homocysteine. No differences in serum osteopontin, kallistatin, or AAA growth were observed between groups. Conclusions Administering 145 mg/d of fenofibrate for 24 weeks did not significantly reduce serum concentrations of osteopontin and kallistatin concentrations, or rates of AAA growth in this trial. The findings do not support the likely benefit of fenofibrate as a treatment for patients with small AAAs. Clinical Trial Registration URL: http://www.anzctr.org.au. Unique identifier: ACTRN12613001039774.
Collapse
Affiliation(s)
- Jenna L Pinchbeck
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Joseph V Moxon
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia
| | - Sophie E Rowbotham
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia.,4 School of Medicine The University of Queensland Herston Queensland Australia
| | - Michael Bourke
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,5 Gosford Vascular Services Gosford New South Wales Australia
| | - Sharon Lazzaroni
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Susan K Morton
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Evan O Matthews
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Kerolos Hendy
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Rhondda E Jones
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia
| | - Bernie Bourke
- 5 Gosford Vascular Services Gosford New South Wales Australia
| | - Rene Jaeggi
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia
| | - Danella Favot
- 3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia
| | - Frank Quigley
- 6 Department of Vascular and Endovascular Surgery Mater Hospital Townsville Queensland Australia
| | - Jason S Jenkins
- 3 Department of Vascular Surgery The Royal Brisbane and Women's Hospital Herston Queensland Australia
| | - Christopher M Reid
- 7 School of Public Health and Preventative Medicine Monash University Melbourne Victoria Australia.,8 School of Public Health Curtin University Perth Western Australia Australia
| | - Ramesh Velu
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,9 Department of Vascular and Endovascular Surgery The Townsville Hospital Townsville Queensland Australia
| | - Jonathan Golledge
- 1 The Queensland Research Centre for Peripheral Vascular Disease College of Medicine and Dentistry James Cook University Townsville Queensland Australia.,2 The Australian Institute of Tropical Health and Medicine James Cook University Townsville Queensland Australia.,6 Department of Vascular and Endovascular Surgery Mater Hospital Townsville Queensland Australia.,9 Department of Vascular and Endovascular Surgery The Townsville Hospital Townsville Queensland Australia
| |
Collapse
|
31
|
Martínez-López D, Camafeita E, Cedó L, Roldan-Montero R, Jorge I, García-Marqués F, Gómez-Serrano M, Bonzon-Kulichenko E, Blanco-Vaca F, Blanco-Colio LM, Michel JB, Escola-Gil JC, Vázquez J, Martin-Ventura JL. APOA1 oxidation is associated to dysfunctional high-density lipoproteins in human abdominal aortic aneurysm. EBioMedicine 2019; 43:43-53. [PMID: 30982767 PMCID: PMC6562066 DOI: 10.1016/j.ebiom.2019.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/15/2019] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Background High-density lipoproteins (HDL) are a complex mixture of lipids and proteins with vasculoprotective properties. However, HDL components could suffer post-translational modifications (PTMs) under pathological conditions, leading to dysfunctional HDL. We studied whether HDL are modified in abdominal aortic aneurysm (AAA) and the effect on HDL functionality. Methods HDL were isolated by ultracentrifugation from AAA tissue (HDL-T) and from plasma of healthy volunteers and then incubated with AAA tissue-conditioned medium (HDL-AAA CM). PTMs from these particles were characterized using Comet-PTM. The ability of HDL-AAA CM for promoting cholesterol efflux was determined ex vivo and in vivo by using J774A.1 [3H]cholesterol-labeled mouse macrophages and after injecting [3H]cholesterol-labeled mouse macrophages and HDL into the peritoneal cavity of wild-type C57BL/6 mice, respectively. Trp50 and Trp108 oxidized forms of APOA1 in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients and controls were measured by targeted parallel reaction monitoring. Findings Oxidation was the most prevalent PTM in apolipoproteins, particularly in APOA1. Trp50 and Trp108 in APOA1 were the residues most clearly affected by oxidation in HDL-T and in HDL-AAA CM, when compared to their controls. In addition, cholesterol efflux was decreased in macrophages incubated with HDL-AAA CM in vitro and a decreased macrophage-to-serum reverse cholesterol transport was also observed in mice injected with HDL-AAA CM. Finally, both oxidized Trp50 and Trp108 forms of APOA1 were increased in HDL incubated with conditioned-medium of activated neutrophils and in plasma of AAA patients in relation to controls. Interpretation Oxidative modifications of HDL present in AAA tissue and plasma were closely associated with the loss of vasculoprotective properties of HDL in AAA. Fund MINECO, ISCiii-FEDER, CIBERDEM, CIBERCV and LA CAIXA.
Collapse
Affiliation(s)
- Diego Martínez-López
- Laboratorio de Patología Vascular, FIIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Emilio Camafeita
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Lídia Cedó
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, CIBERDEM, Barcelona, Spain
| | - Raquel Roldan-Montero
- Laboratorio de Patología Vascular, FIIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain
| | - Inmaculada Jorge
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Fernando García-Marqués
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Gómez-Serrano
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Elena Bonzon-Kulichenko
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - Luis Miguel Blanco-Colio
- Laboratorio de Patología Vascular, FIIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | | | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Jose Luis Martin-Ventura
- Laboratorio de Patología Vascular, FIIS-Fundación Jiménez Díaz-Universidad Autónoma, Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| |
Collapse
|
32
|
Phie J, Moxon JV, Krishna SM, Kinobe R, Morton SK, Golledge J. A diet enriched with tree nuts reduces severity of atherosclerosis but not abdominal aneurysm in angiotensin II-infused apolipoprotein E deficient mice. Atherosclerosis 2018; 277:28-33. [PMID: 30170221 DOI: 10.1016/j.atherosclerosis.2018.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Diets enriched with tree nuts have been demonstrated to reduce the risk of atherosclerosis-related cardiovascular events. Abdominal aortic aneurysm (AAA) shares common risk factors with atherosclerosis and AAA patients commonly have atherosclerosis related cardiovascular events. AAA has some distinct pathological and clinical characteristics to those of atherosclerosis. No previous study has examined the effect of a diet enriched with tree nuts on experimental or clinical AAA. This study investigated the effect of a diet enriched with tree nuts on the development and severity of AAA within an experimental rodent model. METHODS Male apolipoprotein E deficient mice were allocated to a diet enriched with tree nuts or control diet for 56 days (n = 17 per group). After 28 days, all mice were infused with angiotensin II whilst being maintained on their respective diets. The primary outcome was AAA severity assessed by the supra-renal aortic diameter, measured by ultrasound and ex vivo morphometric analysis. The severity of atherosclerosis was assessed by computer-aided analysis of Sudan IV stained aortic arches and sections of brachiocephalic arteries prepared with Van Gieson's stain. RESULTS The diet enriched with tree nuts did not influence aortic diameter or aortic rupture incidence. Mice receiving the diet enriched with tree nuts had significantly less atherosclerosis within the brachiocephalic artery (p = 0.033) but not in the aortic arch. CONCLUSIONS This experimental study suggests that a diet enriched with tree nuts does not reduce the severity of AAA, but does reduce the severity of atherosclerosis within the brachiocephalic artery. The study was not powered to identify a moderate effect of the diet on the primary outcome and therefore this cannot be excluded.
Collapse
MESH Headings
- Angiotensin II
- Animal Feed
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Brachiocephalic Trunk/metabolism
- Brachiocephalic Trunk/pathology
- Dilatation, Pathologic
- Disease Models, Animal
- Fatty Acids, Omega-3/administration & dosage
- Male
- Mice, Knockout, ApoE
- Nutritive Value
- Nuts
- Plaque, Atherosclerotic
- Polyphenols/administration & dosage
- Severity of Illness Index
- Time Factors
Collapse
Affiliation(s)
- James Phie
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph V Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Robert Kinobe
- College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Susan K Morton
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine & Dentistry, James Cook University, Townsville, Queensland, Australia; Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia.
| |
Collapse
|
33
|
Krishna SM, Moxon JV, Jose RJ, Li J, Sahebkar A, Jaafari MR, Hatamipour M, Liu D, Golledge J. Anionic nanoliposomes reduced atherosclerosis progression in Low Density Lipoprotein Receptor (LDLR) deficient mice fed a high fat diet. J Cell Physiol 2018; 233:6951-6964. [PMID: 29741759 DOI: 10.1002/jcp.26610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 12/28/2022]
Abstract
Atherosclerosis is a systemic disease characterized by the deposition of cholesterol and inflammatory cells within the arterial wall. Removal of cholesterol from the vessel wall may have an impact on the size and composition of atherosclerotic lesions. Anionic phospholipids or liposome vesicles composed of a lipid bilayer such as nanoliposomes have been suggested as treatments for dyslipidemia. In this study, we investigated the effect of anionic nanoliposomes on atherosclerosis in a mouse model. Low-density lipoprotein receptor knockout mice (Ldlr-/- ) were fed with an atherosclerosis promoting high fat and cholesterol (HFC) diet for 12 weeks. Anionic nanoliposomes including hydrogenated soy phosphatidylcholine (HSPC) and distearoyl phosphatidylglycerol (DSPG) (molar ratio: 1:3) were injected intravenously into HFC-fed Ldlr-/- mice once a week for 4 weeks. Mice receiving nanoliposomes had significantly reduced atherosclerosis within the aortic arch as assessed by Sudan IV staining area (p = 0.007), and reduced intima/media ratio (p = 0.030) and greater collagen deposition within atherosclerosis plaques within the brachiocephalic artery (p = 0.007), compared to control mice. Administration of nanoliposomes enhanced markers of reverse cholesterol transport (RCT) and increased markers of plaque stability in HFC-fed Ldlr-/- mice. Reduced cholesterol accumulation was observed in the liver along with the up-regulation of the major genes involved in the efflux of cholesterol such as hepatic ATP-binding cassette transporters (ABC) including Abc-a1, Abc-g1, Abc-g5, and Abc-g8, Scavenger receptor class B, member 1 (Scarb1), and Liver X receptor alpha (Lxr)-α. Lecithin Cholesterol Acyltransferase activity within the plasma was also increased in mice receiving nanoliposomes. Anionic nanoliposome administration reduced atherosclerosis in HFC-fed Ldlr-/- mice by promoting RCT and upregulating the ABC-A1/ABC-G1 pathway.
Collapse
Affiliation(s)
- Smriti M Krishna
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Roby J Jose
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jiaze Li
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud R Jaafari
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdi Hatamipour
- Nanotechnology Research Centre, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dawie Liu
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
34
|
Angiotensin II facilitates neointimal formation by increasing vascular smooth muscle cell migration: Involvement of APE/Ref-1-mediated overexpression of sphingosine-1-phosphate receptor 1. Toxicol Appl Pharmacol 2018; 347:45-53. [DOI: 10.1016/j.taap.2018.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
|
35
|
Molina-Sánchez P, Jorge I, Martinez-Pinna R, Blanco-Colio LM, Tarin C, Torres-Fonseca MM, Esteban M, Laustsen J, Ramos-Mozo P, Calvo E, Lopez JA, Ceniga MVD, Michel JB, Egido J, Andrés V, Vazquéz J, Meilhac O, Burillo E, Lindholt JS, Martin-Ventura JL. ApoA-I/HDL-C levels are inversely associated with abdominal aortic aneurysm progression. Thromb Haemost 2017; 113:1335-46. [DOI: 10.1160/th14-10-0874] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/21/2015] [Indexed: 12/18/2022]
Abstract
SummaryAbdominal aortic aneurysm (AAA) evolution is unpredictable, and there is no therapy except surgery for patients with an aortic size > 5 cm (large AAA). We aimed to identify new potential biomarkers that could facilitate prognosis and treatment of patients with AAA. A differential quantitative proteomic analysis of plasma proteins was performed in AAA patients at different stages of evolution [small AAA (aortic size=3�5cm) vs large AAA] using iTRAQ labelling, highthroughput nano-LC-MS/MS and a novel multi-layered statistical model. Among the proteins identified, ApoA-I was decreased in patients with large AAA compared to those with small AAA. These results were validated by ELISA on plasma samples from small (n=90) and large AAA (n=26) patients (150 ± 3 vs 133 ± 5 mg/dl, respectively, p< 0.001). ApoA-I levels strongly correlated with HDL-Cholesterol (HDL-C) concentration (r=0.9, p< 0.001) and showed a negative correlation with aortic size (r=-0.4, p< 0.01) and thrombus volume (r=-0.3, p< 0.01), which remained significant after adjusting for traditional risk factors. In a prospective study, HDL-C independently predicted aneurysmal growth rate in multiple linear regression analysis (n=122, p=0.008) and was inversely associated with need for surgical repair (Adjusted hazard ratio: 0.18, 95 % confidence interval: 0.04�0.74, p=0.018). In a nation-wide Danish registry, we found lower mean HDL-C concentration in large AAA patients (n=6,560) compared with patients with aorto-iliac occlusive disease (n=23,496) (0.89 ± 2.99 vs 1.59 ± 5.74 mmol/l, p< 0.001). Finally, reduced mean aortic AAA diameter was observed in AngII-infused mice treated with ApoA-I mimetic peptide compared with saline-injected controls. In conclusion, ApoAI/ HDL-C systemic levels are negatively associated with AAA evolution. Therapies targeting HDL functionality could halt AAA formation.
Collapse
|
36
|
Rouer M, Alsac JM, Louedec L, Shoukr FA, Rouzet F, Michel JB, Meilhac O, Delbosc S. High-density lipoprotein therapy inhibits Porphyromonas gingivalis-induced abdominal aortic aneurysm progression. Thromb Haemost 2017; 115:789-99. [DOI: 10.1160/th15-05-0398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/13/2015] [Indexed: 12/19/2022]
Abstract
SummaryClinical and experimental studies have highlighted the potential implication of periondontal bacteria contamination in the pathogenesis of abdominal aortic aneurysms (AAA). In addition to their role in reverse cholesterol transport, high-density lipoproteins (HDLs) display multiple functions, including anti-inflammatory and lipopolysaccharide scavenging properties. Low plasma levels of HDL-cholesterol have been reported in AAA patients. We tested the effect of a HDL therapy in Sprague-Dawley rat model of AAA, obtained by intraluminal elastase infusion followed by repeated injections of Porphyromonas gingivalis (Pg). HDLs, isolated by ultracentrifugation of plasma from healthy human volunteers, were co-injected intravenously (10 mg/kg) with Pg (1.107 Colony Forming Unit) one, eight and 15 days after elastase perfusion. Rats were sacrificed one week after the last injection. Our results show that Pg injections promote the formation of a persistent neutrophil-rich thrombus associated with increased aortic diameter in this AAA model. HDLs significantly reduced the increased AAA diameter induced by Pg. Histology showed the onset of a healing process in the Pg/HDL group. HDL injections also reduced neutrophil activation in Pg-injected rats associated with decreased cytokine levels in conditioned media and plasma. Scintigraphic analysis showed an intense uptake of 99mTc-HDL by the AAA suggesting that HDLs could exert their beneficial effect by acting directly on the thrombus components. HDL supplementation may therefore constitute a new therapeutic tool for AAA treatment.Supplementary Material to this article is available online at www.thrombosis-online.com.
Collapse
|
37
|
Martin-Ventura JL, Rodrigues-Diez R, Martinez-Lopez D, Salaices M, Blanco-Colio LM, Briones AM. Oxidative Stress in Human Atherothrombosis: Sources, Markers and Therapeutic Targets. Int J Mol Sci 2017; 18:ijms18112315. [PMID: 29099757 PMCID: PMC5713284 DOI: 10.3390/ijms18112315] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022] Open
Abstract
Atherothrombosis remains one of the main causes of morbidity and mortality worldwide. The underlying pathology is a chronic pathological vascular remodeling of the arterial wall involving several pathways, including oxidative stress. Cellular and animal studies have provided compelling evidence of the direct role of oxidative stress in atherothrombosis, but such a relationship is not clearly established in humans and, to date, clinical trials on the possible beneficial effects of antioxidant therapy have provided equivocal results. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is one of the main sources of reactive oxygen species (ROS) in human atherothrombosis. Moreover, leukocyte-derived myeloperoxidase (MPO) and red blood cell-derived iron could be involved in the oxidative modification of lipids/lipoproteins (LDL/HDL) in the arterial wall. Interestingly, oxidized lipoproteins, and antioxidants, have been analyzed as potential markers of oxidative stress in the plasma of patients with atherothrombosis. In this review, we will revise sources of ROS, focusing on NADPH oxidase, but also on MPO and iron. We will also discuss the impact of these oxidative systems on LDL and HDL, as well as the value of these modified lipoproteins as circulating markers of oxidative stress in atherothrombosis. We will finish by reviewing some antioxidant systems and compounds as therapeutic strategies to prevent pathological vascular remodeling.
Collapse
Affiliation(s)
- Jose Luis Martin-Ventura
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Raquel Rodrigues-Diez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| | - Diego Martinez-Lopez
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
| | - Mercedes Salaices
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| | - Luis Miguel Blanco-Colio
- Vascular Research Lab, FIIS-Fundación Jiménez Díaz-Autonoma University, 28040 Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
| | - Ana M Briones
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain.
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), 28046 Madrid, Spain.
| |
Collapse
|
38
|
Shi T, Lu K, Shen S, Tang Q, Zhang K, Zhu X, Shi Y, Liu X, Teng H, Li C, Xue B, Jiang Q. Fenofibrate decreases the bone quality by down regulating Runx2 in high-fat-diet induced Type 2 diabetes mellitus mouse model. Lipids Health Dis 2017; 16:201. [PMID: 29029615 PMCID: PMC5640963 DOI: 10.1186/s12944-017-0592-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022] Open
Abstract
Background This study is to investigate the effect of fenofibrate on the bone quality of Type 2 diabetes mellitus (T2DM) mouse model. Methods T2DM mouse model was induced by high-fat-diet, and the mice were treated with fenofibrate (100 mg/kg) (DIO-FENO) or PBS (DIO-PBS) for 4 weeks. The bone microstructure and biomechanical properties of femora were analyzed by micro-CT and 3-Point bending test. The protein expression was detected by immunohistochemical staining and Western blot. The cell apoptosis was evaluated by TUNEL staining. The Bcl2, caspase 3, and osteoblast marker genes were detected by RT-qPCR. Results The biomechanical properties of bones from DIO-FENO group were significantly lower than those in the control and DIO-PBS groups. Besides, the trabecular number was lower than those of the other groups, though the cortical porosity was decreased compared with that of DIO-PBS group because of the increase of apoptotic cells. The expression of osteocalcin and collagen I were decreased after treatment with fenofibrate in T2DM mice. Moreover, the cell viability was decreased after treated with different concentrations of fenofibrate, and the expression of Runx2 decreased after treated with high dose of fenofibrate. Conclusion Fenofibrate decreases the bone quality of T2DM mice through decreasing the expression of collagen I and osteocalcin, which may be resulted from the down regulation of Runx2 expression.
Collapse
Affiliation(s)
- Tianshu Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Ke Lu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Siyu Shen
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Qiaoli Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, No. 22 Hankou Road, Gulou District, Nanjing, Jiangsu Province, 210093, China
| | - Kaijia Zhang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Xiaobo Zhu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yong Shi
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Xianglin Liu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Huajian Teng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China.,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, No. 22 Hankou Road, Gulou District, Nanjing, Jiangsu Province, 210093, China.
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, No. 22 Hankou Road, Gulou District, Nanjing, Jiangsu Province, 210093, China. .,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China. .,Liver Disease Collaborative Research Platform of Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, No. 321 Zhongshan Road, Nanjing, 210008, People's Republic of China. .,Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
39
|
Yan P, Chen K, Wang Q, Yang D, Li D, Yang Y. UCP-2 is involved in angiotensin-II-induced abdominal aortic aneurysm in apolipoprotein E-knockout mice. PLoS One 2017; 12:e0179743. [PMID: 28683125 PMCID: PMC5500278 DOI: 10.1371/journal.pone.0179743] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023] Open
Abstract
UCP-2 shows an important role in modulating of mitochondrial membrane potential and cell apoptosis. Whether or not UCP-2 could been a critical factor in preventing AAA formation is not known. We report that UCP-2 protein and mRNA expression were significantly higher in Ang-Ⅱ-induced AAA of mice. The incident rate of AAA in UCP-2-/-ApoE-/- mice after Ang-Ⅱtreatment was higher than the rate in the UCP-2+/+ApoE-/- mice. The abdominal aorta from UCP-2-/-ApoE-/- mice showed the medial hypertrophy, fragmentation of elastic lamellas and depletion of α-SMA. The NADPH oxidase activity and level of MDA was significantly higher in UCP-2-/-ApoE-/- mice than UCP-2+/+ApoE-/- or WT mice. Besides, the SOD activity is increased in UCP-2+/+ApoE-/- mice as compared with WT mice, whereas deficiency of UCP-2 decreased the increasing SOD activity in Ang-Ⅱ treated ApoE-/- mice. UCP-2 knockout up-regulated the MMP2 and MMP9 expression in aortic aneurysm. Ang-Ⅱ induced apoptosis of VSMCs was increased in UCP-2-/-ApoE-/- mice. And the expression of eNOS in vascular tissue from UCP-2-/-ApoE-/- mice is lower than WT and UCP-2+/+ApoE-/- mice. This study provides a mechanism by which UCP-2, via anti-oxidants and anti-apoptosis, participates in the preventing of AAA formation.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Apoptosis/drug effects
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Malondialdehyde/metabolism
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction
- Superoxide Dismutase/genetics
- Superoxide Dismutase/metabolism
- Uncoupling Protein 2/deficiency
- Uncoupling Protein 2/genetics
Collapse
Affiliation(s)
- Peng Yan
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Ken Chen
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Qiang Wang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Dachun Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - De Li
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, P.R. China
- * E-mail:
| |
Collapse
|
40
|
Krishna SM, Seto SW, Jose R, Li J, Moxon J, Clancy P, Crossman DJ, Norman P, Emeto TI, Golledge J. High serum thrombospondin-1 concentration is associated with slower abdominal aortic aneurysm growth and deficiency of thrombospondin-1 promotes angiotensin II induced aortic aneurysm in mice. Clin Sci (Lond) 2017; 131:1261-1281. [PMID: 28364044 DOI: 10.1042/cs20160970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/23/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2023]
Abstract
Abdominal aortic aneurysm (AAA) is a common age-related vascular disease characterized by progressive weakening and dilatation of the aortic wall. Thrombospondin-1 (TSP-1; gene Thbs1) is a member of the matricellular protein family important in the control of extracellular matrix (ECM) remodelling. In the present study, the association of serum TSP-1 concentration with AAA progression was assessed in 276 men that underwent repeated ultrasound for a median 5.5 years. AAA growth was negatively correlated with serum TSP-1 concentration (Spearman's rho -0.129, P=0.033). Men with TSP-1 in the highest quartile had a reduced likelihood of AAA growth greater than median during follow-up (OR: 0.40; 95% confidence interval (CI): 0.19-0.84, P=0.016, adjusted for other risk factors). Immunohistochemical staining for TSP-1 was reduced in AAA body tissues compared with the relatively normal AAA neck. To further assess the role of TSP-1 in AAA initiation and progression, combined TSP-1 and apolipoprotein deficient (Thbs1-/-ApoE-/-, n=20) and control mice (ApoE-/-, n=20) were infused subcutaneously with angiotensin II (AngII) for 28 days. Following AngII infusion, Thbs1-/- ApoE-/- mice had larger AAAs by ultrasound (P=0.024) and ex vivo morphometry measurement (P=0.006). The Thbs1-/-ApoE-/- mice also showed increased elastin filament degradation along with elevated systemic levels and aortic expression of matrix metalloproteinase (MMP)-9. Suprarenal aortic segments and vascular smooth muscle cells (VSMCs) isolated from Thbs1-/-ApoE-/- mice showed reduced collagen 3A1 gene expression. Furthermore, Thbs1-/-ApoE-/- mice had reduced aortic expression of low-density lipoprotein (LDL) receptor-related protein 1. Collectively, findings from the present study suggest that TSP-1 deficiency promotes maladaptive remodelling of the ECM leading to accelerated AAA progression.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/diagnostic imaging
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/blood
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/prevention & control
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Biomarkers/blood
- Cells, Cultured
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Disease Models, Animal
- Disease Progression
- Elastin/metabolism
- Genetic Predisposition to Disease
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice, Knockout
- Odds Ratio
- Phenotype
- Proteolysis
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Risk Factors
- Thrombospondin 1/blood
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Time Factors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Ultrasonography
- Vascular Remodeling
Collapse
Affiliation(s)
- Smriti Murali Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Sai Wang Seto
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- National Institute of Complementary Medicine (NICM), School of Science and Health, University of Western Sydney, Campbelltown, NSW, Australia
| | - Roby Jose
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Jiaze Li
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Joseph Moxon
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - Paula Clancy
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
| | - David J Crossman
- Department of Physiology,Faculty of Medical and Health Sciences, Biophysics and Biophotonics Research Group, The University of Auckland, Auckland, New Zealand
| | - Paul Norman
- School of Surgery, University of Western Australia, Perth, WA 6907, Australia
| | - Theophilus I Emeto
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia
- Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Australia
| |
Collapse
|
41
|
Yen HW, Lin HL, Hao CL, Chen FC, Chen CY, Chen JH, Shen KP. Effects of pre-germinated brown rice treatment high-fat diet-induced metabolic syndrome in C57BL/6J mice. Biosci Biotechnol Biochem 2017; 81:979-986. [DOI: 10.1080/09168451.2017.1279848] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Abstract
To investigate using pre-germinated brown rice (PGBR) to treat metabolic syndrome, we fed one group of mice standard-regular-diet (SRD) for 20 weeks and another group of mice high-fat-diet (HFD) for 16 weeks. We subdivided them into HFD group and HFD + PGBR group whose dietary carbohydrate was replaced with PGBR for 4 weeks. The HFD group gained more weight, had higher blood pressure, heart rate, blood glucose and lipids, liver levels of TG, feces TG and bile acid, lower adipose levels of adipocytokine, lower skeletal muscle IR, IRS-1, IRS-2, PI3 K, Akt/PKB, GLUT-1, GLUT-4, GCK and PPAR-γ; higher liver SREBP-1, SCD-1, FAS, HMGCR, LDLR, CYP7α1 and PPAR-α, and higher adipose SREBP-1, SCD-1, FAS, and lower adipose PPAR-α and adiponectin. The HFD + PGBR group had clearly improved blood pressure, biochemical parameters and above proteins expressions. PGBR successful treatment of metabolic syndrome was achieved through improvements in glucose and lipid synthesis and metabolism.
Collapse
Affiliation(s)
- Hsueh-Wei Yen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hui-Li Lin
- Department of Food Science and Nutrition, Meiho University, Pingtung, Taiwan
| | - Chi-Long Hao
- Division of Cardiology, Department of Internal Medicine, Pingtung Christian Hospital, Pingtung, Taiwan
| | - Fu-Chih Chen
- Department of Chemistry, National Cheng-Kung University, Tainan, Taiwan
| | - Chun-Yun Chen
- MS program for Applied Health and Biotechnology, Meiho University, Pingtung, Taiwan
| | - Jia-Hao Chen
- MS program for Applied Health and Biotechnology, Meiho University, Pingtung, Taiwan
| | - Kuo-Ping Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| |
Collapse
|
42
|
Wang Y, Dinh TN, Nield A, Krishna SM, Denton K, Golledge J. Renal Denervation Promotes Atherosclerosis in Hypertensive Apolipoprotein E-Deficient Mice Infused with Angiotensin II. Front Physiol 2017; 8:215. [PMID: 28450836 PMCID: PMC5390019 DOI: 10.3389/fphys.2017.00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Objective: To determine the effect of renal denervation (RDN) on the severity of atherosclerosis and aortic aneurysm in hypertensive mice. Methods: Hypertension, atherosclerosis and aortic aneurysm were induced by subcutaneous infusion of angiotensin II (1 μg/kg/min) for 28 days in apolipoprotein E-deficient mice. RDN was conducted using combined surgical and local chemical denervation. The norepinephrine concentration in the kidney was measured by high-performance liquid chromatography. Blood pressure was measured by the tail-cuff method. Atherosclerosis was assessed by Sudan IV staining of the aortic arch. The aortic diameter was measured by the morphometric method. The mRNA expression of genes associated with atherosclerosis and aortic aneurysm were analyzed by quantitative PCR. Results: RDN decreased the median norepinephrine content in the kidney by 93.4% (n = 5-7, P = 0.003) 5 days after the procedure, indicating that the RDN procedure was successful. RDN decreased systolic blood pressure in apolipoprotein E-deficient mice. Mice that had RDN had more severe aortic arch atherosclerosis (median percentage of Sudan IV positive area: 13.2% in control mice, n = 12, and 25.4% in mice having RDN, n = 12, P = 0.028). The severity of the atherosclerosis was negatively correlated with the renal norepinephrine content (spearman r = -0.6557, P = 0.005). RDN did not affect the size of aortic aneurysms formed or the incidence of aortic rupture in mice receiving angiotensin II. RDN significantly increased the aortic mRNA expression of matrix metalloproteinase-2 (MMP-2). Conclusion: RDN promoted atherosclerosis in apolipoprotein E-deficient mice infused with angiotensin II associated with upregulation of MMP-2. The higher MMP-2 expression could be the results of the greater amount of atheroma in the RDN mice. The findings suggest further research is needed to assess potentially deleterious effects of RDN in patients.
Collapse
Affiliation(s)
- Yutang Wang
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia.,The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Tam N Dinh
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia.,The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Alexander Nield
- School of Applied and Biomedical Science, Federation University AustraliaBallarat, VIC, Australia
| | - Smriti M Krishna
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia
| | - Kate Denton
- Cardiovascular and Renal Physiology, Department of Physiology, Monash UniversityClayton, VIC, Australia
| | - Jonathan Golledge
- The Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook UniversityTownsville, QLD, Australia.,Department of Vascular and Endovascular Surgery, The Townsville HospitalTownsville, QLD, Australia
| |
Collapse
|
43
|
Gordon SM, Remaley AT. High density lipoproteins are modulators of protease activity: Implications in inflammation, complement activation, and atherothrombosis. Atherosclerosis 2017; 259:104-113. [PMID: 28242049 PMCID: PMC5391047 DOI: 10.1016/j.atherosclerosis.2016.11.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
High density lipoproteins (HDL) represent a compositionally diverse population of particles in the circulation, containing a wide variety of lipids and proteins. Gene ontology functional analysis of the 96 commonly identified HDL binding proteins reveals that almost half of these proteins are either proteases or have known roles in protease regulation. Here, we discuss the activities of some of these proteins in regard to their roles in regulating proteases involved in inflammation, coagulation, and complement activation, particularly in the context of atherosclerosis. The overall goal of this review is to discuss potential functional roles of HDL in protease regulatory pathways based on current literature and known functions of HDL binding proteins and to promote the consideration of HDL as a global modulator of proteolytic equilibrium.
Collapse
Affiliation(s)
- Scott M Gordon
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
| | - Alan T Remaley
- Lipoprotein Metabolism Section, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| |
Collapse
|
44
|
Parenteral administration of factor Xa/IIa inhibitors limits experimental aortic aneurysm and atherosclerosis. Sci Rep 2017; 7:43079. [PMID: 28220880 PMCID: PMC5318894 DOI: 10.1038/srep43079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 01/12/2017] [Indexed: 12/20/2022] Open
Abstract
Intraluminal thrombus is a consistent feature of human abdominal aortic aneurysm (AAA). Coagulation factor Xa (FXa) catalyses FII to thrombin (FIIa). We examined the effect of FXa/FIIa inhibition on experimental aortic aneurysm in apolipoprotein E-deficient (ApoE-/-) mice infused with angiotensin II (AngII). The concentration of FXa within the supra-renal aorta (SRA) correlated positively with SRA diameter. Parenteral administration of enoxaparin (FXa/IIa inhibitor) and fondaparinux (FXa inhibitor) over 14 days reduced to severity of aortic aneurysm and atherosclerosis in AngII-infused ApoE-/- mice. Enteral administration of the FIIa inhibitor dabigatran had no significant effect. Aortic protease-activated receptor (PAR)-2 expression increased in response to AngII infusion. Fondaparinux reduced SRA levels of FXa, FIIa, PAR-2, matrix metalloproteinase (MMP)2, Smad2/3 phosphorylation, and MOMA-2 positive cells in the mouse model. FXa stimulated Smad2/3 phosphorylation and MMP2 expression in aortic vascular smooth muscle cells (VSMC) in vitro. Expression of MMP2 in FXa-stimulated VSMC was downregulated in the presence of a PAR-2 but not a PAR-1 inhibitor. These findings suggest that FXa/FIIa inhibition limits aortic aneurysm and atherosclerosis severity due to down-regulation of vascular PAR-2-mediated Smad2/3 signalling and MMP2 expression. Inhibition of FXa/FIIa may be a potential therapy for limiting aortic aneurysm.
Collapse
|
45
|
Chan CYT, Chan YC, Cheuk BLY, Cheng SWK. Clearance of matrix metalloproteinase-9 is dependent on low-density lipoprotein receptor-related protein-1 expression downregulated by microRNA-205 in human abdominal aortic aneurysm. J Vasc Surg 2017; 65:509-520. [DOI: 10.1016/j.jvs.2015.10.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/03/2015] [Indexed: 01/07/2023]
|
46
|
Rowbotham SE, Cavaye D, Jaeggi R, Jenkins JS, Moran CS, Moxon JV, Pinchbeck JL, Quigley F, Reid CM, Golledge J. Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME): study protocol for a randomised controlled trial. Trials 2017; 18:1. [PMID: 28049491 PMCID: PMC5209849 DOI: 10.1186/s13063-016-1752-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/11/2016] [Indexed: 11/10/2022] Open
Abstract
Background Abdominal aortic aneurysm (AAA) is a slowly progressive destructive process of the main abdominal artery. Experimental studies indicate that fibrates exert beneficial effects on AAAs by mechanisms involving both serum lipid modification and favourable changes to the AAA wall. Methods/design Fenofibrate in the management of AbdoMinal aortic anEurysm (FAME) is a multicentre, randomised, double-blind, placebo-controlled clinical trial to assess the effect of orally administered therapy with fenofibrate on key pathological markers of AAA in patients undergoing open AAA repair. A total of 42 participants scheduled for an elective open AAA repair will be randomly assigned to either 145 mg of fenofibrate per day or identical placebo for a minimum period of 2 weeks prior to surgery. Primary outcome measures will be macrophage number and osteopontin (OPN) concentration within the AAA wall as well as serum concentrations of OPN. Secondary outcome measures will include levels of matrix metalloproteinases and proinflammatory cytokines within the AAA wall, periaortic fat and intramural thrombus and circulating concentrations of AAA biomarkers. Discussion At present, there is no recognised medical therapy to limit AAA progression. The FAME trial aims to assess the ability of fenofibrate to alter tissue markers of AAA pathology. Trial registration Australian New Zealand Clinical Trials Registry, ACTRN12612001226897. Registered on 20 November 2012. Electronic supplementary material The online version of this article (doi:10.1186/s13063-016-1752-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sophie E Rowbotham
- The University of Queensland, School of Medicine, Herston, QLD, 4006, Australia.,Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Doug Cavaye
- Department of Vascular Surgery. Holy Spirit Northside Private Hospital, Chermside, QLD, 4032, Australia
| | - Rene Jaeggi
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, 4811, Australia.,College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jason S Jenkins
- Department of Vascular Surgery, The Royal Brisbane and Women's Hospital, Herston, QLD, 4029, Australia
| | - Corey S Moran
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, 4811, Australia.,College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, 4811, Australia.,College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | - Jenna L Pinchbeck
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, 4811, Australia.,College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia
| | | | - Christopher M Reid
- School of Public Health, Curtin University, Perth, WA, 6000, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, QLD, 4811, Australia. .,College of Medicine and Dentistry, James Cook University, Townsville, QLD, 4811, Australia. .,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, QLD, 4811, Australia.
| |
Collapse
|
47
|
Krishna SM, Seto SW, Jose RJ, Li J, Morton SK, Biros E, Wang Y, Nsengiyumva V, Lindeman JHN, Loots GG, Rush CM, Craig JM, Golledge J. Wnt Signaling Pathway Inhibitor Sclerostin Inhibits Angiotensin II-Induced Aortic Aneurysm and Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 37:553-566. [PMID: 28062506 DOI: 10.1161/atvbaha.116.308723] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/07/2016] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Sclerostin (SOST) has been identified as an important regulator of bone formation; however, it has not been previously implicated in arterial disease. The aim of this study was to assess the role of SOST in aortic aneurysm (AA) and atherosclerosis using human samples, a mouse model, and in vitro investigations. APPROACH AND RESULTS SOST protein was downregulated in human and mouse AA samples compared with controls. Transgenic introduction of human SOST in apolipoprotein E-deficient (ApoE-/-) mice (SOSTTg .ApoE-/-) and administration of recombinant mouse Sost inhibited angiotensin II-induced AA and atherosclerosis. Serum concentrations of several proinflammatory cytokines were significantly reduced in SOSTTg .ApoE-/- mice. Compared with controls, the aortas of mice receiving recombinant mouse Sost and SOSTTg .ApoE-/- mice showed reduced matrix degradation, reduced elastin breaks, and preserved collagen. Decreased inflammatory cell infiltration and a reduction in the expression of wingless-type mouse mammary virus integration site/β-catenin responsive genes, including matrix metalloproteinase-9, osteoprotegerin, and osteopontin, were observed in the aortas of SOSTTg .ApoE-/- mice. SOST expression was downregulated and the wingless-type mouse mammary virus integration site/β-catenin pathway was activated in human AA samples. The cytosine-phosphate-guanine islands in the SOST gene promoter showed significantly higher methylation in human AA samples compared with controls. Incubation of vascular smooth muscle cells with the demethylating agent 5-azacytidine resulted in upregulation of SOST, suggesting that SOST is epigenetically regulated. CONCLUSIONS This study identifies that SOST is expressed in the aorta and downregulated in human AA possibly because of epigenetic silencing. Upregulating SOST inhibits AA and atherosclerosis development, with potential important implications for treating these vascular diseases.
Collapse
Affiliation(s)
- Smriti Murali Krishna
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Sai-Wang Seto
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Roby J Jose
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jiaze Li
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Susan K Morton
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Erik Biros
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Yutang Wang
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Vianne Nsengiyumva
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jan H N Lindeman
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Gabriela G Loots
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Catherine M Rush
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jeffrey M Craig
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.)
| | - Jonathan Golledge
- From the Vascular Biology Unit, Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Australia (S.M.K., S.-W.S., R.J.J., J.L., S.K.M., E.B., Y.W., V.N., J.G.); National Institute of Complementary Medicine (NICM), School of Science and Health, Western Sydney University, Campbelltown, NSW, Australia (S.-W.S.); School of Applied and Biomedical Sciences, Faculty of Science and Technology, Federation University Australia (Y.W.); Department of Vascular and Transplant Surgery, Leiden University Medical Center, The Netherlands (J.H.N.L.); Physical and Life Sciences Division, Lawrence Livermore National Laboratory, CA (G.G.L.); Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia (C.M.R.); Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia (J.M.C.); and Department of Vascular and Endovascular Surgery, The Townsville Hospital, Queensland, Australia (J.G.).
| |
Collapse
|
48
|
Yu H, Moran CS, Trollope AF, Woodward L, Kinobe R, Rush CM, Golledge J. Angiopoietin-2 attenuates angiotensin II-induced aortic aneurysm and atherosclerosis in apolipoprotein E-deficient mice. Sci Rep 2016; 6:35190. [PMID: 27767064 PMCID: PMC5073347 DOI: 10.1038/srep35190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022] Open
Abstract
Angiogenesis and inflammation are implicated in aortic aneurysm and atherosclerosis and regulated by angiopoietin-2 (Angpt2). The effect of Angpt2 administration on experimental aortic aneurysm and atherosclerosis was examined. Six-month-old male apolipoprotein E deficient (ApoE-/-) mice were infused with angiotensin II (AngII) and administered subcutaneous human Fc-protein (control) or recombinant Angpt2 (rAngpt2) over 14 days. Administration of rAngpt2 significantly inhibited AngII-induced aortic dilatation and rupture of the suprarenal aorta (SRA), and development of atherosclerosis within the aortic arch. These effects were blood pressure and plasma lipoprotein independent and associated with Tie2 activation and down-regulation of monocyte chemotactic protein-1 (MCP-1) within the SRA. Plasma concentrations of MCP-1 and interleukin-6 were significantly lower in mice receiving rAngpt2. Immunostaining for the monocyte/macrophage marker MOMA-2 and the angiogenesis marker CD31 within the SRA were less in mice receiving rAngpt2 than controls. The percentage of inflammatory (Ly6Chi) monocytes within the bone marrow was increased while that in peripheral blood was decreased by rAngpt2 administration. In conclusion, administration of rAngpt2 attenuated angiotensin II-induced aortic aneurysm and atherosclerosis in ApoE-/- mice associated with reduced aortic inflammation and angiogenesis. Up-regulation of Angpt2 may have potential therapeutic value in patients with aortic aneurysm and atherosclerosis.
Collapse
Affiliation(s)
- Hongyou Yu
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Corey S Moran
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Alexandra F Trollope
- Discipline of Anatomy, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Lynn Woodward
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia
| | - Robert Kinobe
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Australia
| | - Catherine M Rush
- Discipline of Biomedicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, 4811, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, 4814, Australia
| |
Collapse
|
49
|
Abstract
Abdominal aortic aneurysm (AAA) is a significant cause of mortality in older adults. A key mechanism implicated in AAA pathogenesis is inflammation and the associated production of reactive oxygen species (ROS) and oxidative stress. These have been suggested to promote degradation of the extracellular matrix (ECM) and vascular smooth muscle apoptosis. Experimental and human association studies suggest that ROS can be favourably modified to limit AAA formation and progression. In the present review, we discuss mechanisms potentially linking ROS to AAA pathogenesis and highlight potential treatment strategies targeting ROS. Currently, none of these strategies has been shown to be effective in clinical practice.
Collapse
|
50
|
Soto ME, Iturriaga Hernández AV, Guarner Lans V, Zuñiga-Muñoz A, Aranda Fraustro A, Velázquez Espejel R, Pérez-Torres I. Participation of oleic acid in the formation of the aortic aneurysm in Marfan syndrome patients. Prostaglandins Other Lipid Mediat 2016; 123:46-55. [PMID: 27163200 DOI: 10.1016/j.prostaglandins.2016.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023]
Abstract
Marfan syndrome (MFS) is associated with progressive aortic dilatation and endothelial dysfunction that lead to early acute dissection and rupture of the aorta and sudden death. Alteration in fatty acid (FA) metabolism can stimulate nitric oxide (NO) overproduction which increases the activity of the inducible form of NO synthase (iNOS) that is involved in endothelial dysfunction. We evaluated the participation of FA in the formation of thoracic aneurysms in MFS and its relation to the iNOS. Oleic acid (OA), iNOS, citrulline, nitrates and nitrites, TGF-β1, TNF-α, monounsaturated FA and NO synthase activity were significantly increased (p<0.05) in tissue from the aortas of MFS. Saturated FA, eNOS and HDL were significantly decreased (p<0.05). Arachidonic acid, delta-9 desaturase tended to increase and histological examination showed an increase in cystic necrosis, elastic fibers and collagen in MFS. The increase in OA contributes to the altered pathway of iNOS, which favors endothelial dysfunction and formation of the aortic aneurysms in MFS.
Collapse
Affiliation(s)
- María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alejandra Valeria Iturriaga Hernández
- Department of Cardiothoracic Surgery, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Verónica Guarner Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alejandra Zuñiga-Muñoz
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Alberto Aranda Fraustro
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Rodrigo Velázquez Espejel
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Sección XVI, Tlalpan, 14080 México City, DF, Mexico.
| |
Collapse
|