1
|
Giulbudagian M, Battisini B, Bäumler W, Blass Rico AM, Bocca B, Brungs C, Famele M, Foerster M, Gutsche B, Houben V, Hauri U, Karpienko K, Karst U, Katz LM, Kluger N, Serup J, Schreiver I, Schubert S, van der Bent SAS, Wolf C, Luch A, Laux P. Lessons learned in a decade: Medical-toxicological view of tattooing. J Eur Acad Dermatol Venereol 2024; 38:1926-1938. [PMID: 38709160 DOI: 10.1111/jdv.20072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/15/2024] [Indexed: 05/07/2024]
Abstract
Tattooing has been part of the human culture for thousands of years, yet only in the past decades has it entered the mainstream of the society. With the rise in popularity, tattoos also gained attention among researchers, with the aim to better understand the health risks posed by their application. 'A medical-toxicological view of tattooing'-a work published in The Lancet almost a decade ago, resulted from the international collaboration of various experts in the field. Since then, much understanding has been achieved regarding adverse effects, treatment of complications, as well as their regulation for improving public health. Yet major knowledge gaps remain. This review article results from the Second International Conference on Tattoo Safety hosted by the German Federal Institute for Risk Assessment (BfR) and provides a glimpse from the medical-toxicological perspective, regulatory strategies and advances in the analysis of tattoo inks.
Collapse
Affiliation(s)
- Michael Giulbudagian
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Beatrice Battisini
- Department of Environment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Wolfgang Bäumler
- Department of Dermatology, University of Regensburg, Regensburg, Germany
| | - Ana M Blass Rico
- European Commission, DG Internal Market, Industry, Entrepreneurship and SMEs (GROW), Brussels, Belgium
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Corinna Brungs
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Marco Famele
- National Centre for Chemicals, Cosmetic Products and Consumer's Health Protection - Istituto Superiore di Sanità (ISS), Rome, Italy
| | - Milena Foerster
- Environment and Lifestyle Epidemiology Branch, International Agency for Research on Cancer (IARC), Lyon, France
| | - Birgit Gutsche
- Karlsruhe Chemical and Veterinary Investigation Authority, Karlsruhe, Germany
| | | | - Urs Hauri
- Kanton Basel-Stadt, Kantonales Laboratorium, Basel, Switzerland
| | - Katarzyna Karpienko
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunication, and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Linda M Katz
- Office of Cosmetics and Colors, United States Food and Drug Administration (FDA), College Park, Maryland, USA
| | - Nicolas Kluger
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- "Tattoo Consultation", Department of Dermatology, Bichat - Claude Bernard Hospital, Paris, France
- EADV Tattoo and Body Art Task Force, Lugano, Switzerland
| | - Jørgen Serup
- Department of Dermatology, the Tattoo Clinic, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Ines Schreiver
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Steffen Schubert
- Information Network of Departments of Dermatology - IVDK, Institute at the University Medical Center Göttingen, Göttingen, Germany
| | | | - Carina Wolf
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
2
|
Dermitzakis I, Kampitsi DD, Manthou ME, Evangelidis P, Vakirlis E, Meditskou S, Theotokis P. Ontogeny of Skin Stem Cells and Molecular Underpinnings. Curr Issues Mol Biol 2024; 46:8118-8147. [PMID: 39194698 DOI: 10.3390/cimb46080481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Skin stem cells (SCs) play a pivotal role in supporting tissue homeostasis. Several types of SCs are responsible for maintaining and regenerating skin tissue. These include bulge SCs and others residing in the interfollicular epidermis, infundibulum, isthmus, sebaceous glands, and sweat glands. The emergence of skin SCs commences during embryogenesis, where multipotent SCs arise from various precursor populations. These early events set the foundation for the diverse pool of SCs that will reside in the adult skin, ready to respond to tissue repair and regeneration demands. A network of molecular cues regulates skin SC behavior, balancing quiescence, self-renewal, and differentiation. The disruption of this delicate equilibrium can lead to SC exhaustion, impaired wound healing, and pathological conditions such as skin cancer. The present review explores the intricate mechanisms governing the development, activation, and differentiation of skin SCs, shedding light on the molecular signaling pathways that drive their fate decisions and skin homeostasis. Unraveling the complexities of these molecular drivers not only enhances our fundamental knowledge of skin biology but also holds promise for developing novel strategies to modulate skin SC fate for regenerative medicine applications, ultimately benefiting patients with skin disorders and injuries.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Despoina Dimitria Kampitsi
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Evangelidis
- Hematology Unit-Hemophilia Centre, 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece
| | - Efstratios Vakirlis
- First Department of Dermatology and Venereology, School of Medicine, Aristotle University of Thessaloniki, 54643 Thessaloniki, Greece
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Zhong X, Deng Y, Yang H, Du X, Liu P, Du Y. Role of autophagy in skin photoaging: A narrative review. Medicine (Baltimore) 2024; 103:e37178. [PMID: 38394552 PMCID: PMC11309671 DOI: 10.1097/md.0000000000037178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
As the largest organ of the human body, the skin serves as the primary barrier against external damage. The continuous increase in human activities and environmental pollution has resulted in the ongoing depletion of the ozone layer. Excessive exposure to ultraviolet (UV) radiation enhances the impact of external factors on the skin, leading to photoaging. Photoaging causes physical and psychological damage to the human body. The prevention and management of photoaging have attracted increased attention in recent years. Despite significant progress in understanding and mitigating UV-induced photoaging, the precise mechanisms through which autophagy contributes to the prevention of photoaging remain unclear. Given the important role of autophagy in repairing UV-induced DNA damage and scavenging oxidized lipids, autophagy is considered a novel strategy for preventing the occurrence of photoaging and other UV light-induced skin diseases. This review aims to elucidate the biochemical and clinical features of photoaging, the relationship of skin photoaging and chronological aging, the mechanisms underlying skin photoaging and autophagy, and the role of autophagy in skin photoaging.
Collapse
Affiliation(s)
- Xiaojiao Zhong
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ying Deng
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Hongqiu Yang
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaoshuang Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ping Liu
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yu Du
- Medical Cosmetic Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
5
|
Menclová K, Svoboda P, Hadač J, Juhás Š, Juhásová J, Pejchal J, Mandys V, Eminger K, Ryska M. Nanofiber Wound Dressing Materials-A Comparative Study of Wound Healing on a Porcine Model. Mil Med 2023; 188:e133-e139. [PMID: 33959775 DOI: 10.1093/milmed/usab155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 04/13/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nanofiber wound dressings remain the domain of in vitro studies. The purpose of our study was to verify the benefits of chitosan (CTS) and polylactide (PLA)-based nanofiber wound dressings on a porcine model of a naturally contaminated standardized wound and compare them with the conventional dressings, i.e., gauze and Inadine. MATERIAL AND METHODS The study group included 32 pigs randomized into four homogeneous groups according to the wound dressing type. Standardized wounds were created on their backs, and wound dressings were regularly changed. We evaluated difficulty of handling individual dressing materials and macroscopic appearance of the wounds. Wound swabs were taken for bacteriological examination. Blood samples were obtained to determine blood count values and serum levels of acute phase proteins (serum amyloid A, C-reactive protein, and haptoglobin). The crucial point of the study was histological analysis. Microscopic evaluation was focused on the defect depth and tissue reactions, including formation of the fibrin exudate with neutrophil granulocytes, the layer of granulation and cellular connective tissue, and the reepithelialization. Statistical analysis was performed by using SPSS software. The analysis was based on the Kruskal-Wallis H test and Mann-Whitney U test followed by Bonferroni correction. Significance was set at P < .05. RESULTS Macroscopic examination did not show any difference in wound healing among the groups. However, evaluation of histological findings demonstrated that PLA-based nanofiber dressing accelerated the proliferative (P = .025) and reepithelialization (P < .001) healing phases, while chitosan-based nanofiber dressing potentiated and accelerated the inflammatory phase (P = .006). No statistically significant changes were observed in the blood count or acute inflammatory phase proteins during the trial. Different dynamics were noted in serum amyloid A values in the group treated with PLA-based nanofiber dressing (P = .006). CONCLUSION Based on the microscopic examination, we have documented a positive effect of nanofiber wound dressings on acceleration of individual phases of the healing process. Nanofiber wound dressings have a potential to become in future part of the common wound care practice.
Collapse
Affiliation(s)
- Katerina Menclová
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Petr Svoboda
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Jan Hadač
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| | - Štefan Juhás
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jana Juhásová
- Institute of Animal Physiology and Genetics of the Academy of Sciences CR, Lib ěchov 277 21, Czechia
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Králové 500 02, Czechia
| | - Václav Mandys
- Department of Pathology, 3rd Faculty of Medicine, Charles University, University Hospital Královské Vinohrady, Prague 100 34, Czechia
| | - Karel Eminger
- Department of Scientific Information and Clinical Studies, Central Military University Hospital Prague, Prague 169 02, Czechia
| | - Miroslav Ryska
- Department of Surgery, 2nd Faculty of Medicine, Military University Hospital Prague and Charles University, Prague 169 02, Czechia
| |
Collapse
|
6
|
Tam J. The case for considering volar skin in a "separate status" for wound healing. Front Med (Lausanne) 2023; 10:1156828. [PMID: 37035315 PMCID: PMC10076700 DOI: 10.3389/fmed.2023.1156828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Foot ulcers, particularly in the diabetic setting, are a major medical and socioeconomic challenge. While the effects of diabetes and its various sequelae have been extensively studied, in the wound field it is commonly assumed that the wound healing process is essentially identical between different skin types, despite the many well-known specializations in palmoplantar skin, most of which are presumed to be evolutionary adaptations for weightbearing. This article will examine how these specializations could alter the wound healing trajectory and contribute to the pathology of foot ulcers.
Collapse
Affiliation(s)
- Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Joshua Tam,
| |
Collapse
|
7
|
Gómez-Prado J, Pereira AMF, Wang D, Villanueva-García D, Domínguez-Oliva A, Mora-Medina P, Hernández-Avalos I, Martínez-Burnes J, Casas-Alvarado A, Olmos-Hernández A, Ramírez-Necoechea R, Verduzco-Mendoza A, Hernández A, Torres F, Mota-Rojas D. Thermoregulation mechanisms and perspectives for validating thermal windows in pigs with hypothermia and hyperthermia: An overview. Front Vet Sci 2022; 9:1023294. [PMID: 36532356 PMCID: PMC9751486 DOI: 10.3389/fvets.2022.1023294] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Specific anatomical characteristics make the porcine species especially sensitive to extreme temperature changes, predisposing them to pathologies and even death due to thermal stress. Interest in improving animal welfare and porcine productivity has led to the development of various lines of research that seek to understand the effect of certain environmental conditions on productivity and the impact of implementing strategies designed to mitigate adverse effects. The non-invasive infrared thermography technique is one of the tools most widely used to carry out these studies, based on detecting changes in microcirculation. However, evaluations using this tool require reliable thermal windows; this can be challenging because several factors can affect the sensitivity and specificity of the regions selected. This review discusses the thermal windows used with domestic pigs and the association of thermal changes in these regions with the thermoregulatory capacity of piglets and hogs.
Collapse
Affiliation(s)
- Jocelyn Gómez-Prado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alfredo M. F. Pereira
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research, Universidade de Évora, Polo da Mitra, Évora, Portugal
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao, China
| | - Dina Villanueva-García
- Division of Neonatology, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Ramiro Ramírez-Necoechea
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Fabiola Torres
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City, Mexico
| |
Collapse
|
8
|
de Oliveira ASLE, Bloise G, Moltrasio C, Coelho A, Agrelli A, Moura R, Tricarico PM, Jamain S, Marzano AV, Crovella S, Cavalcanti Brandão LA. Transcriptome Meta-Analysis Confirms the Hidradenitis Suppurativa Pathogenic Triad: Upregulated Inflammation, Altered Epithelial Organization, and Dysregulated Metabolic Signaling. Biomolecules 2022; 12:1371. [PMID: 36291580 PMCID: PMC9599370 DOI: 10.3390/biom12101371] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin condition clinically characterized by recurrent painful deep-seated nodules, abscesses, and sinus tracks in areas bearing apocrine glands, such as axillae, breasts, groins, and buttocks. Despite many recent advances, the pathophysiological landscape of HS still demands further clarification. To elucidate HS pathogenesis, we performed a meta-analysis, set analysis, and a variant calling on selected RNA-Sequencing (RNA-Seq) studies on HS skin. Our findings corroborate the HS triad composed of upregulated inflammation, altered epithelial differentiation, and dysregulated metabolism signaling. Upregulation of specific genes, such as KRT6, KRT16, serpin-family genes, and SPRR3 confirms the early involvement of hair follicles and the impairment of barrier function in HS lesioned skin. In addition, our results suggest that adipokines could be regarded as biomarkers of HS and metabolic-related disorders. Finally, the RNA-Seq variant calling identified several mutations in HS patients, suggesting potential new HS-related genes associated with the sporadic form of this disease. Overall, this study provides insights into the molecular pathways involved in HS and identifies potential HS-related biomarkers.
Collapse
Affiliation(s)
| | - Giovanna Bloise
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | - Antonio Coelho
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Center for Strategic Technologies Northeastern (CETENE), Av. Prof. Luís Freire, 1-Cidade Universitária, Recife 50740-545, Brazil
| | - Ronald Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Stéphane Jamain
- Translational Neuropsychiatry, Univ. Paris Est Créteil, Inserm, IMRB, 94010 Créteil, France
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar
| | | |
Collapse
|
9
|
Tan SH, Chua DAC, Tang JRJ, Bonnard C, Leavesley D, Liang K. Design of Hydrogel-based Scaffolds for in vitro Three-dimensional Human Skin Model Reconstruction. Acta Biomater 2022; 153:13-37. [DOI: 10.1016/j.actbio.2022.09.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 11/01/2022]
|
10
|
Linley H, Jaigirdar S, Mohamed K, Griffiths CEM, Saunders A. Reduced cutaneous CD200:CD200R1 signaling in psoriasis enhances neutrophil recruitment to skin. Immun Inflamm Dis 2022; 10:e648. [PMID: 35759230 PMCID: PMC9168552 DOI: 10.1002/iid3.648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/01/2022] [Accepted: 05/11/2022] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION The skin immune system is tightly regulated to prevent inappropriate inflammation in response to harmless environmental substances. This regulation is actively maintained by mechanisms including cytokines and cell surface receptors and its loss results in inflammatory disease. In the case of psoriasis, inappropriate immune activation leads to IL-17-driven chronic inflammation, but molecular mechanisms underlying this loss of regulation are not well understood. Immunoglobulin family member CD200 and its receptor, CD200R1, are important regulators of inflammation. Therefore, we determined if this pathway is dysregulated in psoriasis, and how this affects immune cell activity. METHODS Human skin biopsies were examined by quantitative polymerase chain reaction, flow cytometry, and immunohistochemistry. The role of CD200R1 in regulating psoriasis-like skin inflammation was examined using CD200R1 blocking antibodies in mouse psoriasis models. CD200R1 blocking antibodies were also used in an in vivo neutrophil recruitment assay and in vitro assays to examine macrophage, innate lymphoid cell, γδ T cell, and neutrophil activity. RESULTS We reveal that CD200 and signaling via CD200R1 are reduced in non-lesional psoriasis skin. In mouse models of psoriasis CD200R1 was shown to limit psoriasis-like inflammation by enhancing acanthosis, CCL20 production and neutrophil recruitment, but surprisingly, macrophage function and IL-17 production were not affected, and neutrophil reactive oxygen species production was reduced. CONCLUSION Collectively, these data show that CD200R1 affects neutrophil function and limits inflammatory responses in healthy skin by restricting neutrophil recruitment. However, the CD200 pathway is reduced in psoriasis, resulting in a loss of immune control, and increased neutrophil recruitment in mouse models. In conclusion, we highlight CD200R1:CD200 as a pathway that might be targeted to dampen inflammation in patients with psoriasis.
Collapse
Affiliation(s)
- Holly Linley
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
- School of Biological Science, Manchester Academic Health Science Centre, Division of Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, >aculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| | - Shafqat Jaigirdar
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
- School of Biological Science, Manchester Academic Health Science Centre, Division of Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, >aculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| | - Karishma Mohamed
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
- School of Biological Science, Manchester Academic Health Science Centre, Division of Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, >aculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| | - Christopher E. M. Griffiths
- School of Biological Science, Manchester Academic Health Science Centre, Division of Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, >aculty of BiologyMedicine and Health, University of ManchesterManchesterUK
- Centre for Dermatology Research, Manchester Academic Health Science CentreThe University of Manchester and Salford Royal NHS Foundation TrustManchesterUK
- Manchester Biomedical Research Centre, Manchester Academic Health Science Centre, National Institute for Health ResearchManchester University National Health Service Foundation TrustManchesterUK
| | - Amy Saunders
- Manchester Collaborative Centre for Inflammation ResearchManchesterUK
- School of Biological Science, Manchester Academic Health Science Centre, Division of Infection and Respiratory Medicine, Lydia Becker Institute of Immunology and Inflammation, >aculty of BiologyMedicine and Health, University of ManchesterManchesterUK
| |
Collapse
|
11
|
Akat E, Yenmiş M, Pombal MA, Molist P, Megías M, Arman S, Veselỳ M, Anderson R, Ayaz D. Comparison of Vertebrate Skin Structure at Class Level: A Review. Anat Rec (Hoboken) 2022; 305:3543-3608. [DOI: 10.1002/ar.24908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Esra Akat
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Melodi Yenmiş
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| | - Manuel A. Pombal
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Pilar Molist
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Manuel Megías
- Universidade de Vigo, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía‐IBIV Vigo, España
| | - Sezgi Arman
- Sakarya University, Faculty of Science and Letters, Biology Department Sakarya Turkey
| | - Milan Veselỳ
- Palacky University, Faculty of Science, Department of Zoology Olomouc Czechia
| | - Rodolfo Anderson
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista São Paulo Brazil
| | - Dinçer Ayaz
- Ege University, Faculty of Science, Biology Department Bornova, İzmir Turkey
| |
Collapse
|
12
|
Hamilton DW, Walker JT, Tinney D, Grynyshyn M, El-Warrak A, Truscott E, Flynn LE. The pig as a model system for investigating the recruitment and contribution of myofibroblasts in skin healing. Wound Repair Regen 2021; 30:45-63. [PMID: 34708478 DOI: 10.1111/wrr.12981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing. Although a variety of wound types (incisional, partial thickness, full thickness, burns) have been investigated in pigs in attempts to mimic diverse injuries in humans, direct comparison of human healing profiles with regards to myofibroblasts shows evident differences. Following injury in porcine models, which often employ juvenile animals, myofibroblasts are described in the developing granulation tissue at 4 days, peaking at Days 7-14, and persisting at 60 days post-wounding, although variations are evident depending on the specific pig breed. In human wounds, the presence of myofibroblasts is variable and does not correlate with the age of the wound or clinical contraction. Our comparison of porcine myofibroblast-mediated healing processes with those in humans suggests that further validation of the pig model is essential. Moreover, we identify several limitations evident in experimental design that need to be better controlled, and standardisation of methodologies would be beneficial for the comparison and interpretation of results. In particular, we discuss anatomical location of the wounds, their size and depth, as well as the healing microenvironment (wet vs. moist vs. dry) in pigs and how this could influence myofibroblast recruitment. In summary, although a widespread model used in the skin healing field, further research is required to validate pigs as a useful analogue for human healing with regards to myofibroblasts.
Collapse
Affiliation(s)
- Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John T Walker
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Dylan Tinney
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michael Grynyshyn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Alexander El-Warrak
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Emily Truscott
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Phelan HA, Holmes Iv JH, Hickerson WL, Cockerell CJ, Shupp JW, Carter JE. Use of 816 consecutive burn wound biopsies to inform a histologic algorithm for burn depth categorization. J Burn Care Res 2021; 42:1162-1167. [PMID: 34387313 DOI: 10.1093/jbcr/irab158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Burn experts are only 77% accurate when subjectively assessing burn depth, leaving almost a quarter of patients to undergo unnecessary surgery or conversely suffer a delay in treatment. To aid clinicians in burn depth assessment (BDA), new technologies are being studied with machine learning algorithms calibrated to histologic standards. Our group has iteratively created a theoretical burn biopsy algorithm (BBA) based on histologic analysis, and subsequently informed it with the largest burn wound biopsy repository in the literature. Here, we sought to report that process. METHODS The was an IRB-approved, prospective, multicenter study. A BBA was created a priori and refined in an iterative manner. Patients with burn wounds assessed by burn experts as requiring excision and autograft underwent 4mm biopsies procured every 25cm 2. Serial still photos were obtained at enrollment and at excision intraoperatively. Burn biopsies were histologically assessed for presence/absence of epidermis, papillary dermis, reticular dermis, and proportion of necrotic adnexal structures by a dermatopathologist using H&E with whole slide scanning. First degree and superficial 2 nd degree were considered to be burn wounds likely to have healed without surgery, while deep 2 nd and 3 rd degree burns were considered unlikely to heal by 21 days. Biopsy pathology results were correlated with still photos by five burn experts for consensus of final burn depth diagnosis. RESULTS Sixty-six subjects were enrolled with 117 wounds and 816 biopsies. The BBA was used to categorize subjects' wounds into 4 categories: 7% of burns were categorized as 1 st degree, 13% as superficial 2 nd degree, 43% as deep 2 nd degree, and 37% as 3 rd degree. Therefore 20% of burn wounds were incorrectly judged as needing excision and grafting by the clinical team as per the BBA. As H&E is unable to assess the viability of papillary and reticular dermis, with time our team came to appreciate the greater importance of adnexal structure necrosis over dermal appearance in assessing healing potential. CONCLUSIONS Our study demonstrates that a BBA with objective histologic criteria can be used to categorize BDA with clinical misclassification rates consistent with past literature. This study serves as the largest analysis of burn biopsies by modern day burn experts and the first to define histologic parameters for BDA.
Collapse
Affiliation(s)
- Herb A Phelan
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| | - James H Holmes Iv
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| | - William L Hickerson
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| | - Clay J Cockerell
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| | - Jeffrey W Shupp
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| | - Jeffrey E Carter
- LSUHSC-New Orleans, Department of Surgery, University Medical Center-New Orleans Burn Program, 2000 Canal Street, Tower 1, Floor 3, New Orleans, LA
| |
Collapse
|
14
|
Fujimura Y, Watanabe M, Ohno K, Kobayashi Y, Takashima S, Nakamura H, Kosumi H, Wang Y, Mai Y, Lauria A, Proserpio V, Ujiie H, Iwata H, Nishie W, Nagayama M, Oliviero S, Donati G, Shimizu H, Natsuga K. Hair follicle stem cell progeny heal blisters while pausing skin development. EMBO Rep 2021; 22:e50882. [PMID: 34085753 DOI: 10.15252/embr.202050882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Injury in adult tissue generally reactivates developmental programs to foster regeneration, but it is not known whether this paradigm applies to growing tissue. Here, by employing blisters, we show that epidermal wounds heal at the expense of skin development. The regenerated epidermis suppresses the expression of tissue morphogenesis genes accompanied by delayed hair follicle (HF) growth. Lineage tracing experiments, cell proliferation dynamics, and mathematical modeling reveal that the progeny of HF junctional zone stem cells, which undergo a morphological transformation, repair the blisters while not promoting HF development. In contrast, the contribution of interfollicular stem cell progeny to blister healing is small. These findings demonstrate that HF development can be sacrificed for the sake of epidermal wound regeneration. Our study elucidates the key cellular mechanism of wound healing in skin blistering diseases.
Collapse
Affiliation(s)
- Yu Fujimura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mika Watanabe
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Kota Ohno
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Shota Takashima
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Nakamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Kosumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yunan Wang
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Andrea Lauria
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Valentina Proserpio
- Italian Institute for Genomic Medicine, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Salvatore Oliviero
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy.,Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Giacomo Donati
- Department of Life Sciences and Systems Biology, Molecular Biotechnology Centre, University of Turin, Turin, Italy
| | - Hiroshi Shimizu
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
15
|
Ezure T, Amano S, Matsuzaki K. Aging-related shift of eccrine sweat glands toward the skin surface due to tangling and rotation of the secretory ducts revealed by digital 3D skin reconstruction. Skin Res Technol 2021; 27:569-575. [PMID: 33576542 PMCID: PMC8359204 DOI: 10.1111/srt.12985] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/02/2020] [Indexed: 12/27/2022]
Abstract
Background Sweat gland function deteriorates with aging, leading to loss of heat tolerance. However, it is unclear whether and how the structure of sweat glands changes during aging, because the 3D structure is complex and inaccessible. Methods To clarify age‐dependent changes in sweat glands, we developed a method for 3D structure analysis of sweat glands by means of X‐ray micro‐CT observation of human skin specimens followed by 3D digital reconstruction on computer (digital 3D skin). Results Comparison of eccrine sweat glands of abdominal skin from young and old subjects showed that the density and volume of sweat glands do not change with aging. In contrast, the depth of the secretory coil from the skin surface is decreased in the aged group. Surprisingly, the secretory ducts appear tortuous or meandering though their length is unchanged. The secretory coils are located at the dermal‐adipose layer boundary in both groups, but the thickness of the dermal layer decreases with aging, and the depth of the coils is correlated with the dermal thickness. Conclusion Our results suggest that sweat glands twist and rotate with aging to maintain the position of the coil at the dermal‐adipose boundary, causing an overall shift toward the skin surface.
Collapse
Affiliation(s)
- Tomonobu Ezure
- Department of Plastic and Reconstructive Surgery, Shiseido Global Innovation Center, Kanagawa, Japan
| | - Satoshi Amano
- Department of Plastic and Reconstructive Surgery, Shiseido Global Innovation Center, Kanagawa, Japan
| | - Kyoichi Matsuzaki
- Department of Plastic and Reconstructive Surgery, School of Medicine, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
16
|
Lin Y, Chen L, Zhang M, Xie S, Du L, Zhang X, Li H. Eccrine Sweat Gland and Its Regeneration: Current Status and Future Directions. Front Cell Dev Biol 2021; 9:667765. [PMID: 34395417 PMCID: PMC8355620 DOI: 10.3389/fcell.2021.667765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/09/2021] [Indexed: 02/05/2023] Open
Abstract
Eccrine sweat glands (ESGs) play an important role in temperature regulation by secreting sweat. Insufficiency or dysfunction of ESGs in a hot environment or during exercise can lead to hyperthermia, heat exhaustion, heatstroke, and even death, but the ability of ESGs to repair and regenerate themselves is very weak and limited. Repairing the damaged ESGs and regenerating the lost or dysfunctional ESGs poses a challenge for dermatologists and bum surgeons. To promote and accelerate research on the repair and regeneration of ESGs, we summarized the development, structure and function of ESGs, and current strategies to repair and regenerate ESGs based on stem cells, scaffolds, and possible signaling pathways involved.
Collapse
Affiliation(s)
- Yao Lin
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Liyun Chen
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Mingjun Zhang
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Sitian Xie
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiang Zhang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haihong Li
- Department of Plastic Surgery and Burn Center, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
- *Correspondence: Haihong Li,
| |
Collapse
|
17
|
Karim AS, Liu A, Lin C, Uselmann AJ, Eliceiri KW, Brown ME, Gibson ALF. Evolution of ischemia and neovascularization in a murine model of full thickness human wound healing. Wound Repair Regen 2020; 28:812-822. [PMID: 32686215 PMCID: PMC8592059 DOI: 10.1111/wrr.12847] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 11/30/2022]
Abstract
Translation of wound healing research is limited by the lack of an appropriate animal model, due to the anatomic and wound healing differences in animals and humans. Here, we characterize healing of grafted, full-thickness human skin in an in vivo model of wound healing. Full-thickness human skin, obtained from reconstructive operations, was grafted onto the dorsal flank of NOD.Cg-KitW41J Tyr + Prkdcscid Il2rgtm1Wjl /ThomJ mice. The xenografts were harvested 1 to 12 weeks after grafting, and histologic analyses were completed for viability, neovascularization, and hypoxia. Visual inspection of the xenograft shows drying and sloughing of the epidermis starting at week four. By week 12, the xenograft appears healed but has lost 63.05 ± 0.24% of the initial graft size. There is histologic evidence of epidermolysis as early as 2 weeks, which progresses until week 4, when new epidermis appears from the wound edges. Epidermal regeneration is complete by week 12, although the epidermis appears hypertrophied. An initial increase of infiltrating immune mouse cells into the xenograft normalizes to baseline 6 months after grafting. Neovascularization, as evidenced by positive staining for the proteins human CD31 and alpha smooth muscle actin, is present as early as 2 weeks after grafting at the interface between the xenograft and the mouse tissue. CD31 and alpha smooth muscle actin staining increased throughout the xenograft over the 12 weeks, leading to greater viability of the tissue. Likewise, there is increased Hypoxia Inducible Factor 1-alpha expression at the interface of viable and nonviable tissue, which suggest a hypoxia-driven process causing early graft loss. These findings illustrate human skin wound healing in an ischemic environment, providing a timeline for use of full thickness human skin after grafting in a murine model to study mechanisms underlying human skin wound healing.
Collapse
Affiliation(s)
- Aos S. Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christie Lin
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adam J. Uselmann
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Kevin W. Eliceiri
- OnLume Inc., Madison, Wisconsin
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Matthew E. Brown
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Angela L. F. Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
18
|
Sweat gland regeneration: Current strategies and future opportunities. Biomaterials 2020; 255:120201. [PMID: 32592872 DOI: 10.1016/j.biomaterials.2020.120201] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
For patients with extensive skin defects, loss of sweat glands (SwGs) greatly decreases their quality of life. Indeed, difficulties in thermoregulation, ion reabsorption, and maintaining fluid balance might render them susceptible to hyperthermia, heatstroke, or even death. Despite extensive studies on the stem cell biology of the skin in recent years, in-situ regeneration of SwGs with both structural and functional fidelity is still challenging because of the limited regenerative capacity and cell fate control of resident progenitors. To overcome these challenges, one must consider both the intrinsic factors relevant to genetic and epigenetic regulation and cues from the cellular microenvironment. Here, we describe recent progress in molecular biology, developmental pathways, and cellular evolution associated with SwGdevelopment and maturation. This is followed by a summary of the current strategies used for cell-fate modulation, transmembrane drug delivery, and scaffold design associated with SwGregeneration. Finally, we offer perspectives for creating more sophisticated systems to accelerate patients' innate healing capacity and developing engineered skin constructs to treat or replace damaged tissues structurally and functionally.
Collapse
|
19
|
Lim Y, Lee H, Woodby B, Valacchi G. Ozonated Oils and Cutaneous Wound Healing. Curr Pharm Des 2020; 25:2264-2278. [PMID: 31267858 DOI: 10.2174/1381612825666190702100504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022]
Abstract
Wound tissue repair is a complex and dynamic process of restoring cellular structures and tissue layers. Improvement in this process is necessary to effectively treat several pathologies characterized by a chronic delayed wound closure, such as in diabetes, and the investigation of new approaches aimed to ameliorate the wound healing process is under continuous evolution. Recently, the usage of vegetable matrices in the form of ozonated oils has been proposed, and several researchers have shown positive effects on wound healing, due to the bactericidal, antiviral, and antifungal properties of these ozonated oils. In the present review, we intend to summarize the actual state of the art of the topical usage of ozonated oil in cutaneous wounds with special emphasis to the importance of the ozonated degree of the oil.
Collapse
Affiliation(s)
- Yunsook Lim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Heaji Lee
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea
| | - Brittany Woodby
- Plant for Human Health Institute, Kannapolis Research Center, North Carolina State University, 28081, NC, United States
| | - Giuseppe Valacchi
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Korea.,Plant for Human Health Institute, Kannapolis Research Center, North Carolina State University, 28081, NC, United States.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
20
|
Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells 2020; 9:cells9020306. [PMID: 32012802 PMCID: PMC7072438 DOI: 10.3390/cells9020306] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic wounds are characterized for their incapacity to heal within an expected time frame. Potential mechanisms driving this impairment are poorly understood and current hypotheses point to the development of an unbalanced milieu of growth factor and cytokines. Among them, TGF-β is considered to promote the broadest spectrum of effects. Although it is known to contribute to healthy skin homeostasis, the highly context-dependent nature of TGF-β signaling restricts the understanding of its roles in healing and wound chronification. Historically, low TGF-β levels have been suggested as a pattern in chronic wounds. However, a revision of the available evidence in humans indicates that this could constitute a questionable argument. Thus, in chronic wounds, divergences regarding skin tissue compartments seem to be characterized by elevated TGF-β levels only in the epidermis. Understanding how this aspect affects keratinocyte activities and their capacity to re-epithelialize might offer an opportunity to gain comprehensive knowledge of the involvement of TGF-β in chronic wounds. In this review, we compile existing evidence on the roles played by TGF-β during skin wound healing, with special emphasis on keratinocyte responses. Current limitations and future perspectives of TGF-β research in chronic wounds are discussed.
Collapse
|
21
|
Deniz AAH, Abdik EA, Abdik H, Aydın S, Şahin F, Taşlı PN. Zooming in across the Skin: A Macro-to-Molecular Panorama. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1247:157-200. [DOI: 10.1007/5584_2019_442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Jiménez F. Method for Human Eccrine Sweat Gland Isolation from the Scalp by Means of the Micropunch Technique and Vital Dyes. Methods Mol Biol 2020; 2154:165-173. [PMID: 32314216 DOI: 10.1007/978-1-0716-0648-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The isolation of eccrine sweat glands from human skin has always been a difficult task. The human scalp contains thousands of eccrine glands. Recently, the close anatomic relationship of the eccrine gland with the scalp hair follicle has been described. Taking advantage of this anatomic relationship as well as of the availability of follicular units (FUs) obtained in hair transplant procedures, we describe here a simple and efficient method to isolate eccrine sweat glands from the human scalp. This method is identical to the micropunch hair graft harvesting method known as follicular unit excision (FUE), used in modern hair transplantation. Once the FU has been extracted, it needs to be stained with methylene blue or neutral red in order to make the sweat gland visible for stereoscopic microdissection. Only the secretory (coiled) portion of the sweat gland can be obtained with this method. The efficiency of this isolation method should encourage further research into human eccrine sweat glands and opens possibilities for new translational applications.
Collapse
Affiliation(s)
- Francisco Jiménez
- Mediteknia Hair Transplant Clinic and Hair Lab, Gran Canaria, Canary Islands, Spain.
- Universidad Fernando Pessoa Canarias, Gran Canaria, Spain.
| |
Collapse
|
23
|
Li J, Wang J, Wang Z, Xia Y, Zhou M, Zhong A, Sun J. Experimental models for cutaneous hypertrophic scar research. Wound Repair Regen 2019; 28:126-144. [PMID: 31509318 DOI: 10.1111/wrr.12760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/29/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Human skin wound repair may result in various outcomes with most of them leading to scar formation. Commonly seen in many cutaneous wound healing cases, hypertrophic scars are considered as phenotypes of abnormal wound repair. To prevent the formation of hypertrophic scars, efforts have been made to understand the mechanism of scarring following wound closure. Numerous in vivo and in vitro models have been created to facilitate investigations into cutaneous scarring and the development of antiscarring treatments. To select the best model for a specific study, background knowledge of the current models of hypertrophic scars is necessary. In this review, we describe in vivo and in vitro models for studying hypertrophic scars, as well as the distinct characteristics of these models. The choice of models for a specific study should be based on the characteristics of the model and the goal of the study. In general, in vivo animal models are often used in phenotypical scar formation analysis, development of antiscarring treatment, and functional analyses of individual genes. In contrast, in vitro models are chosen to pathway identification during scar formation as well as in high-throughput analysis in drug development. Besides helping investigators choose the best scarring model for their research, the goal of this review is to provide knowledge for improving the existing models and development of new models. These will contribute to the progress of scarring studies.
Collapse
Affiliation(s)
- Jialun Li
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiecong Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yun Xia
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Muran Zhou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Aimei Zhong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
24
|
Yang R, Liu F, Wang J, Chen X, Xie J, Xiong K. Epidermal stem cells in wound healing and their clinical applications. Stem Cell Res Ther 2019; 10:229. [PMID: 31358069 PMCID: PMC6664527 DOI: 10.1186/s13287-019-1312-z] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The skin has important barrier, sensory, and immune functions, contributing to the health and integrity of the organism. Extensive skin injuries that threaten the entire organism require immediate and effective treatment. Wound healing is a natural response, but in severe conditions, such as burns and diabetes, this process is insufficient to achieve effective treatment. Epidermal stem cells (EPSCs) are a multipotent cell type and are committed to the formation and differentiation of the functional epidermis. As the contributions of EPSCs in wound healing and tissue regeneration have been increasingly attracting the attention of researchers, a rising number of therapies based on EPSCs are currently under development. In this paper, we review the characteristics of EPSCs and the mechanisms underlying their functions during wound healing. Applications of EPSCs are also discussed to determine the potential and feasibility of using EPSCs clinically in wound healing.
Collapse
Affiliation(s)
- Ronghua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Fengxia Liu
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Jingru Wang
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Julin Xie
- Department of Burn Surgery, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 512100, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Morphological Sciences Building, Central South University, 172 Tongzi Po Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
25
|
Best A, Lieberman DE, Kamilar JM. Diversity and evolution of human eccrine sweat gland density. J Therm Biol 2019; 84:331-338. [PMID: 31466771 DOI: 10.1016/j.jtherbio.2019.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/08/2023]
Abstract
The human eccrine sweat gland is central to the evolution of the human genus, permitting an enormous thermoregulatory sweating capacity that was essential to the human niche of high physical activity in open, hot, semi-arid environments. Despite a century of research inventorying the structure and function of eccrine glands and the physiological responses of human heat acclimation, we do not have a clear understanding of how intraspecific differences in eccrine density affect thermoregulation. Similarly, existing data does not comprehensively catalogue modern human diversity in this trait, nor do we understand the relative influences of evolutionary forces and phenotypic plasticity in shaping this diversity.
Collapse
Affiliation(s)
- Andrew Best
- Department of Anthropology, University of Massachusetts Amherst, United States.
| | - Daniel E Lieberman
- Department of Human Evolutionary Biology, Harvard University, United States
| | - Jason M Kamilar
- Department of Anthropology, University of Massachusetts Amherst, United States; Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, United States
| |
Collapse
|
26
|
Kuony A, Ikkala K, Kalha S, Magalhães AC, Pirttiniemi A, Michon F. Ectodysplasin-A signaling is a key integrator in the lacrimal gland-cornea feedback loop. Development 2019; 146:dev.176693. [PMID: 31221639 DOI: 10.1242/dev.176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/17/2019] [Indexed: 01/26/2023]
Abstract
A lack of ectodysplasin-A (Eda) signaling leads to dry eye symptoms, which have so far only been associated with altered Meibomian glands. Here, we used loss-of-function (Eda -/-) mutant mice to unravel the impact of Eda signaling on lacrimal gland formation, maturation and subsequent physiological function. Our study demonstrates that Eda activity is dispensable during lacrimal gland embryonic development. However, using a transcriptomic approach, we show that the Eda pathway is necessary for proper cell terminal differentiation in lacrimal gland epithelium and correlated with modified expression of secreted factors commonly found in the tear film. Finally, we discovered that lacrimal glands present a bilateral reduction of Eda signaling activity in response to unilateral corneal injury. This observation hints towards a role for the Eda pathway in controlling the switch from basal to reflex tears, to support corneal wound healing. Collectively, our data suggest a crucial implication of Eda signaling in the cornea-lacrimal gland feedback loop, both in physiological and pathophysiological conditions. Our findings demonstrate that Eda downstream targets could help alleviate dry eye symptoms.
Collapse
Affiliation(s)
- Alison Kuony
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institut Jacques Monod, Université Denis Diderot - Paris 7, CNRS UMR 7592, Buffon building, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Kaisa Ikkala
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Solja Kalha
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Ana Cathia Magalhães
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland.,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| | - Anniina Pirttiniemi
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland
| | - Frederic Michon
- Institute of Biotechnology, Helsinki Institute of Life Science, Developmental Biology Program, University of Helsinki, 00790 Helsinki, Finland .,Institute for Neurosciences of Montpellier, INSERM UMR1051, University of Montpellier, 34295 Montpellier, France
| |
Collapse
|
27
|
Na CH, Sharma N, Madugundu AK, Chen R, Aksit MA, Rosson GD, Cutting GR, Pandey A. Integrated Transcriptomic and Proteomic Analysis of Human Eccrine Sweat Glands Identifies Missing and Novel Proteins. Mol Cell Proteomics 2019; 18:1382-1395. [PMID: 30979791 PMCID: PMC6601213 DOI: 10.1074/mcp.ra118.001101] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
The eccrine sweat gland is an exocrine gland that is involved in the secretion of sweat for control of temperature. Malfunction of the sweat glands can result in disorders such as miliaria, hyperhidrosis and bromhidrosis. Understanding the transcriptome and proteome of sweat glands is important for understanding their physiology and role in diseases. However, no systematic transcriptome or proteome analysis of sweat glands has yet been reported. Here, we isolated eccrine sweat glands from human skin by microdissection and performed RNA-seq and proteome analysis. In total, ∼138,000 transcripts and ∼6,100 proteins were identified. Comparison of the RNA-seq data of eccrine sweat glands to other human tissues revealed the closest resemblance to the cortex region of kidneys. The proteome data showed enrichment of proteins involved in secretion, reabsorption, and wound healing. Importantly, protein level identification of the calcium ion channel TRPV4 suggests the importance of eccrine sweat glands in re-epithelialization of wounds and prevention of dehydration. We also identified 2 previously missing proteins from our analysis. Using a proteogenomic approach, we identified 7 peptides from 5 novel genes, which we validated using synthetic peptides. Most of the novel proteins were from short open reading frames (sORFs) suggesting that many sORFs still remain to be annotated in the human genome. This study presents the first integrated analysis of the transcriptome and proteome of the human eccrine sweat gland and would become a valuable resource for studying sweat glands in physiology and disease.
Collapse
Affiliation(s)
- Chan Hyun Na
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;; §Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland;; ¶Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland;; ‖Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Neeraj Sharma
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anil K Madugundu
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;; §§Institute of Bioinformatics, Bangalore, India;; ¶¶Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Ruiqiang Chen
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;; §Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melis Atalar Aksit
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gedge D Rosson
- ‖‖Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Garry R Cutting
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;.
| | - Akhilesh Pandey
- From the ‡McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;; §Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland;; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland;; ‡‡Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland;.
| |
Collapse
|
28
|
Coates M, Mariottoni P, Corcoran DL, Kirshner HF, Jaleel T, Brown DA, Brooks SR, Murray J, Morasso MI, MacLeod AS. The skin transcriptome in hidradenitis suppurativa uncovers an antimicrobial and sweat gland gene signature which has distinct overlap with wounded skin. PLoS One 2019; 14:e0216249. [PMID: 31059533 PMCID: PMC6502346 DOI: 10.1371/journal.pone.0216249] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022] Open
Abstract
Hidradenitis suppurativa (HS) is a debilitating chronic inflammatory skin disease resulting in non-healing wounds affecting body areas of high hair follicle and sweat gland density. The pathogenesis of HS is not well understood but appears to involve dysbiosis-driven aberrant activation of the innate immune system leading to excessive inflammation. Marked dysregulation of antimicrobial peptides and proteins (AMPs) in HS is observed, which may contribute to this sustained inflammation. Here, we analyzed HS skin transcriptomes from previously published studies and integrated these findings through a comparative analysis with a published wound healing data set and with immunofluorescence and qPCR analysis from new HS patient samples. Among the top differently expressed genes between lesional and non-lesional HS skin were members of the S100 family as well as dermcidin, the latter known as a sweat gland-associated AMP and one of the most downregulated genes in HS lesions. Interestingly, many genes associated with sweat gland function, such as secretoglobins and aquaporin 5, were decreased in HS lesional skin and we discovered that these genes demonstrated opposite expression profiles in healing skin. Conversely, HS lesional and wounded skin shared a common gene signature including genes encoding for S100 proteins, defensins, and genes encoding antiviral proteins. Overall, our results suggest that the pathogenesis of HS may be driven by changes in AMP expression and altered sweat gland function, and may share a similar pathology with chronic wounds.
Collapse
Affiliation(s)
- Margaret Coates
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Paula Mariottoni
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David L. Corcoran
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Hélène Fradin Kirshner
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, United States of America
| | - Tarannum Jaleel
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - David A. Brown
- Department of Surgery, Duke University, Durham, NC, United States of America
| | - Stephen R. Brooks
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - John Murray
- Department of Dermatology, Duke University, Durham, NC, United States of America
| | - Maria I. Morasso
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institute of Health, Bethesda, MD, United States of America
| | - Amanda S. MacLeod
- Department of Dermatology, Duke University, Durham, NC, United States of America
- Department of Immunology, Duke University, Durham, NC, United States of America
- Pinnell Center for Investigative Dermatology, Duke University, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
29
|
Minota K, Coon EA, Benarroch EE. Neurologic aspects of sweating and its disorders. Neurology 2019; 92:999-1005. [DOI: 10.1212/wnl.0000000000007540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
30
|
Bovell DL. The evolution of eccrine sweat gland research towards developing a model for human sweat gland function. Exp Dermatol 2019; 27:544-550. [PMID: 29626846 DOI: 10.1111/exd.13556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 12/30/2022]
Abstract
For several decades now, researchers, professional bodies, governments, and journals such as the journal of Experimental Dermatology have worked to reduce the number of animals used in experimentation. This review centres on investigations into how human sweat glands produce sweat and how that research has evolved over the years. It is hoped that this review will show that as methodologies advanced, sweat gland research has come to rely less and less on a variety of animal models as investigative tools and information is being primarily obtained through human and mouse material, with a view to further reductions in using animal models.
Collapse
Affiliation(s)
- Douglas L Bovell
- Department of Medical Education, Weill Cornell Medicine - Qatar, Doha, Qatar
| |
Collapse
|
31
|
Diao J, Liu J, Wang S, Chang M, Wang X, Guo B, Yu Q, Yan F, Su Y, Wang Y. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration. Cell Death Dis 2019; 10:238. [PMID: 30858357 PMCID: PMC6411741 DOI: 10.1038/s41419-019-1485-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 02/01/2023]
Abstract
Sweat glands perform a vital thermoregulatory function in mammals. Like other skin components, they originate from epidermal progenitors. However, they have low regenerative potential in response to injury. We have established a sweat gland culture and expansion method using 3D organoids cultures. The epithelial cells derived from sweat glands in dermis of adult mouse paw pads were embedded into Matrigel and formed sweat gland organoids (SGOs). These organoids maintained remarkable stem cell features and demonstrated differentiation capacity to give rise to either sweat gland cells (SGCs) or epidermal cells. Moreover, the bipotent SGO-derived cells could be induced into stratified epidermis structures at the air−liquid interface culture in a medium tailored for skin epidermal cells in vitro. The SGCs embedded in Matrigel tailored for sweat glands formed epithelial organoids, which expressed sweat-gland-specific markers, such as cytokeratin (CK) 18 and CK19, aquaporin (AQP) 5 and αATP. More importantly, they had potential of regeneration of epidermis and sweat gland when they were transplanted into the mouse back wound and claw pad with sweat gland injury, respectively. In summary, we established and optimized culture conditions for effective generation of mouse SGOs. These cells are candidates to restore impaired sweat gland tissue as well as to improve cutaneous skin regeneration.
Collapse
Affiliation(s)
- Jinmei Diao
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Juan Liu
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Shuyong Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Mingyang Chang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Xuan Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Baolin Guo
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Qunfang Yu
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Fang Yan
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yuxin Su
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China
| | - Yunfang Wang
- Stem Cell and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, 100850, Beijing, China.
| |
Collapse
|
32
|
Sami DG, Heiba HH, Abdellatif A. Wound healing models: A systematic review of animal and non-animal models. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.wndm.2018.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Khiao In M, Richardson KC, Loewa A, Hedtrich S, Kaessmeyer S, Plendl J. Histological and functional comparisons of four anatomical regions of porcine skin with human abdominal skin. Anat Histol Embryol 2019; 48:207-217. [PMID: 30648762 DOI: 10.1111/ahe.12425] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/18/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022]
Abstract
Because of the shortage of human skin for research purposes, porcine skin has been used as a model of human skin. The aim of this study was to identify the region of German Landrace pig skin that could be used as the best possible substitute for human abdominal skin. Porcine samples were collected from the ear, flank, back and caudal abdomen; human abdominal skin samples were excised during plastic surgery. Histological and ultrastructural assessments were carried out on the epidermis and dermis, with emphasis on the dermo-epidermal interface length, dermo-epidermal thickness ratio as well as densities of; hair follicles, arrector pili muscles, blood vessels and sweat glands. In the pig, the barrier function of the four anatomical regions was assessed. Results showed that both histologically and ultrastructurally, all four regions of porcine skin were similar to human skin. These include the shapes of keratinocytes, structure of cell contacts and presence of Weibel Palade bodies in endothelial cells. Other parameters such as the thickness of epidermis, the thickness of stratum basale, spinosum and granulosum and the number of cell layers in the stratum corneum were similar in human abdominal and in all four regions of porcine skin. However, there were also significant differences especially in the thickness of the stratum corneum, the dermo-epidermal interface length and the blood vessel density.
Collapse
Affiliation(s)
- Maneenooch Khiao In
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Kenneth C Richardson
- College of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, Australia
| | - Anna Loewa
- Institute for Pharmacy, Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology & Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| | - Johanna Plendl
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
34
|
Quartinello F, Tallian C, Auer J, Schön H, Vielnascher R, Weinberger S, Wieland K, Weihs AM, Herrero-Rollett A, Lendl B, Teuschl AH, Pellis A, Guebitz GM. Smart textiles in wound care: functionalization of cotton/PET blends with antimicrobial nanocapsules. J Mater Chem B 2019; 7:6592-6603. [DOI: 10.1039/c9tb01474h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New antimicrobial pH-responsive wound dressings consisting of immobilized human serum albumin/silk fibroin nanocapsules were developed.
Collapse
|
35
|
Karim AS, Yan A, Ocotl E, Bennett DD, Wang Z, Kendziorski C, Gibson ALF. Discordance between histologic and visual assessment of tissue viability in excised burn wound tissue. Wound Repair Regen 2018; 27:150-161. [PMID: 30585657 DOI: 10.1111/wrr.12692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/27/2022]
Abstract
The regenerative capacity of burn wounds, and the need for surgical intervention, depends on wound depth. Clinical visual assessment is considered the gold standard for burn depth assessment but it remains a subjective and inaccurate method for tissue evaluation. The purpose of this study was to compare visual assessment with microscopic and molecular techniques for human burn depth determination, and illustrate differences in the evaluation of tissue for potential regenerative capacity. Using intraoperative visual assessment, patients were identified as having deep partial thickness or full thickness burn wounds. Tangential excisions of burn tissue were processed with hematoxylin and eosin to visualize tissue morphology, lactate dehydrogenase assay to ascertain cellular viability, and Keratin-15 and Ki67 to identify epidermal progenitor cells and proliferative capacity, respectively. RNA from deep partial and full thickness burn tissue as well as normal tissue controls were submitted for RNA sequencing. Lactate dehydrogenase, Keratin-15, and Ki67 were found throughout the excised burn wound tissue in both deep partial thickness burn tissues and in the second tangential excision of full thickness burn tissues. RNA sequencing demonstrated regenerative capacity in both deep partial and full thickness burn tissue, however a greater capacity for regeneration was present in deep partial thickness compared with full thickness burn tissues. In this study, we highlight the discordance that exists between the intraoperative clinical identification of burn injury depth, and microscopic and molecular determination of viability and regenerative capacity. Current methods utilizing visual assessment for depth of injury are imprecise, and can lead to removal of viable tissue. Additionally, hematoxylin and eosin microscopic analysis should not be used as the sole method in research or clinical determination of depth, as there are no differences in staining between viable and nonviable tissue.
Collapse
Affiliation(s)
- Aos S Karim
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Amy Yan
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Edgar Ocotl
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Daniel D Bennett
- Department of Dermatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Ziyue Wang
- Department of Statistics, University of Wisconsin, Madison, Wisconsin
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
36
|
Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. Macrophage functions in wound healing. J Tissue Eng Regen Med 2018; 13:99-109. [PMID: 30445662 DOI: 10.1002/term.2772] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 12/31/2022]
Abstract
Macrophages play a crucial role in regeneration and consecutive phases of wound healing. In this review, we summarise current knowledge on the ontogeny, origin, phenotypical heterogeneity, and functional exchangeability of macrophages participating in these processes. We also describe the genetic, pharmacologic, and bioengineering methods for manipulation of macrophage phenotype and functions and their potential for development of the novel, clinically applicable therapies.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA.,MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Rafik M Ghobrial
- Immunobiology, The Houston Methodist Research Institute, Houston, Texas, USA.,Department of Surgery, The Houston Methodist Hospital, Houston, Texas, USA
| | - Jarek Wosik
- Electrical and Computer Engineering Department, University of Houston, Houston, Texas, USA.,Texas Center for Superconductivity, University of Houston, Houston, Texas, USA
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Sławomir Lewicki
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland
| | - Jacek Z Kubiak
- Department of Regenerative Medicine and Cell Biology, Military Institute of Hygiene and Epidemiology (WIHE), Warsaw, Poland.,Cell Cycle Group, Faculty of Medicine, Univ Rennes, UMR 6290, CNRS, Institute of Genetics and Development of Rennes, Rennes, France
| |
Collapse
|
37
|
Ouyang Z, Li HH, Zhang MJ, Xie ST, Cheng LHH. Differential Innervation of Secretory Coils and Ducts in Human Eccrine Sweat Glands. Chin Med J (Engl) 2018; 131:1964-1968. [PMID: 30082528 PMCID: PMC6085860 DOI: 10.4103/0366-6999.238142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Previous studies demonstrate that eccrine sweat glands are innervated by both cholinergic and adrenergic nerves. However, it is still unknown whether the secretory coils and ducts of eccrine sweat glands are equally innervated by the sympathetic nerve fibers. To well understand the mechanisms on sweat secretion and reabsorption, the differential innervation of secretory coils and ducts in human eccrine sweat glands was investigated in the study. METHODS From June 2016 to June 2017, six human skins were fixed, paraffin-embedded, and cut into 5 μm-thick sections, followed by costaining for nerve fiber markers protein gene product 9.5 (PGP 9.5), tyrosine hydroxylase (TH) and vasoactive intestinal peptide (VIP), and eccrine sweat gland markers K7, S100P, and K14 by combining standard immunofluorescence with tyramide signal amplification (IF-TSA). Stained sections were observed under the microscope, photographed, and analyzed. RESULTS The fluorescent signals of PGP 9.5, TH, and VIP were easily visualized, by IF-TSA, as circular patterns surrounding eccrine sweat glands, but only PGP 9.5 could be observed by standard IF. The IF-TSA method is more sensitivity than standard IF in detecting antigens expressed at low levels. PGP 9.5, TH, and VIP appeared primarily surrounding the secretory coils and sparsely surrounding the sweat ducts. CONCLUSION Sweat secretion is mainly controlled by autonomic nerves whereas sweat reabsorption is less affected by nerve activity.
Collapse
Affiliation(s)
- Zhan Ouyang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Hai-Hong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Ming-Jun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Si-Tian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Liu-Hang-Hang Cheng
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
38
|
Zhang M, Li H, Chen L, Fang S, Xie S, Lin C. Three-dimensional reconstructed eccrine sweat glands with vascularization and cholinergic and adrenergic innervation. J Mol Histol 2018; 49:339-345. [PMID: 29667149 DOI: 10.1007/s10735-018-9773-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/16/2018] [Indexed: 02/05/2023]
Abstract
Functional integrity of the regenerated tissues requires not only structural integrity but also vascularization and innervation. We previously demonstrated that the three-dimensional (3D) reconstructed eccrine sweat glands had similar structures as those of the native ones did, but whether the 3D reconstructed glands possessing vascularization and innervation was still unknown. In the study, Matrigel-embedded eccrine sweat gland cells were implanted under the inguinal skin. Ten weeks post-implantation, the vascularization, and innervation in the 10-week reconstructed eccrine sweat glands and native human eccrine sweat glands were detected by immunofluorescence staining. The results showed that the fluorescent signals of general neuronal marker protein gene product 9.5, adrenergic nerve fiber marker tyrosine hydroxylase, and cholinergic nerve fiber markers acetylcholinesterase and vasoactive intestinal peptide embraced the 3D reconstructed glands in circular patterns, as the signals appeared in native eccrine sweat glands. There were many CD31- and von Willebrand factor-positive vessels growing into the plugs. We demonstrated that the 3D reconstructed eccrine sweat glands were nourished by blood vessels, and we for the first time demonstrated that the engineering sweat glands were innervated by both cholinergic and adrenergic fibers. In conclusion, the 3D reconstructed eccrine sweat glands may have functions as the native ones do.
Collapse
Affiliation(s)
- Mingjun Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Haihong Li
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China.
| | - Liyun Chen
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Shuhua Fang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Sitian Xie
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou, 515041, Guangdong Province, China
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong Province, China
| |
Collapse
|
39
|
Jimenez F, Alam M, Hernandez I, Poblet E, Hardman JA, Paus R. An efficient method for eccrine gland isolation from human scalp. Exp Dermatol 2018; 27:678-681. [DOI: 10.1111/exd.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Francisco Jimenez
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
- Universidad Fernando Pessoa Canarias; Gran Canaria Spain
- Medical Pathology Group; IUIBS; Universidad de Las Palmas Gran Canaria; Gran Canaria Spain
| | - Majid Alam
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
- Universidad Fernando Pessoa Canarias; Gran Canaria Spain
- Monasterium Laboratory; Münster Germany
| | - Irene Hernandez
- Mediteknia Hair Transplant Clinic and Hair Lab; Las Palmas de Gran Canaria Canary Islands Spain
| | - Enrique Poblet
- Reina Sofia University General Hospital; University of Murcia; Murcia Spain
| | - Jonathan A. Hardman
- The Centre for Dermatology Research; MAHSC; University of Manchester; Manchester UK
- National Institutes of Health Biomedical Research Center; Manchester UK
| | - Ralf Paus
- The Centre for Dermatology Research; MAHSC; University of Manchester; Manchester UK
- National Institutes of Health Biomedical Research Center; Manchester UK
- Department of Dermatology; Miller School of Medicine; University of Miami; Miami FL
| |
Collapse
|
40
|
Poblet E, Jimenez F, Escario-Travesedo E, Hardman J, Hernández-Hernández I, Agudo-Mena J, Cabrera-Galvan J, Nicu C, Paus R. Eccrine sweat glands associate with the human hair follicle within a defined compartment of dermal white adipose tissue. Br J Dermatol 2018; 178:1163-1172. [DOI: 10.1111/bjd.16436] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2018] [Indexed: 12/20/2022]
Affiliation(s)
- E. Poblet
- Department of Pathology; Reina Sofía University General Hospital and Murcia University; Murcia Spain
| | - F. Jimenez
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | | | - J.A. Hardman
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - I. Hernández-Hernández
- Mediteknia Clinic; University Fernando Pessoa Canarias; Medical Pathology Group; ULPGC; Gran Canaria Spain
| | - J.L. Agudo-Mena
- Dermatology Department; Albacete University General Hospital; Albacete Spain
| | - J.J. Cabrera-Galvan
- Department of Morphology; University of Las Palmas de Gran Canaria; Gran Canaria Spain
| | - C. Nicu
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| | - R. Paus
- Centre for Dermatology Research; University of Manchester; Manchester Academic Health Science Centre & NIHR Manchester Biomedical Research Centre; Manchester U.K
| |
Collapse
|
41
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
42
|
Zomer HD, Trentin AG. Skin wound healing in humans and mice: Challenges in translational research. J Dermatol Sci 2017; 90:3-12. [PMID: 29289417 DOI: 10.1016/j.jdermsci.2017.12.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/20/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Despite the great progress in translational research concerning skin wound healing in the last few decades, no animal model fully predicts all clinical outcomes. The mouse is the most commonly used model, as it is easy to maintain and standardize, and is economically accessible. However, differences between murine and human skin repair, such as the contraction promoted by panniculus carnosus and the role of specific niches of skin stem cells, make it difficult to bridge the gap between preclinical and clinical studies. Therefore, this review highlights the particularities of each species concerning skin morphophysiology, immunology, and genetics, which is essential to properly interpret findings and translate them to medicine.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil.
| | - Andrea G Trentin
- Department of Biology, Embryology and Genetics, Federal University of Santa Catarina, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
43
|
Rose D, Schmidt A, Brandenburger M, Sturmheit T, Zille M, Boltze J. Sulfur mustard skin lesions: A systematic review on pathomechanisms, treatment options and future research directions. Toxicol Lett 2017; 293:82-90. [PMID: 29203275 DOI: 10.1016/j.toxlet.2017.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
Abstract
Sulfur mustard (SM) is a chemical warfare, which has been used for one hundred years. However, its exact pathomechanisms are still incompletely understood and there is no specific therapy available so far. In this systematic review, studies published between January 2000 and July 2017 involving pathomechanisms and experimental treatments of SM-induced skin lesions were analyzed to summarize current knowledge on SM pathology, to provide an overview on novel treatment options, and to identify promising targets for future research to more effectively counter SM effects. We suggest that future studies should focus on (I) systemic effects of SM intoxication due to its distribution throughout the body, (II) removal of SM depots that continuously release active compound contributing to chronic skin damage, and (III) therapeutic options that counteract the pleiotropic effects of SM.
Collapse
Affiliation(s)
- Dorothee Rose
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstraße 11, 80937, Munich, Germany; Universität der Bundeswehr, Fakultät für Humanwissenschaften, Department für Sportwissenschaft, Werner-Heisenberg-Weg 39, 85577, Neubiberg, Germany.
| | - Matthias Brandenburger
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Tabea Sturmheit
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| | - Marietta Zille
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany; Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Johannes Boltze
- Department of Translational Medicine and Cell Technology, Fraunhofer Research Institution for Marine Biotechnology and Cell Technology, Mönkhofer Weg 239a, 23562, Lübeck, Germany; Institute of Medical and Marine Biotechnology, University of Lübeck, Ratzeburger Allee 160, 23652, Lübeck, Germany
| |
Collapse
|
44
|
Immunohistochemical distribution of Ki67 in epidermis of thick glabrous skin of human digits. Arch Dermatol Res 2017; 310:85-93. [PMID: 29119273 DOI: 10.1007/s00403-017-1793-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 10/23/2017] [Accepted: 11/01/2017] [Indexed: 11/27/2022]
Abstract
The glabrous skin on the flexor sides of hands and feet, compared to other integument regions, has thicker epidermis and more complex pattern of epidermal ridges, wherefore in microscopy is denominated as thick skin. The epidermis of this skin type has individually unique and permanent superficial patterns, called dermatoglyphics, which are maintained by regenerative potential of deep epidermal rete ridges, that interdigitate with adjacent dermis. Using light microscopy, we analyzed cadaveric big toes thick skin samples, described histology of deep epidermal ridges (intermediate, limiting, and transverse), and quantitatively evidenced their pattern of proliferation by immunohistochemical assessment of Ki67. Immunohistochemical distribution of Ki67 was confined to basal and suprabasal layers, with pattern of distribution specific for intermediate, limiting and transverse ridges that gradually transform within epidermal height. Deep epidermal ridges, interdigitating with dermal papillae, participate in construction of intricate epidermal base, whose possible role in epidermal regeneration was also discussed. Having a prominent morphology, this type of epidermis offers the best morphological insight in complexities of skin organization, and its understanding could challenge and improve currently accepted models of epidermal organization.
Collapse
|
45
|
Fisher G, Rittié L. Restoration of the basement membrane after wounding: a hallmark of young human skin altered with aging. J Cell Commun Signal 2017; 12:401-411. [PMID: 29086203 DOI: 10.1007/s12079-017-0417-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
In skin, the basement membrane at the dermal-epidermal junction (DEJ-BM) is an important structure that tightly binds the epidermis to the dermis, and acts as a permeability barrier that controls exchange of macromolecules. Repair of the DEJ-BM during wound healing is important for restoration of skin functional properties after wounding. Here, we used a CO2 laser to perform partial thickness wounds in human volunteers, and directly compared wound repair in healthy young and aged individuals, focusing on the DEJ-BM. Our results show that the DEJ-BM is restored within four weeks after partial thickness wounds in young adults. We identified laminin-γ2 as preferred substrate for keratinocytes during reepithelialization of partial thickness human wounds. Laminin-γ2 is expressed continuously by migrating keratinocytes during reepithelialization, whereas collagen IV and collagen VII are deposited after wound closure. In contrast, our study shows that the DEJ-BM restoration following wounding is deficient in elderly individuals. Specifically, COL7A2 was barely increased during wound repair in aged skin and, as a result, the DEJ-BM in elderly skin was not restored and showed abnormal structure. Our data suggest that ameliorating the quality of the DEJ-BM restoration is a promising therapeutic approach to improve the quality of repaired skin in the elderly.
Collapse
Affiliation(s)
- Gary Fisher
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Laure Rittié
- Department of Dermatology, Medical School, University of Michigan, Ann Arbor, MI, USA. .,Dermatology Unit, R&D Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, 1250 Collegeville Rd, UP1410, Collegeville, PA, 19426, USA.
| |
Collapse
|
46
|
D'Arpa P, Leung KP. Toll-Like Receptor Signaling in Burn Wound Healing and Scarring. Adv Wound Care (New Rochelle) 2017; 6:330-343. [PMID: 29062590 PMCID: PMC5649422 DOI: 10.1089/wound.2017.0733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/19/2017] [Indexed: 12/15/2022] Open
Abstract
Significance: Damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) emanate from burn-injured tissue and enter systemic circulation. Locally and systemically, they activate pattern-recognition receptors, including toll-like receptors (TLRs), to stimulate cytokine secretion, which in the severest burns typically results in extreme systemic cytokine levels, a dysfunctioning immune system, infection, impaired healing, and excessive scarring. This system-wide disruption of homeostasis can advance to life-threatening, multiorgan dysfunction syndrome. Knowledge of DAMP- and PAMP-TLR signaling may lead to treatments that ameliorate local and systemic inflammation and reduce scarring and other burn injury sequela. Recent Advances: Many PAMPs and DAMPs, the TLRs they activate, and their downstream signaling molecules have been shown to contribute to local and systemic inflammation and tissue damage following burn injury. Critical Issues: Whether TLR-pathway-targeting treatments applied at different times postburn injury might improve scarring remains an open question. The evaluation of this question requires the use of appropriate preclinical and clinical burn models carried out until after mature scar has formed. Future Directions: After TLR-pathway-targeting treatments are evaluated in porcine burn wound models and their safety is demonstrated, they can be tested in proof-of-concept clinical burn wound models.
Collapse
Affiliation(s)
| | - Kai P. Leung
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, US Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas
| |
Collapse
|
47
|
Martínez MM, Travesedo EE, Acosta FJ. Hair-follicle Transplant Into Chronic Ulcers: A New Graft Concept. ACTAS DERMO-SIFILIOGRAFICAS 2017. [DOI: 10.1016/j.adengl.2017.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
48
|
Trasplante de folículos pilosos en úlceras crónicas: un nuevo concepto de injerto. ACTAS DERMO-SIFILIOGRAFICAS 2017; 108:524-531. [DOI: 10.1016/j.ad.2017.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/29/2017] [Accepted: 02/26/2017] [Indexed: 01/24/2023] Open
|
49
|
A simple and improved method to determine cell viability in burn-injured tissue. J Surg Res 2017; 215:83-87. [DOI: 10.1016/j.jss.2017.03.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/28/2017] [Accepted: 03/30/2017] [Indexed: 11/22/2022]
|
50
|
Kurata R, Futaki S, Nakano I, Fujita F, Tanemura A, Murota H, Katayama I, Okada F, Sekiguchi K. Three-dimensional cell shapes and arrangements in human sweat glands as revealed by whole-mount immunostaining. PLoS One 2017. [PMID: 28636607 PMCID: PMC5479532 DOI: 10.1371/journal.pone.0178709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion.
Collapse
Affiliation(s)
- Ryuichiro Kurata
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Suita, Osaka University, Osaka, Japan
- Fundamental Research Institute, Mandom Corporation, Osaka-city, Osaka, Japan
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Sugiko Futaki
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Itsuko Nakano
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fumitaka Fujita
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Suita, Osaka University, Osaka, Japan
- Fundamental Research Institute, Mandom Corporation, Osaka-city, Osaka, Japan
| | - Atsushi Tanemura
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ichiro Katayama
- Department of Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Fumihiro Okada
- Laboratory of Advanced Cosmetic Science, Graduate School of Pharmaceutical Sciences, Suita, Osaka University, Osaka, Japan
- Fundamental Research Institute, Mandom Corporation, Osaka-city, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|