1
|
Ruz-Caracuel I, Caniego-Casas T, Alonso-Gordoa T, Carretero-Barrio I, Ariño-Palao C, Santón A, Rosas M, Pian H, Molina-Cerrillo J, Luengo P, Palacios J. Transcriptomic Differences in Medullary Thyroid Carcinoma According to Grade. Endocr Pathol 2024; 35:207-218. [PMID: 38958823 PMCID: PMC11387449 DOI: 10.1007/s12022-024-09817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Medullary thyroid carcinoma (MTC) is a rare cancer derived from neuroendocrine C-cells of the thyroid. In contrast to other neuroendocrine tumors, a histological grading system was lacking until recently. A novel two-tier grading system based on the presence of high proliferation or necrosis is associated with prognosis. Transcriptomic analysis was conducted on 21 MTCs, including 9 high-grade tumors, with known mutational status, using the NanoString Tumor Signaling 360 Panel. This analysis, covering 760 genes, revealed upregulation of the genes EGLN3, EXO1, UBE2T, UBE2C, FOXM1, CENPA, DLL3, CCNA2, SOX2, KIF23, and CDCA5 in high-grade MTCs. Major pathways differentially expressed between high-grade and low-grade MTCs were DNA damage repair, p53 signaling, cell cycle, apoptosis, and Myc signaling. Validation through qRT-PCR in 30 MTCs demonstrated upregulation of ASCL1, DLL3, and SOX2 in high-grade MTCs, a gene signature akin to small-cell lung carcinoma, molecular subgroup A. Subsequently, DLL3 expression was validated by immunohistochemistry. MTCs with DLL3 overexpression (defined as ≥ 50% of positive tumor cells) were associated with significantly lower disease-free survival (p = 0.041) and overall survival (p = 0.01). Moreover, MTCs with desmoplasia had a significantly increased expression of DLL3. Our data supports the idea that DLL3 should be further explored as a predictor of aggressive disease and poor outcomes in MTC.
Collapse
Affiliation(s)
- Ignacio Ruz-Caracuel
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain.
- CIBER-Cáncer (CIBERONC), Madrid, Spain.
| | - Tamara Caniego-Casas
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBER-Cáncer (CIBERONC), Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Irene Carretero-Barrio
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBER-Cáncer (CIBERONC), Madrid, Spain
- Medicine School, Alcalá University, 28805, Madrid, Spain
| | - Carmen Ariño-Palao
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- Medicine School, Alcalá University, 28805, Madrid, Spain
| | - Almudena Santón
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBER-Cáncer (CIBERONC), Madrid, Spain
| | - Marta Rosas
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Héctor Pian
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - Patricia Luengo
- General Surgery Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
| | - José Palacios
- Pathology Department, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBER-Cáncer (CIBERONC), Madrid, Spain
- Medicine School, Alcalá University, 28805, Madrid, Spain
| |
Collapse
|
2
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
3
|
Integrated proteogenomic characterization of medullary thyroid carcinoma. Cell Discov 2022; 8:120. [DOI: 10.1038/s41421-022-00479-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/30/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractMedullary thyroid carcinoma (MTC) is a rare neuroendocrine malignancy derived from parafollicular cells (C cells) of the thyroid. Here we presented a comprehensive multi-omics landscape of 102 MTCs through whole-exome sequencing, RNA sequencing, DNA methylation array, proteomic and phosphoproteomic profiling. Integrated analyses identified BRAF and NF1 as novel driver genes in addition to the well-characterized RET and RAS proto-oncogenes. Proteome-based stratification of MTCs revealed three molecularly heterogeneous subtypes named as: (1) Metabolic, (2) Basal and (3) Mesenchymal, which are distinct in genetic drivers, epigenetic modification profiles, clinicopathologic factors and clinical outcomes. Furthermore, we explored putative therapeutic targets of each proteomic subtype, and found that two tenascin family members TNC/TNXB might serve as potential prognostic biomarkers for MTC. Collectively, our study expands the knowledge of MTC biology and therapeutic vulnerabilities, which may serve as an important resource for future investigation on this malignancy.
Collapse
|
4
|
Minna E, Romeo P, Dugo M, De Cecco L, Aiello A, Pistore F, Carenzo A, Greco A, Borrello MG. Medullary Thyroid Carcinoma Mutational Spectrum Update and Signaling-Type Inference by Transcriptional Profiles: Literature Meta-Analysis and Study of Tumor Samples. Cancers (Basel) 2022; 14:1951. [PMID: 35454858 PMCID: PMC9028774 DOI: 10.3390/cancers14081951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
Medullary thyroid carcinoma (MTC) is a rare but aggressive tumor. Although RET and RAS genes are recognized drivers in MTC, associated downstream signaling pathways are largely unknown. In this study, we report 17 sporadic MTCs, collected at our institution, comprising patient-matched primary and lymph node metastatic tumors investigated for mutational and transcriptional profiles. As we identified two uncommon RET deletions (D898_E901del and E632_L633del), we also performed a literature review and meta-analysis to assess the occurrence of unconventional alterations in MTC, focusing on next-generation sequencing studies. We found that new gene alterations are emerging, along with the known RET/RAS drivers, involving not only RET by multiple concurrent mutations or deletions but also other previously underestimated cancer-related genes, especially in sporadic MTCs. In our MTC gene profiles, we found transcriptome similarity between patient-matched tissues and expression of immune genes only by a few samples. Furthermore, we defined a gene signature able to stratify samples into two distinct signaling types, termed MEN2B-like and MEN2A-like. We provide an updated overview of the MTC mutational spectrum and describe how transcriptional profiles can be used to define distinct MTC signaling subtypes that appear to be shared by various gene drivers, including the unconventional ones.
Collapse
Affiliation(s)
- Emanuela Minna
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Paola Romeo
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Antonella Aiello
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Federico Pistore
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Andrea Carenzo
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Angela Greco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| | - Maria Grazia Borrello
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (P.R.); (L.D.C.); (F.P.); (A.C.); (A.G.)
| |
Collapse
|
5
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
6
|
Lou X, Meng Y, Hou Y. A literature review on function and regulation mechanism of DKK4. J Cell Mol Med 2021; 25:2786-2794. [PMID: 33586359 PMCID: PMC7957263 DOI: 10.1111/jcmm.16372] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Dickkopf-related protein 4 (DKK4) is a member of the dickkopf family and an inhibitor of the Wnt/β-catenin signalling pathway. This review surveyed the single nucleotide polymorphisms (SNPs), copy number variations (CNVs), hypermethylation, regulation mechanism, correlation with clinicopathological parameters and chemotherapeutic resistance of DKK4. The signal pathways involved in DKK4 mainly include Wnt/β-catenin pathway and Wnt-JNK pathway independent β-catenin. DKK4 expression was upregulated in Renal Cell Carcinoma (RCC), Colorectal Cancer, Gastric Cancer (GC), Non-small Cell Lung Cancer (NSCLC) and Epithelial Ovarian Cancer (EOC), while downregulated in Hepatocellular Carcinoma (HCC). DKK4 is not only involved in tumour growth, invasion, migration and chemotherapy resistance, but also in osteoblastogenesis and secondary hair or meibomian gland formation. DKK4 has also been linked to schizophrenia.
Collapse
Affiliation(s)
- Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuchen Meng
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Oczko-Wojciechowska M, Czarniecka A, Gawlik T, Jarzab B, Krajewska J. Current status of the prognostic molecular markers in medullary thyroid carcinoma. Endocr Connect 2020; 9:R251-R263. [PMID: 33112827 PMCID: PMC7774764 DOI: 10.1530/ec-20-0374] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Medullary thyroid cancer (MTC) is a rare thyroid malignancy, which arises from parafollicular C-cells. It occurs in the hereditary or sporadic form. Hereditary type is a consequence of activation of the RET proto-oncogene by germline mutations, whereas about 80% of sporadic MTC tumors harbor somatic, mainly RET or rarely RAS mutations. According to the current ATA guidelines, a postoperative MTC risk stratification and long-term follow-up are mainly based on histopathological data, including tumor stage, the presence of lymph node and/or distant metastases (TNM classification), and serum concentration of two biomarkers: calcitonin (Ctn) and carcinoembryonic antigen (CEA). The type of RET germline mutation also correlates with MTC clinical characteristics. The most common and the best known RET mutation in sporadic MTC, localized at codon 918, is related to a more aggressive MTC course and poorer survival. However, even if histopathological or clinical features allow to predict a long-term prognosis, they are not sufficient to select the patients showing aggressive MTC courses requiring immediate treatment or those, who are refractory to different therapeutic methods. Besides the RET gene mutations, there are currently no other reliable molecular prognostic markers. This review summarizes the present data of genomic investigation on molecular prognostic factors in medullary thyroid cancer.
Collapse
Affiliation(s)
- Malgorzata Oczko-Wojciechowska
- Department of Genetic and Molecular Diagnostics of Cancer, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Agnieszka Czarniecka
- Oncologic and Reconstructive Surgery Clinic, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Tomasz Gawlik
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Barbara Jarzab
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Jolanta Krajewska
- Nuclear Medicine and Endocrine Oncology Department, M. Sklodowska-Curie Institute National Research Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
8
|
Cordero-Barreal A, Caleiras E, López de Maturana E, Monteagudo M, Martínez-Montes ÁM, Letón R, Gil E, Álvarez-Escolá C, Regojo RM, Andía V, Marazuela M, Guadalix S, Calatayud M, Robles-Díaz L, Aguirre M, Cano JM, Díaz JÁ, Saavedra P, Lamas C, Azriel S, Sastre J, Aller J, Leandro-García LJ, Calsina B, Roldán-Romero JM, Santos M, Lanillos J, Cascón A, Rodríguez-Antona C, Robledo M, Montero-Conde C. CD133 Expression in Medullary Thyroid Cancer Cells Identifies Patients with Poor Prognosis. J Clin Endocrinol Metab 2020; 105:5892412. [PMID: 32791518 DOI: 10.1210/clinem/dgaa527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
CONTEXT The identification of markers able to determine medullary thyroid cancer (MTC) patients at high-risk of disease progression is critical to improve their clinical management and outcome. Previous studies have suggested that expression of the stem cell marker CD133 is associated with MTC aggressiveness. OBJECTIVE To evaluate CD133 impact on disease progression in MTC and explore the regulatory mechanisms leading to the upregulation of this protein in aggressive tumors. PATIENTS We compiled a series of 74 MTCs with associated clinical data and characterized them for mutations in RET and RAS proto-oncogenes, presumed to be related with disease clinical behavior. RESULTS We found that CD133 immunohistochemical expression was associated with adverse clinicopathological features and predicted a reduction in time to disease progression even when only RET-mutated cases were considered in the analysis (log-rank test P < 0.003). Univariate analysis for progression-free survival revealed CD133 expression and presence of tumor emboli in peritumoral blood vessels as the most significant prognostic covariates among others such as age, gender, and prognostic stage. Multivariate analysis identified both variables as independent factors of poor prognosis (hazard ratio = 16.6 and 2; P = 0.001 and 0.010, respectively). Finally, we defined hsa-miR-30a-5p, a miRNA downregulated in aggressive MTCs, as a CD133 expression regulator. Ectopic expression of hsa-miR-30a-5p in MZ-CRC-1 (RETM918T) cells significantly reduced CD133 mRNA expression. CONCLUSIONS Our results suggest that CD133 expression may be a useful tool to identify MTC patients with poor prognosis, who may benefit from a more extensive primary surgical management and follow-up.
Collapse
Affiliation(s)
| | | | - Evangelina López de Maturana
- Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Basic Medical Sciences, Medical School, San Pablo-CEU University, Boadilla del Monte, Spain
- Biomedical Research Networking Centre on Oncology (CIBERONC), Madrid, Spain
| | | | | | - Rocío Letón
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | - Eduardo Gil
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | - Cristina Álvarez-Escolá
- Endocrinology and Nutrition Department and Pathological Anatomy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Rita M Regojo
- Endocrinology and Nutrition Department and Pathological Anatomy Service, Hospital Universitario La Paz, Madrid, Spain
| | - Víctor Andía
- Endocrinology and Nutrition Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Mónica Marazuela
- Endocrinology and Nutrition Department, Hospital Universitario La Princesa, Madrid, Spain
| | | | | | - Luis Robles-Díaz
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Miguel Aguirre
- Endocrinology and Nutrition Department, Ciudad Real, Spain
| | - Juana M Cano
- Medical Oncology Department, Hospital Universitario de Ciudad Real, Ciudad Real, Spain
| | - José Ángel Díaz
- Endocrinology and Nutrition Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Pilar Saavedra
- Endocrinology and Nutrition Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
| | - Cristina Lamas
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario de Albacete, Albacete, Spain
| | - Sharona Azriel
- Endocrinology and Nutrition Department, Hospital Universitario Infanta Sofía, San Sebastián de los Reyes, Spain
| | - Julia Sastre
- Endocrinology and Nutrition Department, Hospital Virgen de la Salud, Toledo, Spain
| | - Javier Aller
- Endocrinology and Nutrition Department, Hospital Universitario Puerta de Hierro, Majadahonda, Spain
| | | | | | | | - María Santos
- Hereditary Endocrine Cancer Group, Madrid, Spain
| | | | - Alberto Cascón
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Cristina Rodríguez-Antona
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | | |
Collapse
|
9
|
Alqahtani T, Kumarasamy VM, Huczyński A, Sun D. Salinomycin and its derivatives as potent RET transcriptional inhibitors for the treatment of medullary thyroid carcinoma. Int J Oncol 2019; 56:348-358. [PMID: 31746350 DOI: 10.3892/ijo.2019.4916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/19/2019] [Indexed: 11/05/2022] Open
Abstract
Rearranged during transfection kinase (RET) is a validated molecular target in medullary thyroid cancer (MTC), as activating mutations in RET are often associated with the development of MTC. The present study reports the first preclinical characterization of salinomycin and selected analogs as potent RET transcriptional inhibitors. Reverse transcription‑PCR and immunoblotting revealed that salinomycin profoundly decreased RET expression in the TT human MTC cell line by inhibiting RET transcription. Moreover, salinomycin resulted in remarkable anti‑proliferative activity against MTC that is driven by RET (gain of function mutation) by selectively inhibiting the intracellular PI3K/Akt/mTOR signaling pathway. Also, flow cytometry and fluorescence‑activated cell sorting showed that salinomycin induces G1 phase arrest and apoptosis by reducing the expression of retinoblastoma protein, E2F1, cyclin D and CDK4. The structure‑activity relationship of salinomycin was investigated in this study. Some of the salinomycin derivatives showed the ability to reduce RET expression where others fail to alter RET expression. These results suggest that the RET‑suppressing effect of salinomycin may be largely attributed to disruption of the Wnt pathway, presumably through interference with the ternary LRP6‑Frizzled‑Wnt complex. Furthermore, these findings support the further preclinical evaluation of salinomycin and its analogs as a promising new class of therapeutic agents for the improved treatment of MTC.
Collapse
Affiliation(s)
- Tariq Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Vishnu Muthuraj Kumarasamy
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Adam Huczyński
- Faculty of Chemistry, Adam Mickiewicz University, 60‑780 Poznan, Poland
| | - Daekyu Sun
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
10
|
Luzón-Toro B, Fernández RM, Villalba-Benito L, Torroglosa A, Antiñolo G, Borrego S. Influencers on Thyroid Cancer Onset: Molecular Genetic Basis. Genes (Basel) 2019; 10:E913. [PMID: 31717449 PMCID: PMC6895808 DOI: 10.3390/genes10110913] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/25/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid cancer, a cancerous tumor or growth located within the thyroid gland, is the most common endocrine cancer. It is one of the few cancers whereby incidence rates have increased in recent years. It occurs in all age groups, from children through to seniors. Most studies are focused on dissecting its genetic basis, since our current knowledge of the genetic background of the different forms of thyroid cancer is far from complete, which poses a challenge for diagnosis and prognosis of the disease. In this review, we describe prevailing advances and update our understanding of the molecular genetics of thyroid cancer, focusing on the main genes related with the pathology, including the different noncoding RNAs associated with the disease.
Collapse
Affiliation(s)
- Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (B.L.-T.); (R.M.F.); (L.V.-B.); (A.T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
11
|
Shin E, Koo JS. Expression of proteins related to autotaxin-lysophosphatidate signaling in thyroid tumors. J Transl Med 2019; 17:288. [PMID: 31455351 PMCID: PMC6712878 DOI: 10.1186/s12967-019-2028-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 08/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND We aimed to investigate the expression of proteins related with autotaxin (ATX)-lysophosphatidate (LPA) signaling and the clinical implications in primary and metastatic thyroid tumors. METHODS We constructed tissue microarrays with 545 primary thyroid tumors [338 papillary thyroid carcinoma (PTC), 111 follicular carcinoma (FC), 69 medullary carcinoma (MC), 23 poorly differentiated carcinoma (PDC), and four anaplastic carcinoma (AC)]. Immunohistochemical stains for proteins related to ATX-LPA signaling (e.g., ATX, LPA1, LPA2, and LPA3) were performed. RESULTS The expression of ATX was highest in MC, while the LPA1 expression was higher in PDC and AC, and the expression of LPA2 and LPA3 was highest in PTC (p < 0.001). Additionally, the expression of ATX, LPA1, and LPA2 was higher in conventional-type PTC than in follicular-variant PTC (p < 0.05). PTC with BRAF V600E mutation showed higher expression of ATX, LPA1, LPA2, and LPA3 than PTC without BRAF V600E mutation (p < 0.001). In univariate analysis, ATX positivity (p = 0.005) and LPA1 positivity (p = 0.014) were correlated with shorter overall survival in PTC. CONCLUSION Proteins related to the ATX-LPA axis showed different levels of expression in primary thyroid tumors according to subtype.
Collapse
Affiliation(s)
- Eunah Shin
- Department of Pathology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea.,Department of Pathology, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea
| | - Ja Seung Koo
- Department of Pathology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea. .,Department of Pathology, Yonsei University College of Medicine, Severance Hospital, 50 Yonsei-ro, Seodaemun-gu, Seoul, 120-752, South Korea.
| |
Collapse
|
12
|
Zhang L, Lu D, Liu M, Zhang M, Peng Q. Identification and interaction analysis of key miRNAs in medullary thyroid carcinoma by bioinformatics analysis. Mol Med Rep 2019; 20:2316-2324. [PMID: 31322209 PMCID: PMC6691269 DOI: 10.3892/mmr.2019.10463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Medullary thyroid carcinoma (MTC) is an endocrine tumor and comprises 5–10% of all primary thyroid malignancies. However, the biomechanical contribution to the development and progression of MTC remains unclear. In this study, To discover the key microRNAs (miRNAs or miRs) and their potential roles in the tumorigenesis of MTC, the microarray datasets GSE97070, GSE40807 and GSE27155 were analyzed. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed miRNAs (DEMs) and genes (DEGs) were accessed by R. Targets of DEMs and predicted using starBase, and functional and pathway enrichment analyses were performed using Metascape. A protein-protein interaction (PPI) network and an analysis of modules were constructed using NetworkAnalyst. Finally, a network was constructed to show the regulatory association between transcription factors (TFs), DEMs and downstream genes. A total of 5 DEMs were found both in GSE97070 and GSE40807, including 3 upregulated DEMs and 2 downregulated DEMs. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses from Metascape revealed that the target genes of upregulated DEMs were significantly enriched in adherens junction, kinase and protein binding, while the target genes of downregulated DEMs were mainly involved in non-canonical Wnt signaling pathway and RNA transport. From the PPI network, 13 nodes were screened as hub genes. Pathway enrichment analysis revealed that the top 5 modules were mostly enriched in the neurotrophin signaling pathway, mRNA surveillance pathway and MAPK signaling pathway. In addition, the TF-DEMs-target gene and DEGs regulatory network revealed that 17 TFs regulated 2 miRNAs, including upregulated or downregulated DEMs, CREB1 regulated all upregulated DEMs, and TGFB1 was an activator of hsa-miR-199a-3p and a repressor of hsa-miR-429. Taken together, the present study identified several miRNAs and potential biological mechanisms involved in the tumorigenesis of MTC. This study identified the key DEMs and potential mechanisms underlying the development of MTC, and provided a series of biomarkers and targets for the management of MTC.
Collapse
Affiliation(s)
- Lijie Zhang
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Donghui Lu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Meiqin Liu
- Tumor Diagnosis and Treatment Center, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Mingjin Zhang
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| | - Quan Peng
- General Surgery Department, PLA 901 Hospital, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
13
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
14
|
Zhan S, Li J, Wang T, Ge W. Quantitative Proteomics Analysis of Sporadic Medullary Thyroid Cancer Reveals FN1 as a Potential Novel Candidate Prognostic Biomarker. Oncologist 2018; 23:1415-1425. [PMID: 29739896 DOI: 10.1634/theoncologist.2017-0399] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sporadic medullary thyroid cancer (MTC) is a rare neuroendocrine tumor. Currently, although the diagnosis of sporadic MTC is relatively simple, the need to discover novel candidate prognostic biomarkers for sporadic MTC and investigate the underlying mechanism involved in this rare disease is urgent. MATERIALS AND METHODS We employed tandem mass tag-based liquid chromatography-mass spectrometry to identify and analyze differentially expressed proteins (DEPs) in sporadic MTC. Western blotting was used to validate the DEPs. Immunohistochemistry was performed to investigate FN1 and RPS6KA3 in an independent set of sporadic MTC tissues. Immunohistochemical data were analyzed by different statistical methods. RESULTS Three hundred eighty-eight DEPs were identified in mass spectrometry, mainly involved in the extracellular matrix, cytoskeletal remodeling, or oxidoreductase activity. Among them, THBS1, MMP9, FN1, RPS6KA3, SYT1, and carcinoembryonic antigen were successfully validated by Western blot. In addition, FN1 and RPS6KA3, enriched in extracellular matrix (ECM) remodeling and the mitogen-activated protein kinase (MAPK) signaling pathway, respectively, were investigated in an independent set of sporadic MTC tissues. Receiver-operator characteristic curve analysis showed that FN1 and RPS6KA3 can be used for discriminating sporadic MTC tumorous tissues from paired normal thyroid tissues, and the clinical biomarker calcitonin was positively correlated with FN1 and RPS6KA3 in tumorous tissues. Furthermore, the immunohistochemical scores of FN1 in tumorous tissue showed an inverse relationship with tumor classification, lymph node classification, and American Joint Committee on Cancer stage. Through univariate and multivariate analysis for progression-free survival, we also found that low FN1 expression in tumorous tissues was an independent worse prognostic factor for progression-free survival. CONCLUSION We identified that the pathophysiology of sporadic MTC involve numerous pathways, including the synaptic vesicle pathway, the MAPK signaling pathway, and the ECM remodeling pathway. Furthermore, our study also identified FN1 as novel prognostic biomarkers related to the pathophysiologic changes in sporadic MTC. IMPLICATIONS FOR PRACTICE Proteomic dissection and prognostic biomarkers are scarce in sporadic medullary thyroid cancer (MTC). This article reports the use of proteomics technology to comprehensively investigate the molecular mechanisms of sporadic MTC, which resulted in the identification of FN1 as a novel candidate prognostic biomarker.
Collapse
Affiliation(s)
- Shaohua Zhan
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China
| | - Tianxiao Wang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Head and Neck Surgery, Peking University Cancer Hospital & Institute, Beijing, People's Republic of China
| | - Wei Ge
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, National Key Laboratory of Medical Molecular Biology & Department of Immunology, Beijing, People's Republic of China
| |
Collapse
|
15
|
Cai X, Yao Z, Li L, Huang J. Role of DKK4 in Tumorigenesis and Tumor Progression. Int J Biol Sci 2018; 14:616-621. [PMID: 29904276 PMCID: PMC6001654 DOI: 10.7150/ijbs.24329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/26/2018] [Indexed: 11/05/2022] Open
Abstract
Tumor is the most public health problem. The Wnt signal pathway extensively participates in diverse progresses containing embryonic development, maintenance of homeostasis and tumor pathogenesis. The Wnt signal pathway consists of canonical signal pathway, noncanonical Wnt/PCP pathway and noncanonical Wnt/Ca2+ pathway. The deletion of the ligand of Wnts results in cytoplasmic β-catenin phosphorylation, stopping entry of β-catenin to nuclear in canonical Wnt signaling. Instead, binding of Wnts to frizzled (FZ/FZD) as well as LRP5/6 causes activation of Wnt signal pathways. This facilitates entry of β-catenin to nuclear. The Dickkopf proteins (DKKs) have been known as the antagonist of Wnt signal pathway. A number of research of DKK1, 2, 3 have been reported, however, the effect of DKK4 on tumor process is still mysterious. A more distinct comprehension about the effect of DKK4 on tumorigenesis and tumor process will shed light on biomedical research of DKK4 and tumor research. This review summarizes the current knowledge of DKK4 in various kinds of tumors.
Collapse
Affiliation(s)
- Xinjia Cai
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Zhigang Yao
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Long Li
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| | - Junhui Huang
- Department of Oral Pathology, Xiangya Stomalogical Hospital, Central South University, 410078, Chansha, Hunan, China
| |
Collapse
|
16
|
Castinetti F, Moley J, Mulligan L, Waguespack SG. A comprehensive review on MEN2B. Endocr Relat Cancer 2018; 25:T29-T39. [PMID: 28698189 DOI: 10.1530/erc-17-0209] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
MEN2B is a very rare autosomal dominant hereditary tumor syndrome associated with medullary thyroid carcinoma (MTC) in 100% cases, pheochromocytoma in 50% cases and multiple extra-endocrine features, many of which can be quite disabling. Only few data are available in the literature. The aim of this review is to try to give further insights into the natural history of the disease and to point out the missing evidence that would help clinicians optimize the management of such patients. MEN2B is mainly characterized by the early occurrence of MTC, which led the American Thyroid Association to recommend preventive thyroidectomy before the age of 1 year. However, as the majority of mutations are de novo, improved knowledge of the nonendocrine signs would help to lower the age of diagnosis and improve long-term outcomes. Future large-scale studies will be aimed at characterizing more in detail the main characteristics and outcomes of MEN2B.
Collapse
Affiliation(s)
- Frederic Castinetti
- Department of EndocrinologyAix Marseille University, CNRS UM 7286, Assistance Publique Hopitaux de Marseille, Marseille, France
| | - Jeffrey Moley
- Department of SurgeryWashington University School of Medicine, St Louis, Missouri, USA
| | - Lois Mulligan
- Division of Cancer Biology and GeneticsCancer Research Institute, Queen's University, Kingston, Ontario, Canada
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal DisordersThe University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
17
|
Molatore S, Kügler A, Irmler M, Wiedemann T, Neff F, Feuchtinger A, Beckers J, Robledo M, Roncaroli F, Pellegata NS. Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma. Endocr Relat Cancer 2018; 25:145-162. [PMID: 29142006 DOI: 10.1530/erc-17-0456] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Rats affected by the MENX syndrome spontaneously develop multiple neuroendocrine tumors (NETs) including adrenal, pituitary and thyroid gland neoplasms. MENX was initially reported to be inherited as a recessive trait and affected rats were found to be homozygous for the predisposing Cdkn1b mutation encoding p27. We here report that heterozygous MENX-mutant rats (p27+/mut) develop the same spectrum of NETs seen in the homozygous (p27mut/mut) animals but with slower progression. Consequently, p27+/mut rats have a significantly shorter lifespan compared with their wild-type (p27+/+) littermates. In the tumors of p27+/mut rats, the wild-type Cdkn1b allele is neither lost nor silenced, implying that p27 is haploinsufficient for tumor suppression in this model. Transcriptome profiling of rat adrenal (pheochromocytoma) and pituitary tumors having different p27 dosages revealed a tissue-specific, dose-dependent effect of p27 on gene expression. In p27+/mut rats, thyroid neoplasms progress to invasive and metastatic medullary thyroid carcinomas (MTCs) accompanied by increased calcitonin levels, as in humans. Comparison of expression signatures of late-stage vs early-stage MTCs from p27+/mut rats identified genes potentially involved in tumor aggressiveness. The expression of a subset of these genes was evaluated in human MTCs and found to be associated with aggressive RET-M918T-positive tumors. Altogether, p27 haploinsufficiency in MENX rats uncovered a novel, representative model of invasive and metastatic MTC exploitable for translational studies of this often aggressive and incurable cancer.
Collapse
Affiliation(s)
- Sara Molatore
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Andrea Kügler
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
| | - Tobias Wiedemann
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| | - Frauke Neff
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
| | - Annette Feuchtinger
- Research Unit Analytical PathologyHelmholtz Zentrum München, Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental GeneticsHelmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD)Neuherberg, Germany
- Technische Universität MünchenChair of Experimental Genetics, Freising, Germany
| | - Mercedes Robledo
- Hereditary Endocrine Cancer GroupSpanish National Cancer Research Centre (CNIO) and ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Federico Roncaroli
- Division of Neuroscience and Experimental PsychologyFaculty of Medicine, University of Manchester, Manchester, UK
| | - Natalia S Pellegata
- Institute for Diabetes and CancerHelmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
18
|
Abstract
Medullary thyroid cancer (MTC) is a relatively uncommon yet prognostically significant thyroid cancer. Several recent advances in the biology and current or potential treatment of MTC are notable. These include a new understanding of the developmental biology of the thyroid C cell, which heretofore was thought to develop from the neural crest. RET, encoded by the most common driver gene in MTC, has been shown to be a dual function kinase, thus expanding its potential substrate repertoire. Promising new therapeutic developments are occurring; many have recently progressed to clinical development. There are new insights into RET inhibitor therapy for MTC. New strategies are being developed to inhibit the RAS proteins, which are potential therapeutic targets in MTC. Potential emerging immunotherapies for MTC are discussed. However, gaps in our knowledge of the basic biology of the C cell, its transformation to MTC, and the mechanisms of resistance to therapy impede progress; further research in these areas would have a substantial impact on the field.
Collapse
Affiliation(s)
- Barry Nelkin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Baltimore, MD, 21287, USA
| |
Collapse
|
19
|
Fu X, Fang J, Lian M, Zhong Q, Ma H, Feng L, Wang R, Wang H. Identification of microRNAs associated with medullary thyroid carcinoma by bioinformatics analyses. Mol Med Rep 2017; 15:4266-4272. [PMID: 28487941 DOI: 10.3892/mmr.2017.6547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 01/19/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the microRNA (miRNA) profile in human medullary thyroid carcinoma (MTC) tissue. The GSE40807 data profile was downloaded from the Gene Expression Omnibus database. Following preprocessing, differentially expressed microRNAs (DEMs) between MTC and healthy tissues were identified. Based on the obtained DEMs, transcription factor (TF)‑miRNA and miRNA‑target gene regulatory association pairs were predicted. Finally, functional enrichment analysis was performed on target genes of DEMs. Fifteen upregulated and 17 downregulated DEMs were identified. In the constructed TF‑miRNA regulatory network, hsa‑miR‑9‑5p was regulated by 9 TFs and hsa‑miR‑1 was regulated by 8 TFs. TFs of nuclear factor of κ light polypeptide gene enhancer in B‑cells 1 (NF‑κB1) and v‑myc avian myelocytomatosis viral oncogene homolog (MYC) regulated 4 and 3 DEMs, respectively. In the miRNA‑target gene regulatory network, hsa‑miR‑1, hsa‑miR‑9‑5p, hsa‑miR‑96‑5p and hsa‑miR‑590‑5p were most upregulated. The target genes of these 4 miRNAs were primarily enriched in the mitogen activated protein kinase (MAPK) signaling pathway. Therefore, MAPK signaling pathway may serve important roles in MTC progression. In conclusion, the DEMs hsa‑miR‑1 and hsa‑miR‑9‑5p, and TFs of NF‑κB1 and MYC may be used as biomarkers for the diagnosis and treatment of MTC.
Collapse
Affiliation(s)
- Xiangjun Fu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qi Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ling Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Haizhou Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
20
|
Song H, Lin C, Yao E, Zhang K, Li X, Wu Q, Chuang PT. Selective Ablation of Tumor Suppressors in Parafollicular C Cells Elicits Medullary Thyroid Carcinoma. J Biol Chem 2017; 292:3888-3899. [PMID: 28119454 PMCID: PMC5339769 DOI: 10.1074/jbc.m116.765727] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/23/2017] [Indexed: 12/26/2022] Open
Abstract
Among the four different types of thyroid cancer, treatment of medullary thyroid carcinoma poses a major challenge because of its propensity of early metastasis. To further investigate the molecular mechanisms of medullary thyroid carcinoma and discover candidates for targeted therapies, we developed a new mouse model of medullary thyroid carcinoma based on our CGRPCreER mouse line. This system enables gene manipulation in parafollicular C cells in the thyroid, the purported cells of origin of medullary thyroid carcinoma. Selective inactivation of tumor suppressors, such as p53, Rb, and Pten, in mature parafollicular C cells via an inducible Cre recombinase from CGRPCreER led to development of murine medullary thyroid carcinoma. Loss of Pten accelerated p53/Rb-induced medullary thyroid carcinoma, indicating interactions between pathways controlled by tumor suppressors. Moreover, labeling differentiated parafollicular C cells by CGRPCreER allows us to follow their fate during malignant transformation to medullary thyroid tumor. Our findings support a model in which mutational events in differentiated parafollicular C cells result in medullary thyroid carcinoma. Through expression analysis including RNA-Seq, we uncovered major signaling pathways and networks that are perturbed following the removal of tumor suppressors. Taken together, these studies not only increase our molecular understanding of medullary thyroid carcinoma but also offer new candidates for designing targeted therapies or other treatment modalities.
Collapse
Affiliation(s)
- Hai Song
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Chuwen Lin
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Erica Yao
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Kuan Zhang
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| | - Xiaoling Li
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
| | - Qingzhe Wu
- From the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China and
| | - Pao-Tien Chuang
- the Cardiovascular Research Institute, University of California, San Francisco, California 94158
| |
Collapse
|
21
|
Oczko-Wojciechowska M, Swierniak M, Krajewska J, Kowalska M, Kowal M, Stokowy T, Wojtas B, Rusinek D, Pawlaczek A, Czarniecka A, Szpak-Ulczok S, Gawlik T, Chmielik E, Tyszkiewicz T, Nikiel B, Lange D, Jarzab M, Wiench M, Jarzab B. Differences in the transcriptome of medullary thyroid cancer regarding the status and type of RET gene mutations. Sci Rep 2017; 7:42074. [PMID: 28181547 PMCID: PMC5299608 DOI: 10.1038/srep42074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Medullary thyroid cancer (MTC) can be caused by germline mutations of the RET proto-oncogene or occurs as a sporadic form. It is well known that RET mutations affecting the cysteine-rich region of the protein (MEN2A-like mutations) are correlated with different phenotypes than those in the kinase domain (MEN2B-like mutations). Our aim was to analyse the whole-gene expression profile of MTC with regard to the type of RET gene mutation and the cancer genetic background (hereditary vs sporadic). We studied 86 MTC samples. We demonstrated that there were no distinct differences in the gene expression profiles of hereditary and sporadic MTCs. This suggests a homogeneous nature of MTC. We also noticed that the site of the RET gene mutation slightly influenced the gene expression profile of MTC. We found a significant association between the localization of RET mutations and the expression of three genes: NNAT (suggested to be a tumour suppressor gene), CDC14B (involved in cell cycle control) and NTRK3 (tyrosine receptor kinase that undergoes rearrangement in papillary thyroid cancer). This study suggests that these genes are significantly deregulated in tumours with MEN2A-like and MEN2B-like mutations; however, further investigations are necessary to demonstrate any clinical impact of these findings.
Collapse
Affiliation(s)
- Malgorzata Oczko-Wojciechowska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Michal Swierniak
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
- Genomic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Krajewska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Malgorzata Kowalska
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Monika Kowal
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Bartosz Wojtas
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Dagmara Rusinek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Agnieszka Pawlaczek
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Agnieszka Czarniecka
- The Oncology and Reconstructive Surgery Clinic, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Sylwia Szpak-Ulczok
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Tomasz Gawlik
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Ewa Chmielik
- Tumour Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Tomasz Tyszkiewicz
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| | - Barbara Nikiel
- Tumour Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Dariusz Lange
- Tumour Pathology Department, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Michal Jarzab
- III Radiotherapy Clinic, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Malgorzata Wiench
- College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Barbara Jarzab
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Poland
| |
Collapse
|
22
|
Spitschak A, Meier C, Kowtharapu B, Engelmann D, Pützer BM. MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit. Mol Cancer 2017; 16:24. [PMID: 28122586 PMCID: PMC5267421 DOI: 10.1186/s12943-016-0563-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Background Dominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression. Methods The expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration. Results We found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1. Conclusion We demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0563-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alf Spitschak
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Bhavani Kowtharapu
- Current address: Department of Ophthalmology, Rostock University Medical Center, Rostock, Germany
| | - David Engelmann
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
23
|
Yu J, Mai W, Cui Y, Kong L. Key genes and pathways predicted in papillary thyroid carcinoma based on bioinformatics analysis. J Endocrinol Invest 2016; 39:1285-1293. [PMID: 27250077 DOI: 10.1007/s40618-016-0491-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to predict the key genes and pathways associated with papillary thyroid carcinoma (PTC). METHODS Based on the microarray data of GSE3467 from Gene Expression Omnibus database, we identified the differentially expressed genes (DEGs) between 9 PTC samples and 9 normal controls. With the identified DEGs, functional enrichment analyses were performed. Additionally, a protein-protein interaction network was constructed to screened out some key gene nodes. These key nodes were then performed clustering analysis and pathway enrichment analysis. Furthermore, human PTC-associated network was constructed based on these key genes to investigate the potential relationships between genes and PTC. RESULTS A total of 651 up-regulated and 692 down-regulated DEGs were identified in PTC samples compared with controls. The up-regulated DEGs, such as complement component 3 (C3), were mainly enriched in hsa04610:Complement and coagulation cascades. The down-regulated DEGs, including paired box 8 (PAX8), peroxisome proliferator-activated receptor gamma (PPARG), and cadherin 1, type 1 were found enriched in hsa05216:Thyroid cancer. Total 33 DEGs were considered as key genes, such as PAX8, PPARG and Jun proto-oncogene (JUN). Disease-associated network analysis found that 15 key genes such as JUN, PPARG and matrix metallopeptidase 9 (MMP9) were involved in this network. CONCLUSIONS DEGs of C3, PPARG, PAX8, JUN and MMP9 were differentially expressed in PTC samples and may be used as potential biomarkers in the diagnosis and treatment of PTC. Additionally, pathways of complement and coagulation cascades and thyroid cancer may also play important roles in the development of PTC.
Collapse
Affiliation(s)
- J Yu
- Department of Head and Neck Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - W Mai
- Department of Orthopedics, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - Y Cui
- Department of Radiation Oncology, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China
| | - L Kong
- Department of Head and Neck Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
24
|
Mancikova V, Montero-Conde C, Perales-Paton J, Fernandez A, Santacana M, Jodkowska K, Inglada-Pérez L, Castelblanco E, Borrego S, Encinas M, Matias-Guiu X, Fraga M, Robledo M. Multilayer OMIC Data in Medullary Thyroid Carcinoma Identifies the STAT3 Pathway as a Potential Therapeutic Target in RETM918T Tumors. Clin Cancer Res 2016; 23:1334-1345. [PMID: 27620278 DOI: 10.1158/1078-0432.ccr-16-0947] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/05/2016] [Accepted: 08/24/2016] [Indexed: 11/16/2022]
Abstract
Purpose: Medullary thyroid carcinoma (MTC) is a rare disease with few genetic drivers, and the etiology specific to each known susceptibility mutation remains unknown. Exploiting multilayer genomic data, we focused our interest on the role of aberrant DNA methylation in MTC development.Experimental Design: We performed genome-wide DNA methylation profiling assessing more than 27,000 CpGs in the largest MTC series reported to date, comprising 48 molecularly characterized tumors. mRNA and miRNA expression data were available for 33 and 31 tumors, respectively. Two human MTC cell lines and 101 paraffin-embedded MTCs were used for validation.Results: The most distinctive methylome was observed for RETM918T-related tumors. Integration of methylation data with mRNA and miRNA expression data identified genes negatively regulated by promoter methylation. These in silico findings were confirmed in vitro for PLCB2, DKK4, MMP20, and miR-10a, -30a, and -200c. The mutation-specific aberrant methylation of PLCB2, DKK4, and MMP20 was validated in 25 independent MTCs by bisulfite pyrosequencing. The methylome and transcriptome data underscored JAK/Stat pathway involvement in RETM918T MTCs. Immunostaining [immunohistochemistry (IHC)] for the active form of signaling effector STAT3 was performed in a series of 101 MTCs. As expected, positive IHC was associated with RETM918T-bearing tumors (P < 0.02). Pharmacologic inhibition of STAT3 activity increased the sensitivity to vandetanib of the RETM918T-positive MTC cell line, MZ-CRC-1.Conclusions: Multilayer OMIC data analysis uncovered methylation hallmarks in genetically defined MTCs and revealed JAK/Stat signaling effector STAT3 as a potential therapeutic target for the treatment of RETM918T MTCs. Clin Cancer Res; 23(5); 1334-45. ©2016 AACR.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Cristina Montero-Conde
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Perales-Paton
- Translational Bioinformatics Unit, Clinical Research Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Agustin Fernandez
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - María Santacana
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Karolina Jodkowska
- DNA Replication Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucia Inglada-Pérez
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Esmeralda Castelblanco
- Department of Endocrinology and Nutrition, Germans Trias i Pujol Hospital, Health Sciences Research Institute of the "Germans Trias i Pujol" Foundation (IGTP), Badalona, Spain.,Centre for Biomedical Research on Diabetes and Associated Metabolic Diseases (CIBERDEM), ISCIII, Spain
| | | | - Mario Encinas
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain
| | - Xavier Matias-Guiu
- Department of Endocrinology and Nutrition, University Hospital Arnau de Vilanova, IRBLLEIDA, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, Barcelona
| | - Mario Fraga
- Cancer Epigenetics Laboratory, Institute of Oncology of Asturias (IUOPA), HUCA, University of Oviedo, Asturias, Spain
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. .,ISCIII Center for Biomedical Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
25
|
Tiedje V, Ting S, Walter RF, Herold T, Worm K, Badziong J, Zwanziger D, Schmid KW, Führer D. Prognostic markers and response to vandetanib therapy in sporadic medullary thyroid cancer patients. Eur J Endocrinol 2016; 175:173-80. [PMID: 27283290 DOI: 10.1530/eje-16-0252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Accepted: 06/08/2016] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Medullary thyroid carcinoma (MTC) occurs sporadically in 75% of patients. Metastatic disease is associated with significantly poorer survival. The aim of this study was to identify prognostic markers for progressive MTC and oncogenic factors associated with response to vandetanib therapy. DESIGN AND METHODS Clinical courses of 32 patients with sporadic MTC (n=10 pN0cM0, n=8 pN1cM0, n=14 pN1cM1) were compared with genetic profiles of the patients' primary tumour tissue. Analysis for RET proto-oncogene mutations was performed by Sanger sequencing and next-generation sequencing (NGS). The mRNA expression (mRNA count) of 33 targets was measured by nCounter NanoString analysis. RESULTS Somatic RET mutations occurred in 21/32 patients. The RET918 mutation was found in 8/14 pN1cM1 patients. BRAF (P=0.019), FGFR2 (P=0.007), FGFR3 (P=0.044) and VEGFC (P=0.042) mRNA expression was significantly lower in pN1cM0/pN1cM1 compared with pN0cM0 patients, whereas PDGFRA (P=0.026) mRNA expression was significantly higher in pN1cM0/pN1cM1 when compared with pN0cM0 patients. Among the 10/32 vandetanib-treated patients, 5 showed partial response (PR), all harbouring the RET918 mutation. mRNA expression of FLT1 (P=0.039), FLT4 (P=0.025) and VEGFB (P=0.042) was significantly higher in therapy responders. CONCLUSIONS In this study, we identified molecular markers in primary tumour tissue of sporadic MTC associated with the development of metastasis (both lymph node and organ metastasis) as well as response to vandetanib therapy.
Collapse
Affiliation(s)
| | | | - Robert Fred Walter
- Institute of Pathology Department of Interventional PneumologyRuhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology German Cancer Consortium (DKTK)German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Bi Y, Meng Y, Wu H, Cui Q, Luo Y, Xue X. Expression of the potential cancer stem cell markers CD133 and CD44 in medullary thyroid carcinoma: A ten-year follow-up and prognostic analysis. J Surg Oncol 2016; 113:144-51. [PMID: 26799258 DOI: 10.1002/jso.24124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES To investigate the expression profiles of cancer stem cells (CSCs) markers CD133 and CD44 in a cohort of medullary thyroid carcinoma (MTC) patients, and their prognostic values during 10-year follow-up. METHODS MTC samples were obtained for H&E and immunohistochemical analysis. Survival analysis was performed using Kaplan-Meier method and log-rank test. RESULTS Both the CD133 and CD44 positives were higher in MTC than control. High expression of CD133 and CD44 was positively correlated with capsule invasion and each other, and their co-expression was significantly correlated with capsule invasion, tissue invasion, and metastases at surgery. Tumor size, capsular invasion, tissue invasion, metastases at surgery, surgical plan, lymph node metastases, TNM stage, CD133, and CD44 were prognostic factors for overall survival (OS) and/or disease free survival (DFS). Both the CD133 and CD44 were unfavorable prognostic predictors for OS (P = 0.046, P = 0.03), while only CD44 was a significant predictor for DFS (P = 0.017). OS rate in CD133/CD44 co-expression group was significantly lower than that in non-co-expression group (χ(2) = 8.44, P = 0.004). CONCLUSION Our study suggested the high expression of CD133 and CD44 in the MTC, and CD133 and CD44 expressions were correlated with capsule invasion and with OS. CD133 and/or CD44 may be prognostic factors for OS and/or DFS in our MTC patients.
Collapse
Affiliation(s)
- Yalan Bi
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Quancai Cui
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yufeng Luo
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
27
|
Abstract
Medullary thyroid carcinoma (MTC) is a rare malignancy originating from the calcitonin-secreting parafollicular thyroid C cells. Approximately 75% of cases are sporadic. Rearranged during transfection (RET) proto-oncogene plays a crucial role in MTC development. Besides RET, other oncogenes commonly involved in the pathogenesis of human cancers have also been investigated in MTC. The family of human RAS genes includes the highly homologous HRAS, KRAS, and NRAS genes that encode three distinct proteins. Activating mutations in specific hotspots of the RAS genes are found in about 30% of all human cancers. In thyroid neoplasias, RAS gene point mutations, mainly in NRAS, are detected in benign and malignant tumors arising from the follicular epithelium. However, recent reports have also described RAS mutations in MTC, namely in HRAS and KRAS. Overall, the prevalence of RAS mutations in sporadic MTC varies between 0-43.3%, occurring usually in tumors with WT RET and rarely in those harboring a RET mutation, suggesting that activation of these proto-oncogenes represents alternative genetic events in sporadic MTC tumorigenesis. Thus, the assessment of RAS mutation status can be useful to define therapeutic strategies in RET WT MTC. MTC patients with RAS mutations have an intermediate risk for aggressive cancer, between those with RET mutations in exons 15 and 16, which are associated with the worst prognosis, and cases with other RET mutations, which have the most indolent course of the disease. Recent results from exome sequencing indicate that, besides mutations in RET, HRAS, and KRAS, no other recurrent driver mutations are present in MTC.
Collapse
Affiliation(s)
- Margarida M Moura
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| | - Branca M Cavaco
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| | - Valeriano Leite
- Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal Unidade de Investigação em Patobiologia Molecular (UIPM)Instituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalServiço de EndocrinologiaInstituto Português de Oncologia de Lisboa Francisco Gentil E.P.E., Rua Prof. Lima Basto, 1099-023 Lisboa, PortugalClínica Universitária de EndocrinologiaFaculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1150-228 Lisboa, Portugal
| |
Collapse
|
28
|
Puppin C, Durante C, Sponziello M, Verrienti A, Pecce V, Lavarone E, Baldan F, Campese AF, Boichard A, Lacroix L, Russo D, Filetti S, Damante G. Overexpression of genes involved in miRNA biogenesis in medullary thyroid carcinomas with RET mutation. Endocrine 2014; 47:528-36. [PMID: 24569963 DOI: 10.1007/s12020-014-0204-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 02/04/2014] [Indexed: 12/17/2022]
Abstract
Abnormal expression of non-coding micro RNA (miRNA) has been described in medullary thyroid carcinoma (MTC). Expression of genes encoding factors involved in miRNA biogenesis results often deregulated in human cancer and correlates with aggressive clinical behavior. In this study, expression of four genes involved in miRNA biogenesis (DICER, DROSHA, DCGR8, and XPO5) was investigated in 54 specimens of MTC. Among them, 33 and 13 harbored RET and RAS mutations, respectively. DICER, DGCR8, and XPO5 mRNA levels were significantly overexpressed in MTC harboring RET mutations, in particular, in the presence of RET634 mutation. When MTCs with RET and RAS mutations were compared, only DGCR8 displayed a significant difference, while MTCs with RAS mutations did not show significant differences with respect to non-mutated tumors. We then attempted to correlate expression of miRNA biogenesis genes with tumor aggressiveness. According to the TNM status, MTCs were divided in two groups and compared (N0 M0 vs. N1 and/or M1): for all four genes no significant difference was detected. Cell line experiments, in which expression of a RET mutation is silenced by siRNA, suggest the existence of a causal relationship between RET mutation and overexpression of DICER, DGCR8, and XPO5 genes. These findings demonstrate that RET- but not RAS-driven tumorigenic alterations include abnormalities in the expression of some important genes involved in miRNA biogenesis that could represent new potential markers for targeted therapies in the treatment of RET-mutated MTCs aimed to restore the normal miRNA expression profile.
Collapse
Affiliation(s)
- Cinzia Puppin
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Piazzale Kolbe 4, 33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mancikova V, Inglada-Pérez L, Curras-Freixes M, de Cubas AA, Gómez Á, Letón R, Kersten I, Leandro-García LJ, Comino-Méndez I, Apellaniz-Ruiz M, Sánchez L, Cascón A, Sastre-Marcos J, García JF, Rodríguez-Antona C, Robledo M. VEGF, VEGFR3, and PDGFRB protein expression is influenced by RAS mutations in medullary thyroid carcinoma. Thyroid 2014; 24:1251-5. [PMID: 24754736 DOI: 10.1089/thy.2013.0579] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) have achieved remarkable clinical results in medullary thyroid carcinoma (MTC) patients. However, the considerable variability in patient response to treatment with TKIs remains largely unexplained. There is evidence that it could be due, at least in part, to alterations in genes associated with the disease via their effect on the expression of TKI targets. The objective of this study was to evaluate the influence of RAS mutations on the expression levels in MTC tumors of eight key TKI target proteins. METHODS We assessed by immunohistochemistry the expression of EGFR, KIT, MET, PDGFRB, VEGF, VEGFR1, VEGFR2, and VEGFR3 in a series of 84 primary MTC tumors that had previously been molecularly characterized, including 14 RAS-positive, 18 RET(M918T)-positive, and 24 RET(C634)-positive tumors, as well as 15 wild-type tumors with no mutations in the RET or RAS genes. RESULTS In contrast to RET-positive tumors, RAS-positive tumors expressed neither PDGFRB nor MET (p=0.0060 and 0.047, respectively). Similarly, fewer RAS-positive than RET-related tumors expressed VEGFR3 (p=0.00062). Finally, wild-type tumors expressed VEGF more often than both RAS- and RET-positive tumors (p=0.0082 and 0.011, respectively). CONCLUSIONS This is the first study identifying that the expression of TKI targets differs according to the presence of RAS mutations in MTC. This information could potentially be used to select the most beneficial TKI treatment for these patients.
Collapse
Affiliation(s)
- Veronika Mancikova
- 1 Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre , Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This article summarizes the major clinical, pathological, and molecular features of medullary thyroid carcinoma (MTC), based on a review of the most significant advances in our understanding of this tumor type over the last 25 years. MTC is a neuroendocrine carcinoma that shows evidence of C-cell differentiation. The tumor has a distinctive morphologic appearance, including the presence of amyloid deposits. Immunostaining for calcitonin, carcinoembryonic antigen, calcitonin gene-related peptide, and thyroid transcription factor 1 is helpful in differential diagnosis. Identification of RET mutations in familial and sporadic MTC has brought important changes in early diagnosis and treatment. Surgery remains the cornerstone of effective therapy. Understanding the molecular basis of MTC will allow identification of novel approaches for individualized treatment.
Collapse
Affiliation(s)
- Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics and Research Laboratory, Hospital Universitari Arnau de Vilanova, University of Lleida IRBLLEIDA, Av Alcalde Rovira Roure 80, Lleida, 25198, Spain,
| | | |
Collapse
|
31
|
Mancikova V, Buj R, Castelblanco E, Inglada-Pérez L, Diez A, de Cubas AA, Curras-Freixes M, Maravall FX, Mauricio D, Matias-Guiu X, Puig-Domingo M, Capel I, Bella MR, Lerma E, Castella E, Reverter JL, Peinado MÁ, Jorda M, Robledo M. DNA methylation profiling of well-differentiated thyroid cancer uncovers markers of recurrence free survival. Int J Cancer 2014; 135:598-610. [PMID: 24382797 DOI: 10.1002/ijc.28703] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/19/2013] [Indexed: 01/08/2023]
Abstract
Thyroid cancer is a heterogeneous disease with several subtypes characterized by cytological, histological and genetic alterations, but the involvement of epigenetics is not well understood. Here, we investigated the role of aberrant DNA methylation in the development of well-differentiated thyroid tumors. We performed genome-wide DNA methylation profiling in the largest well-differentiated thyroid tumor series reported to date, comprising 83 primary tumors as well as 8 samples of adjacent normal tissue. The epigenetic profiles were closely related to not only tumor histology but also the underlying driver mutation; we found that follicular tumors had higher levels of methylation, which seemed to accumulate in a progressive manner along the tumorigenic process from adenomas to carcinomas. Furthermore, tumors harboring a BRAF or RAS mutation had a larger number of hypo- or hypermethylation events, respectively. The aberrant methylation of several candidate genes potentially related to thyroid carcinogenesis was validated in an independent series of 52 samples. Furthermore, through the integration of methylation and transcriptional expression data, we identified genes whose expression is associated with the methylation status of their promoters. Finally, by integrating clinical follow-up information with methylation levels we propose etoposide-induced 2.4 and Wilms tumor 1 as novel prognostic markers related to recurrence-free survival. This comprehensive study provides insights into the role of DNA methylation in well-differentiated thyroid cancer development and identifies novel markers associated with recurrence-free survival.
Collapse
Affiliation(s)
- Veronika Mancikova
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
He W, Qi B, Zhou Q, Lu C, Huang Q, Xian L, Chen M. Key genes and pathways in thyroid cancer based on gene set enrichment analysis. Oncol Rep 2013; 30:1391-7. [PMID: 23784086 DOI: 10.3892/or.2013.2557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
Abstract
The incidence of thyroid cancer and its associated morbidity has shown the most rapid increase among all cancers since 1982, but the mechanisms involved in thyroid cancer, particularly significant key genes induced in thyroid cancer, remain undefined. In many studies, gene probes have been used to search for key genes involved in causing and facilitating thyroid cancer. As a result, many possible virulence genes and pathways have been identified. However, these studies lack a case contrast for selecting the most possible virulence genes and pathways, as well as conclusive results with which to clarify the mechanisms of cancer development. In the present study, we used gene set enrichment and meta-analysis to select key genes and pathways. Based on gene set enrichment, we identified 5 downregulated and 4 upregulated mixed pathways in 6 tissue datasets. Based on the meta-analysis, there were 17 common pathways in the tissue datasets. One pathway, the p53 signaling pathway, which includes 13 genes, was identified by both the gene set enrichment analysis and meta-analysis. Genes are important elements that form key pathways. These pathways can induce the development of thyroid cancer later in life. The key pathways and genes identified in the present study can be used in the next stage of research, which will involve gene elimination and other methods of experimentation.
Collapse
Affiliation(s)
- Wenwu He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|