1
|
Zhou Q, Guo Y, Tian Z, Qiu Y, Liu Y, Liu Q, Liu Y, Yang Y, Shi L, Li X, Gao G, Fan S, Zeng Z, Xiong W, Tan M, Li G, Zhang W. PLUNC inhibits invasion and metastasis in nasopharyngeal carcinoma by inhibiting NLRP3 inflammasome activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167352. [PMID: 39004379 DOI: 10.1016/j.bbadis.2024.167352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor that occurs in the nasopharynx. Palate, lung, and nasal epithelium clone (PLUNC) has been identified as an early secreted protein that is specifically expressed in the nasopharynx. The aim of this study was to determine the role and mechanism of PLUNC in NPC. We used mRNA sequencing (seq) combined with ribosome-nascent chain complex (RNC)-seq to determine the biological role of PLUNC. The expression of epithelial-to-mesenchymal transition (EMT)-related molecules was detected by western blotting. Then, cell migration and invasion were detected by wound healing and Transwell chamber assays. NPC cells were injected into the tail vein of nude mice to explore the biological role of PLUNC in vivo. The sequencing results showed that PLUNC inhibited the progression of NPC and its expression was correlated with that of NOD-like receptors. Experiments confirmed that PLUNC inhibited the invasion and metastasis of NPC cells by promoting the ubiquitination degradation of NLRP3. PLUNC overexpression in combination with the treatment by MCC950, an inhibitor of NLRP3 inflammasome activation, was most effective in inhibiting NPC invasion and metastasis. In vivo experiments also confirmed that the combination of PLUNC overexpression and MCC950 treatment effectively inhibited the lung metastasis of NPC cells. In summary, our research suggested that PLUNC inhibited the invasion and metastasis of NPC by inhibiting NLRP3 inflammasome activation, and targeting the PLUNC-NLRP3 inflammasome axis could provide a new strategy for the diagnosis and treatment of NPC patients.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yilin Guo
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Yanbing Qiu
- Clinical Laboratory, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Liu
- Department of Clinical Laboratory, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan, China
| | - Qingluan Liu
- Changsha Hospital for Maternal and Child Health Care, Changsha, Hunan, China
| | - Yijun Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuqin Yang
- Shenzhen Maternity & Child Healthcare Hospital Clinical Laboratory, Shenzhen, Guangdong, China
| | - Lei Shi
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Ge Gao
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taiwan; Research Center for Cancer Biology, China Medical University, Taiwan
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Medical Laboratory Science, Xiangya Medical College, Central South University, Changsha, Hunan, China.
| |
Collapse
|
2
|
Di YP, Kuhn JM, Mangoni ML. Lung antimicrobial proteins and peptides: from host defense to therapeutic strategies. Physiol Rev 2024; 104:1643-1677. [PMID: 39052018 PMCID: PMC11495187 DOI: 10.1152/physrev.00039.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
Representing severe morbidity and mortality globally, respiratory infections associated with chronic respiratory diseases, including complicated pneumonia, asthma, interstitial lung disease, and chronic obstructive pulmonary disease, are a major public health concern. Lung health and the prevention of pulmonary disease rely on the mechanisms of airway surface fluid secretion, mucociliary clearance, and adequate immune response to eradicate inhaled pathogens and particulate matter from the environment. The antimicrobial proteins and peptides contribute to maintaining an antimicrobial milieu in human lungs to eliminate pathogens and prevent them from causing pulmonary diseases. The predominant antimicrobial molecules of the lung environment include human α- and β-defensins and cathelicidins, among numerous other host defense molecules with antimicrobial and antibiofilm activity such as PLUNC (palate, lung, and nasal epithelium clone) family proteins, elafin, collectins, lactoferrin, lysozymes, mucins, secretory leukocyte proteinase inhibitor, surfactant proteins SP-A and SP-D, and RNases. It has been demonstrated that changes in antimicrobial molecule expression levels are associated with regulating inflammation, potentiating exacerbations, pathological changes, and modifications in chronic lung disease severity. Antimicrobial molecules also display roles in both anticancer and tumorigenic effects. Lung antimicrobial proteins and peptides are promising alternative therapeutics for treating and preventing multidrug-resistant bacterial infections and anticancer therapies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jenna Marie Kuhn
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Di YP, Mou H. Airway Serous Cells: A Comparative Study of Spatial Distribution and Abundance among Species. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10013. [PMID: 39220634 PMCID: PMC11361305 DOI: 10.35534/jrbtm.2024.10013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The conducting airways of the respiratory system play a crucial role in filtering, humidifying, and directing air into the lungs. Among the specialized cell types within these airways, airway serous cells are notable for their secretion of watery, protein-rich fluids and enzymes, which contribute to maintaining airway surface liquid homeostasis and defending against pathogens. However, the distribution and abundance of serous cells across different species in the conducting airways remain poorly understood. In this study, we addressed this gap by investigating the spatial distribution of the airway serous cell-specific marker BPI fold containing family A member 1 (BPIFA1) in humans, pigs, and mice. Our findings demonstrate significant variations in the distribution and abundance of serous cells among these species, potentially reflecting their different respiratory anatomy and evolutionary adaptations to diverse environmental challenges and respiratory demands. In humans and pigs, airway serous cells are predominantly found in the submucosal glands of the trachea and segmental bronchi, frequently overlapping with lysozyme-positive secretory cells. In contrast, rodents like mice exhibit a distinct pattern where serous cells are scarce in submucosal glands. Instead, rodent serous cells are primarily located at the epithelial surface from the trachea to the main bronchi, where many co-express the Club cell-specific protein SCGB1A1. The abundance of serous cells diminishes progressively in the intrapulmonary airways. Given that rodent models are widely utilized in respiratory research, understanding anatomical and cellular differences in airway serous cells is critical for interpreting experimental outcomes and translating findings to human respiratory diseases and therapeutic strategies. This comparative analysis enhances our understanding of airway biology across species and informs the selection and interpretation of animal models in respiratory studies.
Collapse
Affiliation(s)
- Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
4
|
Juaiti M, Feng Y, Tang Y, Liang B, Zha L, Yu Z. Integrated bioinformatics analysis and experimental animal models identify a robust biomarker and its correlation with the immune microenvironment in pulmonary arterial hypertension. Heliyon 2024; 10:e29587. [PMID: 38660271 PMCID: PMC11040037 DOI: 10.1016/j.heliyon.2024.e29587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Background Pulmonary arterial hypertension (PAH) represents a substantial global risk to human health. This study aims to identify diagnostic biomarkers for PAH and assess their association with the immune microenvironment through the utilization of sophisticated bioinformatics techniques. Methods Based on two microarray datasets, differentially expressed genes (DEGs) were detected, and hub genes underwent a sequence of machine learning analyses. After pathways associated with PAH were assessed by gene enrichment analysis, the identified genes were validated using external datasets and confirmed in a monocrotaline (MCT)-induced rat model. In addition, three algorithms were employed to estimate the proportions of various immune cell types, and the link between hub genes and immune cells was substantiated. Results Using SVM, LASSO, and WGCNA, we identified seven hub genes, including (BPIFA1, HBA2, HBB, LOC441081, PI15, S100A9, and WIF1), of which only BPIFA1 remained stable in the external datasets and was validated in an MCT-induced rat model. Furthermore, the results of the functional enrichment analysis established a link between PAH and both metabolism and the immune system. Correlation assessment showed that BPIFA1 expression in the MCP-counter algorithm was negatively associated with various immune cell types, positively correlated with macrophages in the ssGSEA algorithm, and correlated with M1 and M2 macrophages in the CIBERSORT algorithm. Conclusion BPIFA1 serves as a modulator of PAH, with the potential to impact the immune microenvironment and disease progression, possibly through its regulatory influence on both M1 and M2 macrophages.
Collapse
Affiliation(s)
- Mukamengjiang Juaiti
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yilu Feng
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Yiyang Tang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Benhui Liang
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Lihuang Zha
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| | - Zaixin Yu
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
5
|
Ahmad S, Wrennall JA, Goriounova AS, Sekhri M, Iskarpatyoti JA, Ghosh A, Abdelwahab SH, Voeller A, Rai M, Mahida RY, Krajewski K, Ignar DM, Greenbaum A, Moran TP, Tilley SL, Thickett DR, Sassano MF, Tarran R. Specific Inhibition of Orai1-mediated Calcium Signalling Resolves Inflammation and Clears Bacteria in an Acute Respiratory Distress Syndrome Model. Am J Respir Crit Care Med 2024; 209:703-715. [PMID: 37972349 PMCID: PMC10945054 DOI: 10.1164/rccm.202308-1393oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Rationale: Acute respiratory distress syndrome (ARDS) has an unacceptably high mortality rate (35%) and is without effective therapy. Orai1 is a Ca2+ channel involved in store-operated Ca2+ entry (SOCE), a process that exquisitely regulates inflammation. Orai1 is considered a druggable target, but no Orai1-specific inhibitors exist to date. Objectives: To evaluate whether ELD607, a first-in-class Orai1 antagonist, can treat ARDS caused by bacterial pneumonia in preclinical models. Methods: ELD607 pharmacology was evaluated in HEK293T cells and freshly isolated immune cells from patients with ARDS. A murine acute lung injury model caused by bacterial pneumonia was then used: mice were infected with Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant S. aureus, or multidrug-resistant P. aeruginosa and then treated with ELD607 intranasally. Measurements and Main Results: ELD607 specifically inhibited SOCE in HEK293T cells with a half-maximal inhibitory concentration of 9 nM. ELD607 was stable in ARDS airway secretions and inhibited SOCE in ARDS immune cells. In vivo, inhaled ELD607 significantly reduced neutrophilia and improved survival. Surprisingly, Orai1 inhibition by ELD607 caused a significant reduction in lung bacteria, including methicillin-resistant S. aureus. ELD607 worked as an immunomodulator that reduced cytokine levels, reduced neutrophilia, and promoted macrophage-mediated resolution of inflammation and clearance of bacteria. Indeed, when alveolar macrophages were depleted with inhaled clodronate, ELD607 was no longer able to resolve inflammation or clear bacteria. Conclusions: These data indicate that specific Orai1 inhibition by ELD607 may be a novel approach to reduce multiorgan inflammation and treat antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | - Mani Rai
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Rahul Y. Mahida
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | | | | | - Alon Greenbaum
- Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina; and
| | - Timothy P. Moran
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stephen L. Tilley
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David R. Thickett
- Birmingham Acute Care Research Group, University of Birmingham, Birmingham, United Kingdom
| | - M. Flori Sassano
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| | - Robert Tarran
- Department of Cell Biology and Physiology
- Eldec Pharmaceuticals, Chapel Hill, North Carolina
| |
Collapse
|
6
|
Surekha S, Lamiyan AK, Gupta V. Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies. Indian J Microbiol 2024; 64:20-35. [PMID: 38468748 PMCID: PMC10924852 DOI: 10.1007/s12088-023-01138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/03/2023] [Indexed: 03/13/2024] Open
Abstract
Antimicrobial resistance (AMR) is one of the major leading causes of death around the globe. Present treatment pipelines are insufficient to overcome the critical situation. Prominent biofilm forming human pathogens which can thrive in infection sites using adaptive features results in biofilm persistence. Considering the present scenario, prudential investigations into the mechanisms of resistance target them to improve antibiotic efficacy is required. Regarding this, developing newer and effective treatment options using edge cutting technologies in medical research is the need of time. The reasons underlying the adaptive features in biofilm persistence have been centred on different metabolic and physiological aspects. The high tolerance levels against antibiotics direct researchers to search for novel bioactive molecules that can help combat the problem. In view of this, the present review outlines the focuses on an opportunity of different strategies which are in testing pipeline can thus be developed into products ready to use.
Collapse
Affiliation(s)
- Saumya Surekha
- Department of Biochemistry, Panjab University, Chandigarh, India
| | | | - Varsha Gupta
- GMCH: Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
7
|
Basher ARMA, Hallinan C, Lee K. Heterogeneity-Preserving Discriminative Feature Selection for Subtype Discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540686. [PMID: 38187596 PMCID: PMC10769187 DOI: 10.1101/2023.05.14.540686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The discovery of subtypes is pivotal for disease diagnosis and targeted therapy, considering the diverse responses of different cells or patients to specific treatments. Exploring the heterogeneity within disease or cell states provides insights into disease progression mechanisms and cell differentiation. The advent of high-throughput technologies has enabled the generation and analysis of various molecular data types, such as single-cell RNA-seq, proteomic, and imaging datasets, at large scales. While presenting opportunities for subtype discovery, these datasets pose challenges in finding relevant signatures due to their high dimensionality. Feature selection, a crucial step in the analysis pipeline, involves choosing signatures that reduce the feature size for more efficient downstream computational analysis. Numerous existing methods focus on selecting signatures that differentiate known diseases or cell states, yet they often fall short in identifying features that preserve heterogeneity and reveal subtypes. To identify features that can capture the diversity within each class while also maintaining the discrimination of known disease states, we employed deep metric learning-based feature embedding to conduct a detailed exploration of the statistical properties of features essential in preserving heterogeneity. Our analysis revealed that features with a significant difference in interquartile range (IQR) between classes possess crucial subtype information. Guided by this insight, we developed a robust statistical method, termed PHet (Preserving Heterogeneity) that performs iterative subsampling differential analysis of IQR and Fisher's method between classes, identifying a minimal set of heterogeneity-preserving discriminative features to optimize subtype clustering quality. Validation using public single-cell RNA-seq and microarray datasets showcased PHet's effectiveness in preserving sample heterogeneity while maintaining discrimination of known disease/cell states, surpassing the performance of previous outlier-based methods. Furthermore, analysis of a single-cell RNA-seq dataset from mouse tracheal epithelial cells revealed, through PHet-based features, the presence of two distinct basal cell subtypes undergoing differentiation toward a luminal secretory phenotype. Notably, one of these subtypes exhibited high expression of BPIFA1. Interestingly, previous studies have linked BPIFA1 secretion to the emergence of secretory cells during mucociliary differentiation of airway epithelial cells. PHet successfully pinpointed the basal cell subtype associated with this phenomenon, a distinction that pre-annotated markers and dispersion-based features failed to make due to their admixed feature expression profiles. These findings underscore the potential of our method to deepen our understanding of the mechanisms underlying diseases and cell differentiation and contribute significantly to personalized medicine.
Collapse
Affiliation(s)
- Abdur Rahman M. A. Basher
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Caleb Hallinan
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Kwonmoo Lee
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Wormwood KL, Charette L, Ryan JP, Darie CC, Woods AG. A Proteomics Investigation of Salivary Profiles as Potential Biomarkers for Autism Spectrum Disorder (ASD). Protein J 2023; 42:607-620. [PMID: 37566278 DOI: 10.1007/s10930-023-10146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects approximately 1/68 children, with a more recent study suggesting numbers as high as 1/36. According to Diagnostic and Statistical Manual of Mental Disorders, the etiology of ASD is unknown and diagnosis of this disorder is behavioral. There is currently no biomarker signature for ASD, however, identifying a biomarker signature is crucial as it would aid in diagnosis, identifying treatment targets, monitoring treatments, and identifying the etiology of the disorder. Here we used nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to investigate the saliva from individuals with ASD and matched controls in a 14 vs 14 study. We found numerous proteins to have statistically significant dysregulations, including lactotransferrin, transferrin, polymeric immunoglobulin receptor, Ig A L, Ig J chain, mucin 5 AC, and lipocalin 1 isoform X1. These findings are consistent with previous studies by our lab, and others, and point to dysregulations in the immune system, lipid metabolism and/or transport, and gastrointestinal disturbances, which are common and reoccurring topics in ASD research.
Collapse
Affiliation(s)
- Kelly L Wormwood
- Biochemistry & Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave, Box 5810, Potsdam, NY, 13699, USA
| | - Laci Charette
- Center for Neurobehavioral Health and Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Jeanne P Ryan
- Center for Neurobehavioral Health and Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| | - Costel C Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave, Box 5810, Potsdam, NY, 13699, USA.
| | - Alisa G Woods
- Biochemistry & Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, 8 Clarkson Ave, Box 5810, Potsdam, NY, 13699, USA
- Center for Neurobehavioral Health and Department of Psychology, SUNY Plattsburgh, Plattsburgh, NY, USA
| |
Collapse
|
9
|
Kalló G, Bertalan PM, Márton I, Kiss C, Csősz É. Salivary Chemical Barrier Proteins in Oral Squamous Cell Carcinoma-Alterations in the Defense Mechanism of the Oral Cavity. Int J Mol Sci 2023; 24:13657. [PMID: 37686462 PMCID: PMC10487546 DOI: 10.3390/ijms241713657] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most frequent types of head and neck cancer. Despite the genetic and environmental risk factors, OSCC is also associated with microbial infections and/or dysbiosis. The secreted saliva serves as the chemical barrier of the oral cavity and, since OSCC can alter the protein composition of saliva, our aim was to analyze the effect of OSCC on the salivary chemical barrier proteins. Publicly available datasets regarding the analysis of salivary proteins from patients with OSCC and controls were collected and examined in order to identify differentially expressed chemical barrier proteins. Network analysis and gene ontology (GO) classification of the differentially expressed chemical barrier proteins were performed as well. One hundred and twenty-seven proteins showing different expression pattern between the OSCC and control groups were found. Protein-protein interaction networks of up- and down-regulated proteins were constructed and analyzed. The main hub proteins (IL-6, IL-1B, IL-8, TNF, APOA1, APOA2, APOB, APOC3, APOE, and HP) were identified and the enriched GO terms were examined. Our study highlighted the importance of the chemical barrier of saliva in the development of OSCC.
Collapse
Affiliation(s)
- Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Petra Magdolna Bertalan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ildikó Márton
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary;
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; (P.M.B.); (I.M.); (É.C.)
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
10
|
Jakkampudi T, Lin Q, Mitra S, Vijai A, Qin W, Kang A, Chen J, Ryan E, Wang R, Gong Y, Heinrich F, Song J, Di YP(P, Tristram-Nagle S. Lung SPLUNC1 Peptide Derivatives in the Lipid Membrane Headgroup Kill Gram-Negative Planktonic and Biofilm Bacteria. Biomacromolecules 2023; 24:2804-2815. [PMID: 37223955 PMCID: PMC10265666 DOI: 10.1021/acs.biomac.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Indexed: 05/25/2023]
Abstract
SPLUNC1 (short palate lung and nasal epithelial clone 1) is a multifunctional host defense protein found in human respiratory tract with antimicrobial properties. In this work, we compare the biological activities of four SPLUNC1 antimicrobial peptide (AMP) derivatives using paired clinical isolates of the Gram-negative (G(-)) bacteria Klebsiella pneumoniae, obtained from 11 patients with/without colistin resistance. Secondary structural studies were carried out to study interactions between the AMPs and lipid model membranes (LMMs) utilizing circular dichroism (CD). Two peptides were further characterized using X-ray diffuse scattering (XDS) and neutron reflectivity (NR). A4-153 displayed superior antibacterial activity in both G(-) planktonic cultures and biofilms. NR and XDS revealed that A4-153 (highest activity) is located primarily in membrane headgroups, while A4-198 (lowest activity) is located in hydrophobic interior. CD revealed that A4-153 is helical, while A4-198 has little helical character, demonstrating that helicity and efficacy are correlated in these SPLUNC1 AMPs.
Collapse
Affiliation(s)
- Tanvi Jakkampudi
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Qiao Lin
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Saheli Mitra
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Aishwarya Vijai
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Weiheng Qin
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ann Kang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Jespar Chen
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Emma Ryan
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Runxuan Wang
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yuqi Gong
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Frank Heinrich
- NIST
Center for Neutron Research, National Institute
of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Junming Song
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Yuan-Pu (Peter) Di
- Department
of Environmental and Occupational Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, Pennsylvania 15261, United States
| | - Stephanie Tristram-Nagle
- Biological
Physics, Physics Department, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
11
|
Abdelhamid AG, Yousef AE. Combating Bacterial Biofilms: Current and Emerging Antibiofilm Strategies for Treating Persistent Infections. Antibiotics (Basel) 2023; 12:1005. [PMID: 37370324 DOI: 10.3390/antibiotics12061005] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilms are intricate multicellular structures created by microorganisms on living (biotic) or nonliving (abiotic) surfaces. Medically, biofilms often lead to persistent infections, increased antibiotic resistance, and recurrence of infections. In this review, we highlighted the clinical problem associated with biofilm infections and focused on current and emerging antibiofilm strategies. These strategies are often directed at disrupting quorum sensing, which is crucial for biofilm formation, preventing bacterial adhesion to surfaces, impeding bacterial aggregation in viscous mucus layers, degrading the extracellular polymeric matrix, and developing nanoparticle-based antimicrobial drug complexes which target persistent cells within the biofilm core. It is important to acknowledge, however, that the use of antibiofilm agents faces obstacles, such as limited effectiveness in vivo, potential cytotoxicity to host cells, and propensity to elicit resistance in targeted biofilm-forming microbes. Emerging next generation antibiofilm strategies, which rely on multipronged approaches, were highlighted, and these benefit from current advances in nanotechnology, synthetic biology, and antimicrobial drug discovery. The assessment of current antibiofilm mitigation approaches, as presented here, could guide future initiatives toward innovative antibiofilm therapeutic strategies. Enhancing the efficacy and specificity of some emerging antibiofilm strategies via careful investigations, under conditions that closely mimic biofilm characteristics within the human body, could bridge the gap between laboratory research and practical application.
Collapse
Affiliation(s)
- Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, 105 Biological Sciences Building, 484 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
12
|
Nunzi E, Mezzasoma L, Bellezza I, Zelante T, Orvietani P, Coata G, Giardina I, Sagini K, Manni G, Di Michele A, Gargaro M, Talesa VN, Di Renzo GC, Fallarino F, Romani R. Microbiota-Associated HAF-EVs Regulate Monocytes by Triggering or Inhibiting Inflammasome Activation. Int J Mol Sci 2023; 24:ijms24032527. [PMID: 36768851 PMCID: PMC9916438 DOI: 10.3390/ijms24032527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
In pregnancy, human amniotic fluid extracellular vesicles (HAF-EVs) exert anti-inflammatory effects on T cells and on monocytes, supporting their immunoregulatory roles. The specific mechanisms are still not completely defined. The aim of this study was to investigate the ability of HAF-EVs, isolated from pregnant women who underwent amniocentesis and purified by gradient ultracentrifugation, to affect inflammasome activation in the human monocytes. Proteomic studies revealed that HAF-EV samples expressed several immunoregulatory molecules as well as small amounts of endotoxin. Surprisingly, metagenomic analysis shows the presence of specific bacterial strain variants associated with HAF-EVs as potential sources of the endotoxin. Remarkably, we showed that a single treatment of THP-1 cells with HAF-EVs triggered inflammasome activation, whereas the same treatment followed by LPS and ATP sensitization prevented inflammasome activation, a pathway resembling monocyte refractories. A bioinformatics analysis of microbiota-HAF-EVs functional pathways confirmed the presence of enzymes for endotoxin biosynthesis as well as others associated with immunoregulatory functions. Overall, these data suggest that HAF-EVs could serve as a source of the isolation of a specific microbiota during early pregnancy. Moreover, HAF-EVs could act as a novel system to balance immune training and tolerance by modulating the inflammasome in monocytes or other cells.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Letizia Mezzasoma
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Teresa Zelante
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Pierluigi Orvietani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Giuliana Coata
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Irene Giardina
- Department of Obstetrics and Gynecology, University Hospital of Perugia, Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Krizia Sagini
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, 0379 Oslo, Norway
| | - Giorgia Manni
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123 Perugia, Italy
| | - Marco Gargaro
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Vincenzo N. Talesa
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
| | - Gian Carlo Di Renzo
- Department of Obstetrics, Gynecology and Perinatology IM Sechenov First State University, 117997 Moscow, Russia
| | - Francesca Fallarino
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
- Correspondence: (F.F.); (R.R.)
| | - Rita Romani
- Department of Medicine and Surgery, University of Perugia, Polo Unico Sant’Andrea delle Fratte, P.e Lucio Severi 1, 06132 Perugia, Italy
- Correspondence: (F.F.); (R.R.)
| |
Collapse
|
13
|
Mihalj H, Butković J, Tokić S, Štefanić M, Kizivat T, Bujak M, Baus Lončar M, Mihalj M. Expression of Oxidative Stress and Inflammation-Related Genes in Nasal Mucosa and Nasal Polyps from Patients with Chronic Rhinosinusitis. Int J Mol Sci 2022; 23:5521. [PMID: 35628331 PMCID: PMC9145877 DOI: 10.3390/ijms23105521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a prevalent, multifaceted inflammatory condition affecting the nasal cavity and the paranasal sinuses, frequently accompanied by formation of nasal polyps (CRSwNP). This apparently uniform clinical entity is preceded by heterogeneous changes in cellular and molecular patterns, suggesting the presence of multiple CRS endotypes and a diverse etiology. Alterations of the upper airway innate defense mechanisms, including antimicrobial and antioxidant capacity, have been implicated in CRSwNP etiology. The aim of this study was to investigate mRNA expression patterns of antioxidative enzymes, including superoxide dismutase (SOD) and peroxiredoxin-2 (PRDX2), and innate immune system defense players, namely the bactericidal/permeability-increasing fold-containing family A, member 1 (BPIFA1) and PACAP family members, particularly adenylate-cyclase-activating polypeptide receptor 1 (ADCYAP1) in nasal mucosa and nasal polyps from CRSwNP patients. Additional stratification based on age, sex, allergic comorbidity, and disease severity was applied. The results showed that ADCYAP1, BPIFA1, and PRDX2 transcripts are differentially expressed in nasal mucosa and scale with radiologically assessed disease severity in CRSwNP patients. Sinonasal transcriptome is not associated with age, sex, and smoking in CRSwNP. Surgical and postoperative corticosteroid (CS) therapy improves endoscopic appearance of the mucosa, but variably reverses target gene expression patterns in the nasal cavity of CRSwNP patients. Transcriptional cross-correlations analysis revealed an increased level of connectedness among differentially expressed genes under inflammatory conditions and restoration of basic network following CS treatment. Although results of the present study imply a possible engagement of ADCYAP1 and BPIFA1 as biomarkers for CRSwNP, a more profound study taking into account disease severity and CRSwNP endotypes prior to the treatment would provide additional information on their sensitivity.
Collapse
Affiliation(s)
- Hrvoje Mihalj
- Clinical Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Osijek, HR-31000 Osijek, Croatia;
- Department of Otorhinolaryngology, Maxillofacial Surgery Faculty of Medicine University of Osijek, HR-31000 Osijek, Croatia;
| | - Josip Butković
- Department of Otorhinolaryngology, Maxillofacial Surgery Faculty of Medicine University of Osijek, HR-31000 Osijek, Croatia;
- Department of Oral and Maxillofacial Surgery, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Stana Tokić
- Department of Laboratory Medicine and Pharmacy, Faculty of Medicine, University of Osijek, HR-31000 Osijek, Croatia;
| | - Mario Štefanić
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, HR-31000 Osijek, Croatia; (M.Š.); (T.K.)
| | - Tomislav Kizivat
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, HR-31000 Osijek, Croatia; (M.Š.); (T.K.)
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Maro Bujak
- Department of Materials Chemistry, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia;
| | - Mirela Baus Lončar
- Department of Molecular Medicine, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, HR-31000 Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine University of Osijek, HR-31000 Osijek, Croatia
| |
Collapse
|
14
|
Wang G, Nauseef WM. Neutrophil dysfunction in the pathogenesis of cystic fibrosis. Blood 2022; 139:2622-2631. [PMID: 35213685 PMCID: PMC9053701 DOI: 10.1182/blood.2021014699] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) figure prominently in host defense against infection and in noninfectious inflammation. Mobilized early in an inflammatory response, PMNs mediate immediate cellular defense against microbes and orchestrate events that culminate in cessation of inflammation and restoration of homeostasis. Failure to terminate the inflammatory response and its causes can fuel exuberant inflammation characteristic of many human diseases, including cystic fibrosis (CF), an autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator. CF affects multiple end organs, with persistent bacterial infection and chronic neutrophilic inflammation in airways predominating the clinical picture. To match the diverse microbial challenges that they may encounter, PMNs possess a variety of antimicrobial systems to slow or kill invading microorganisms confined in their phagosomes. Prominent among PMN defense systems is their ability to generate hypochlorous acid, a potent microbicide, by reacting oxidants generated by the NADPH oxidase with myeloperoxidase (MPO) released from azurophilic granules in the presence of chloride (Cl-). Products of the MPO-H2O2-Cl system oxidize susceptible biomolecules and support robust antimicrobial action against many, but not all, potential human pathogens. Underscoring that the MPO-H2O2-Cl system is integral to optimal host defense and proper regulation of inflammation, individuals with defects in any component of this system, as seen in chronic granulomatous disease or MPO deficiency, incur increased rates or severity of infection and signs of dysregulated inflammatory responses. We focus attention in this review on the molecular basis for and the clinical consequences of defects in the MPO-H2O2-Cl system because of the compromised Cl transport seen in CF. We will discuss first how the MPO-H2O2-Cl system in healthy PMNs participates in host defense and resolution of inflammation and then review how a defective MPO-H2O2-Cl system contributes to the increased susceptibility to infection and dysregulated inflammation associated with the clinical manifestations of CF.
Collapse
Affiliation(s)
- Guoshun Wang
- Department of Microbiology, Immunology, and Parasitology, and
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA
| | - William M Nauseef
- Inflammation Program, Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
- Veterans Administration Medical Center, Iowa City, IA
| |
Collapse
|
15
|
Escobar‐Salom M, Torrens G, Jordana‐Lluch E, Oliver A, Juan C. Mammals' humoral immune proteins and peptides targeting the bacterial envelope: from natural protection to therapeutic applications against multidrug‐resistant
Gram
‐negatives. Biol Rev Camb Philos Soc 2022; 97:1005-1037. [PMID: 35043558 PMCID: PMC9304279 DOI: 10.1111/brv.12830] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Mammalian innate immunity employs several humoral ‘weapons’ that target the bacterial envelope. The threats posed by the multidrug‐resistant ‘ESKAPE’ Gram‐negative pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are forcing researchers to explore new therapeutic options, including the use of these immune elements. Here we review bacterial envelope‐targeting (peptidoglycan and/or membrane‐targeting) proteins/peptides of the mammalian immune system that are most likely to have therapeutic applications. Firstly we discuss their general features and protective activity against ESKAPE Gram‐negatives in the host. We then gather, integrate, and discuss recent research on experimental therapeutics harnessing their bactericidal power, based on their exogenous administration and also on the discovery of bacterial and/or host targets that improve the performance of this endogenous immunity, as a novel therapeutic concept. We identify weak points and knowledge gaps in current research in this field and suggest areas for future work to obtain successful envelope‐targeting therapeutic options to tackle the challenge of antimicrobial resistance.
Collapse
Affiliation(s)
- María Escobar‐Salom
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Gabriel Torrens
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Elena Jordana‐Lluch
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Antonio Oliver
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| | - Carlos Juan
- Department of Microbiology University Hospital Son Espases‐Health Research Institute of the Balearic Islands (IdISBa) Carretera de Valldemossa 79 Palma Balearic Islands 07010 Spain
| |
Collapse
|
16
|
Lin Q, Pilewski JM, Di YP. Acidic Microenvironment Determines Antibiotic Susceptibility and Biofilm Formation of Pseudomonas aeruginosa. Front Microbiol 2021; 12:747834. [PMID: 34867864 PMCID: PMC8640179 DOI: 10.3389/fmicb.2021.747834] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/20/2021] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is the most prevalent bacterial species that contribute to cystic fibrosis (CF) respiratory failure. The impaired function of CF transmembrane conductance regulator leads to abnormal epithelial Cl-/HCO3 - transport and acidification of airway surface liquid. However, it remains unclear why the CF lung is most commonly infected by Pseudomonas aeruginosa versus other pathogens. We carried out studies to investigate if lower pH helps Pseudomonas aeruginosa adapt and thrive in the CF-like acidic lung environment. Our results revealed that Pseudomonas aeruginosa generally forms more biofilm, induces antibiotic resistance faster in acidic conditions, and can be reversed by returning the acidic environment to physiologically neutral conditions. Pseudomonas aeruginosa appears to be highly adaptive to the CF-like acidic pH environment. By studying the effects of an acidic environment on bacterial response, we may provide a new therapeutic option in preventing chronic Pseudomonas aeruginosa infection and colonization.
Collapse
Affiliation(s)
- Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph M Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Chebii VJ, Mpolya EA, Oyola SO, Kotze A, Entfellner JBD, Mutuku JM. Genome Scan for Variable Genes Involved in Environmental Adaptations of Nubian Ibex. J Mol Evol 2021; 89:448-457. [PMID: 34142199 PMCID: PMC8318948 DOI: 10.1007/s00239-021-10015-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 06/05/2021] [Indexed: 11/04/2022]
Abstract
The Nubian ibex (Capra nubiana) is a wild goat species that inhabits the Sahara and Arabian deserts and is adapted to extreme ambient temperatures, intense solar radiation, and scarcity of food and water resources. To investigate desert adaptation, we explored the possible role of copy number variations (CNVs) in the evolution of Capra species with a specific focus on the environment of Capra nubiana. CNVs are structural genomic variations that have been implicated in phenotypic differences between species and could play a role in species adaptation. CNVs were inferred from Capra nubiana sequence data relative to the domestic goat reference genome using read-depth approach. We identified 191 CNVs overlapping with protein-coding genes mainly involved in biological processes such as innate immune response, xenobiotic metabolisms, and energy metabolisms. We found copy number variable genes involved in defense response to viral infections (Cluster of Differentiation 48, UL16 binding protein 3, Natural Killer Group 2D ligand 1-like, and Interferon-induced transmembrane protein 3), possibly suggesting their roles in Nubian ibex adaptations to viral infections. Additionally, we found copy number variable xenobiotic metabolism genes (carboxylesterase 1, Cytochrome P450 2D6, Glutathione S-transferase Mu 4, and UDP Glucuronosyltransferase-2B7), which are probably an adaptation of Nubian ibex to desert diets that are rich in plant secondary metabolites. Collectively, this study's results advance our understanding of CNVs and their possible roles in the adaptation of Nubian ibex to its environment. The copy number variable genes identified in Nubian ibex could be considered as subjects for further functional characterizations.
Collapse
Affiliation(s)
- Vivien J Chebii
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania.
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya.
| | - Emmanuel A Mpolya
- School of Life Science and Bioengineering, Nelson Mandela Africa Institution of Science and Technology, P.O. Box 447, Arusha, Tanzania
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Antoinette Kotze
- South African National Biodiversity Institute, Pretoria, South Africa
- Department of Genetics, University of the Free State, Bloemfontein, South Africa
| | | | - J Musembi Mutuku
- Biosciences Eastern and Central Africa - International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, Kenya
- Central and West African Virus Epidemiology (WAVE), Pôle Scientifique et d'Innovation de Bingerville, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
18
|
Vandewege MW, Sotero-Caio CG, Phillips CD. Positive Selection and Gene Expression Analyses from Salivary Glands Reveal Discrete Adaptations within the Ecologically Diverse Bat Family Phyllostomidae. Genome Biol Evol 2021; 12:1419-1428. [PMID: 32697843 PMCID: PMC7487161 DOI: 10.1093/gbe/evaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
The leaf-nosed bats (Phyllostomidae) are outliers among chiropterans with respect to the unusually high diversity of dietary strategies within the family. Salivary glands, owing to their functions and high ultrastructural variability among lineages, are proposed to have played an important role during the phyllostomid radiation. To identify genes underlying salivary gland functional diversification, we sequenced submandibular gland transcriptomes from phyllostomid species representative of divergent dietary strategies. From the assembled transcriptomes, we performed an array of selection tests and gene expression analyses to identify signatures of adaptation. Overall, we identified an enrichment of immunity-related gene ontology terms among 53 genes evolving under positive selection. Lineage-specific selection tests revealed several endomembrane system genes under selection in the vampire bat. Many genes that respond to insulin were under selection and differentially expressed genes pointed to modifications of amino acid synthesis pathways in plant-visitors. Results indicate salivary glands have diversified in various ways across a functional diverse clade of mammals in response to niche specializations.
Collapse
|
19
|
Liu Q, Wang Z, Zhang W. The Multifunctional Roles of Short Palate, Lung, and Nasal Epithelium Clone 1 in Regulating Airway Surface Liquid and Participating in Airway Host Defense. J Interferon Cytokine Res 2021; 41:139-148. [PMID: 33885339 DOI: 10.1089/jir.2020.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Short palate, lung, and nasal epithelium clone 1 (SPLUNC1) is a kind of secretory protein, and gets expressed abundantly in normal respiratory epithelium of humans. As a natural immune molecule, SPLUNC1 is proved to be involved in inflammatory response and airway host defense. This review focuses on summarizing and discussing the role of SPLUNC1 in regulating airway surface liquid (ASL) and participating in airway host defense. PubMed and MEDLINE were used for searching and identifying the data in this review. The domain of bactericidal/permeability-increasing protein in SPLUNC1 and the α-helix, α4, are essential for SPLUNC1 to exert biological activities. As a natural innate immune molecule, SPLUNC1 plays a significant role in inflammatory response and airway host defense. Its special expression patterns are not only observed in physiological conditions, but also in some respiratory diseases. The mechanisms of SPLUNC1 in airway host defense include modulating ASL volume, acting as a surfactant protein, inhibiting biofilm formation, as well as regulating ASL compositions, such as LL-37, mucins, Neutrophil elastase, and inflammatory cytokines. Besides, potential correlations are found among these different mechanisms, especially among different ASL compositions, which should be further explored in more systematical frameworks. In this review, we summarize the structural characteristics and expression patterns of SPLUNC1 briefly, and mainly discuss the mechanisms of SPLUNC1 exerted in host defense, aiming to provide a theoretical basis and a novel target for future studies and clinical treatments.
Collapse
Affiliation(s)
- Qingluan Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhicheng Wang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
20
|
黄 嫣, 王 明, 王 成, 张 罗. [Antimicrobial peptides and proteins in chronic rhinosinusitis]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:185-188. [PMID: 33541007 PMCID: PMC10127885 DOI: 10.13201/j.issn.2096-7993.2021.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Indexed: 11/12/2022]
Abstract
The pathogenesis of chronic rhinosinusitis(CRS) is closely related to the interactions between the environmental stimuli and the innate defense system. A vast of defensive molecules, such as antimicrobial peptides and proteins(AMPs) could be secreted by the airway epithelial cells and submucosal glands. As an essential component of innate immune system, AMPs are associated with multiple airway disease, such as CRS, chronic obstructive pulmonary disease, bronchiectasis, allergic asthma and so on. AMPs are expressed vastly in nasal mucosa and could exert fundamental antibacterial and inflamatory regulative functions. However, the pathophysiological mechanism of AMPs in CRS is still unclear. What's more, the heterogeneity among studies is relatively high. Thus, the paper was aimed to review the potential function and inflammatory regulation of AMPs in CRS. More rigorous studies with larger samples are needed in the future, to shed light on its possible pathogeneisis mechanisms.
Collapse
Affiliation(s)
- 嫣然 黄
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
| | - 明 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
| | - 成硕 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
| | - 罗 张
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科(北京,100730)
- 鼻病研究北京市重点实验室北京市耳鼻咽喉科研究所
- 首都医科大学附属北京同仁医院过敏科
| |
Collapse
|
21
|
Akutsu T, Watanabe K. A Proposed Procedure for Discriminating between Nasal Secretion and Saliva by RT-qPCR. Diagnostics (Basel) 2020; 10:E519. [PMID: 32722656 PMCID: PMC7460356 DOI: 10.3390/diagnostics10080519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022] Open
Abstract
In forensic casework, nasal secretion can be a good source of DNA. Moreover, saliva can prove useful in cases of sexual assault. However, discriminating between these body fluids is often difficult because of cross-reactivity between them on presumptive and confirmatory tests. Therefore, an RT-qPCR procedure was developed to discriminate between nasal secretion and saliva. Characteristic genes in nasal secretion and/or saliva (BPIFA1, STATH, HTN3, and PRH2) were selected as candidates. Discrimination criteria were established based on the expression levels of these markers in various body fluids. In addition, a flowchart was proposed and used to discriminate among nasal secretion, saliva, and other body fluids in various forensic samples. BPIFA1 was highly expressed in nasal secretion but was also expressed in saliva, semen, and vaginal fluid at trace levels. STATH was expressed in nasal secretion and saliva but not in other body fluids. HTN3 was specifically expressed in most of the saliva samples, as reported previously. Unexpectedly, PRH2 was expressed in only a few saliva samples. Using the proposed criteria and flowchart, nasal secretion and saliva were successfully discriminated among the various body fluids tested. The developed procedure could be useful in forensic casework.
Collapse
Affiliation(s)
- Tomoko Akutsu
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa-shi, Chiba 277-0882, Japan;
| | | |
Collapse
|
22
|
Ahmad S, Kim CSK, Tarran R. The SPLUNC1-βENaC complex prevents Burkholderia cenocepacia invasion in normal airway epithelia. Respir Res 2020; 21:190. [PMID: 32680508 PMCID: PMC7368771 DOI: 10.1186/s12931-020-01454-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) patients are extremely vulnerable to Burkholderia cepacia complex (Bcc) infections. However, the underlying etiology is poorly understood. We tested the hypothesis that short palate lung and nasal epithelial clone 1 (SPLUNC1)-epithelial sodium channel (ENaC) interactions at the plasma membrane are required to reduce Bcc burden in normal airways. To determine if SPLUNC1 was needed to reduce Bcc burden in the airways, SPLUNC1 knockout mice and their wild-type littermates were infected with B. cenocepacia strain J2315. SPLUNC1 knockout mice had increased bacterial burden in the lungs compared to wild-type littermate mice. SPLUNC1-knockdown primary human bronchial epithelia (HBECs) were incubated with J2315, which resulted in increased bacterial burden compared to non-transduced HBECs. We next determined the interaction of the SPLUNC1-ENaC complex during J2315 infection. SPLUNC1 remained at the apical plasma membrane of normal HBECs but less was present at the apical plasma membrane of CF HBECs. Additionally, SPLUNC1-βENaC complexes reduced intracellular J2315 burden. Our data indicate that (i) secreted SPLUNC1 is required to reduce J2315 burden in the airways and (ii) its interaction with ENaC prevents cellular invasion of J2315.
Collapse
Affiliation(s)
- Saira Ahmad
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
| | - Christine Seul Ki Kim
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA
- Present address: Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina, Marsico Lung Insitute, 115 Mason Farm Rd CB 7545, UNC, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
23
|
Mashbat B, Bellos E, Hodeib S, Bidmos F, Thwaites RS, Lu Y, Wright VJ, Herberg JA, Klobassa DS, Walton WG, Zenz W, Hansel TT, Nadel S, Langford PR, Schlapbach LJ, Li MS, Redinbo MR, Di YP, Levin M, Sancho-Shimizu V. A Rare Mutation in SPLUNC1 Affects Bacterial Adherence and Invasion in Meningococcal Disease. Clin Infect Dis 2020; 70:2045-2053. [PMID: 31504285 PMCID: PMC7201419 DOI: 10.1093/cid/ciz600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Neisseria meningitidis (Nm) is a nasopharyngeal commensal carried by healthy individuals. However, invasive infections occurs in a minority of individuals, with devastating consequences. There is evidence that common polymorphisms are associated with invasive meningococcal disease (IMD), but the contributions of rare variants other than those in the complement system have not been determined. METHODS We identified familial cases of IMD in the UK meningococcal disease study and the European Union Life-Threatening Infectious Disease Study. Candidate genetic variants were identified by whole-exome sequencing of 2 patients with familial IMD. Candidate variants were further validated by in vitro assays. RESULTS Exomes of 2 siblings with IMD identified a novel heterozygous missense mutation in BPIFA1/SPLUNC1. Sequencing of 186 other nonfamilial cases identified another unrelated IMD patient with the same mutation. SPLUNC1 is an innate immune defense protein expressed in the nasopharyngeal epithelia; however, its role in invasive infections is unknown. In vitro assays demonstrated that recombinant SPLUNC1 protein inhibits biofilm formation by Nm, and impedes Nm adhesion and invasion of human airway cells. The dominant negative mutant recombinant SPLUNC1 (p.G22E) showed reduced antibiofilm activity, increased meningococcal adhesion, and increased invasion of cells, compared with wild-type SPLUNC1. CONCLUSIONS A mutation in SPLUNC1 affecting mucosal attachment, biofilm formation, and invasion of mucosal epithelial cells is a new genetic cause of meningococcal disease.
Collapse
Affiliation(s)
- Bayarchimeg Mashbat
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Evangelos Bellos
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Stephanie Hodeib
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Fadil Bidmos
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Yaxuan Lu
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Victoria J Wright
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Jethro A Herberg
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Daniela S Klobassa
- Department of Pediatric and Adolescence Surgery, Division of General Pediatric Surgery, Medical University Graz, Austria
| | - William G Walton
- Paediatric Intensive Care Unit, St. Mary’s Hospital, Imperial College Healthcare Trust, London, United Kingdom
| | - Werner Zenz
- Department of Pediatric and Adolescence Surgery, Division of General Pediatric Surgery, Medical University Graz, Austria
| | - Trevor T Hansel
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Simon Nadel
- Paediatric Intensive Care Unit, St. Mary’s Hospital, Imperial College Healthcare Trust, London, United Kingdom
| | - Paul R Langford
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Luregn J Schlapbach
- Faculty of Medicine Brisbane, The University of Queensland Brisbane, Australia
- Paediatric Critical Care Research Group, The University of Queensland Brisbane, Australia
- Paediatric Intensive Care Unit, Lady Cilento Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Department of Pediatrics, Bern University Hospital, Inselspital, University of Bern, Switzerland
| | - Ming-Shi Li
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Matthew R Redinbo
- Department of Chemistry, University of North Carolina, Chapel Hill
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pennsylvania
| | - Michael Levin
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| | - Vanessa Sancho-Shimizu
- Department of Paediatric Infectious Diseases, Division of Medicine, Imperial College London, Norfolk Place, United Kingdom
| |
Collapse
|
24
|
Di YP, Lin Q, Chen C, Montelaro RC, Doi Y, Deslouches B. Enhanced therapeutic index of an antimicrobial peptide in mice by increasing safety and activity against multidrug-resistant bacteria. SCIENCE ADVANCES 2020; 6:eaay6817. [PMID: 32426473 PMCID: PMC7195177 DOI: 10.1126/sciadv.aay6817] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/12/2020] [Indexed: 05/14/2023]
Abstract
The rising prevalence of antibiotic resistance underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) are potentially effective therapeutics that disrupt bacterial membranes regardless of resistance to traditional antibiotics. We have developed engineered cationic AMPs (eCAPs) with broad activity against multidrug-resistant (MDR) bacteria, but stability remains an important concern. Therefore, we sought to enhance the clinical utility of eCAP WLBU2 in biological matrices relevant to respiratory infection. A designed substitution of d-Val for l-Val resulted in increased resistance to protease enzymatic degradation. We observed multiple gains of functions such as higher activity against bacteria in biofilm mode of growth, significantly lower toxicity to erythrocytes and white blood cells compared to WLBU2, with increased safety in mice. Direct airway delivery revealed a therapeutic index of >140 for the selected enantiomer compared to that of <35 for WLBU2. The data warrant clinical exploration by aerosolized delivery to mitigate MDR-related respiratory infection.
Collapse
Affiliation(s)
- Y. P. Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Corresponding author.
| | - Q. Lin
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - C. Chen
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y. Doi
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Microbiology and Infectious Diseases, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - B. Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Saferali A, Tang AC, Strug LJ, Quon BS, Zlosnik J, Sandford AJ, Turvey SE. Immunomodulatory function of the cystic fibrosis modifier gene BPIFA1. PLoS One 2020; 15:e0227067. [PMID: 31931521 PMCID: PMC6957340 DOI: 10.1371/journal.pone.0227067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/10/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by a progressive decline in lung function due to airway obstruction, infection, and inflammation. CF patients are particularly susceptible to respiratory infection by a variety of pathogens, and the inflammatory response in CF is dysregulated and prolonged. BPI fold containing family A, member 1 (BPIFA1) and BPIFB1 are proteins expressed in the upper airways that may have innate immune activity. We previously identified polymorphisms in the BPIFA1/BPIFB1 region associated with CF lung disease severity. METHODS We evaluated whether the BPIFA1/BPIFB1 associations with lung disease severity replicated in individuals with CF participating in the International CF Gene Modifier Consortium (n = 6,365). Furthermore, we investigated mechanisms by which the BPIFA1 and BPIFB1 proteins may modify lung disease in CF. RESULTS The association of the G allele of rs1078761 with reduced lung function was replicated in an independent cohort of CF patients (p = 0.001, n = 2,921) and in a meta-analysis of the full consortium (p = 2.39x10-5, n = 6,365). Furthermore, we found that rs1078761G which is associated with reduced lung function was also associated with reduced BPIFA1, but not BPIFB1, protein levels in saliva from CF patients. Functional assays indicated that BPIFA1 and BPIFB1 do not have an anti-bacterial role against P. aeruginosa but may have an immunomodulatory function in CF airway epithelial cells. Gene expression profiling using RNAseq identified Rho GTPase signaling pathways to be altered in CF airway epithelial cells in response to treatment with recombinant BPIFA1 and BPIFB1 proteins. CONCLUSIONS BPIFA1 and BPIFB1 have immunomodulatory activity and genetic variation associated with low levels of these proteins may increase CF lung disease severity.
Collapse
Affiliation(s)
- Aabida Saferali
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony C. Tang
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Lisa J. Strug
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Bradley S. Quon
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - James Zlosnik
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
| | - Andrew J. Sandford
- Centre for Heart Lung Innovation, University of British Columbia and St Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, University of British Columbia and BC Children’s Hospital, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
26
|
Fang R, Uchiyama R, Sakai S, Hara H, Tsutsui H, Suda T, Mitsuyama M, Kawamura I, Tsuchiya K. ASC and NLRP3 maintain innate immune homeostasis in the airway through an inflammasome-independent mechanism. Mucosal Immunol 2019; 12:1092-1103. [PMID: 31278375 DOI: 10.1038/s41385-019-0181-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
It is widely accepted that inflammasomes protect the host from microbial pathogens by inducing inflammatory responses through caspase-1 activation. Here, we show that the inflammasome components ASC and NLRP3 are required for resistance to pneumococcal pneumonia, whereas caspase-1 and caspase-11 are dispensable. In the lung of S. pneumoniae-infected mice, ASC and NLRP3, but not caspase-1/11, were required for optimal expression of several mucosal innate immune proteins. Among them, TFF2 and intelectin-1 appeared to be protective against pneumococcal pneumonia. During infection, ASC and NLRP3 maintained the expression of the transcription factor SPDEF, which can facilitate the expression of the mucosal defense factor genes. Moreover, activation of STAT6, a key regulator of Spdef expression, depended on ASC and NLRP3. Overexpression of these inflammasome proteins sustained STAT6 phosphorylation induced by type 2 cytokines. Collectively, this study suggests that ASC and NLRP3 promote airway mucosal innate immunity by an inflammasome-independent mechanism involving the STAT6-SPDEF pathway.
Collapse
Affiliation(s)
- Rendong Fang
- College of Animal Science and Technology, Southwest University, Chongqing, 400715, China.,Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Ryosuke Uchiyama
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan.,School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, 663-8179, Japan
| | - Shunsuke Sakai
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,T Lymphocyte Biology Unit, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hideki Hara
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Hiroko Tsutsui
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Masao Mitsuyama
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan.,Hakubi Center, Kyoto University, Kyoto, 606-8501, Japan
| | - Ikuo Kawamura
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Kohsuke Tsuchiya
- Department of Microbiology, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan. .,Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan. .,Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
27
|
Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. mBio 2019; 10:mBio.00226-19. [PMID: 30967458 PMCID: PMC6456746 DOI: 10.1128/mbio.00226-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rise of superbugs underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) have the ability to kill superbugs regardless of resistance to traditional antibiotics. However, AMPs often display a lack of efficacy in vivo. Sequence optimization and engineering are promising but may result in increased host toxicity. We report here the optimization of a novel AMP (α4-short) derived from the multifunctional respiratory protein SPLUNC1. The AMP α4-short demonstrated broad-spectrum activity against superbugs as well as in vivo efficacy in the P. aeruginosa pneumonia model. Further exploration for clinical development is warranted. Multidrug resistance (MDR) by bacterial pathogens constitutes a global health crisis, and resistance to treatment displayed by biofilm-associated infections (e.g., cystic fibrosis, surgical sites, and medical implants) only exacerbates a problem that is already difficult to overcome. Antimicrobial peptides (AMPs) are a promising class of therapeutics that may be useful in the battle against antibiotic resistance, although certain limitations have hindered their clinical development. The goal of this study was to examine the therapeutic potential of novel AMPs derived from the multifunctional respiratory host defense protein SPLUNC1. Using standard growth inhibition and antibiofilm assays, we demonstrated that a novel structurally optimized AMP, α4-short, was highly effective against the most common group of MDR bacteria while showing broad-spectrum bactericidal and antibiofilm activities. With negligible hemolysis and toxicity to white blood cells, the new peptide also demonstrated in vivo efficacy when delivered directly into the airway in a murine model of Pseudomonas aeruginosa-induced respiratory infection. The data warrant further exploration of SPLUNC1-derived AMPs with optimized structures to assess the potential application to difficult-to-cure biofilm-associated infections.
Collapse
|
28
|
Hamilos DL. Biofilm Formations in Pediatric Respiratory Tract Infection : Part 1: Biofilm Structure, Role of Innate Immunity in Protection Against and Response to Biofilm, Methods of Biofilm Detection, Pediatric Respiratory Tract Diseases Associated with Mucosal Biofilm Formation. Curr Infect Dis Rep 2019; 21:6. [PMID: 30820766 DOI: 10.1007/s11908-019-0658-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
PURPOSE OF REVIEW Biofilm represents an organized structure of microorganisms within an extracellular matrix attached to a surface. While the importance of biofilm in prosthetic heart valve and catheter-related infections has been known since the 1980s, the role of mucosal biofilm in human disease pathogenesis has only recently been elucidated. It is now clear that mucosal biofilm is present in both healthy and pathologic states. The purpose of this review is to examine the role of mucosal biofilm in pediatric respiratory infections. RECENT FINDINGS Mucosal biofilm has been implicated in relationship to several pediatric respiratory infections, including tonsillitis, adenoiditis, otitis media with effusion, chronic rhinosinusitis, persistent endobronchial infection, and bronchiectasis. In these conditions, core pathogens are detected in the biofilm, biofilm organisms are often detected by molecular techniques when conventional cultures are negative, and biofilm presence is more extensive in relation to disease than in healthy tissues. In chronic rhinosinusitis, the presence of polymicrobial biofilm is also a predictor of poorer outcome following sinus surgery. Biofilm in the tonsillar and adenoidal compartments plays a distinct role in contributing to disease in the middle ear and sinuses. Key observations regarding the relevance of biofilm to pediatric respiratory infections include (1) the association between the presence of biofilm and persistent/recurrent and more severe disease in these tissues despite antibiotic treatment, (2) linkage between biofilm core pathogens and acute infections, and (3) interrelationship between biofilm presence in one tissue and persistent or recurrent infection in an adjacent tissue. A greater understanding of the significance of mucosal biofilm will undoubtedly emerge with the development of effective means of eradicating mucosal biofilm.
Collapse
Affiliation(s)
- Daniel L Hamilos
- Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, 55 Fruit Street, Bulfinch-422, Boston, MA, 02114, USA. .,Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
29
|
Jappe U, Schwager C, Schromm AB, González Roldán N, Stein K, Heine H, Duda KA. Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Front Immunol 2019; 10:122. [PMID: 30837983 PMCID: PMC6382701 DOI: 10.3389/fimmu.2019.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
Molecular allergology research has provided valuable information on the structure and function of single allergenic molecules. There are several allergens in food and inhalant allergen sources that are able to interact with lipid ligands via different structural features: hydrophobic pockets, hydrophobic cavities, or specialized domains. For only a few of these allergens information on their associated ligands is already available. Several of the allergens are clinically relevant, so that it is highly probable that the individual structural features with which they interact with lipids have a direct effect on their allergenic potential, and thus on allergy development. There is some evidence for a protective effect of lipids delaying the enzymatic digestion of the peanut (Arachis hypogaea) allergen Ara h 8 (hydrophobic pocket), probably allowing this molecule to get to the intestinal immune system intact (sensitization). Oleosins from different food allergen sources are part of lipid storage organelles and potential marker allergens for the severity of the allergic reaction. House dust mite (HDM), is more often associated with allergic asthma than other sources of inhalant allergens. In particular, lipid-associated allergens from Dermatophagoides pteronyssinus which are Der p 2, Der p 5, Der p 7, Der p 13, Der p 14, and Der p 21 have been reported to be associated with severe allergic reactions and respiratory symptoms such as asthma. The exact mechanism of interaction of these allergens with lipids still has to be elucidated. Apart from single allergens glycolipids have been shown to directly induce allergic inflammation. Several-in parts conflicting-data exist on the lipid (and allergen) and toll-like receptor interactions. For only few single allergens mechanistic studies were performed on their interaction with the air-liquid interface of the lungs, in particular with the surfactant components SP-A and SP-D. The increasing knowledge on protein-lipid-interaction for lipophilic and hydrophobic food and inhalant allergens on the basis of their particular structure, of their capacity to be integral part of membranes (like the oleosins), and their ability to interact with membranes, surfactant components, and transport lipids (like the lipid transfer proteins) are essential to eventually clarify allergy and asthma development.
Collapse
Affiliation(s)
- Uta Jappe
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
- Interdisciplinary Allergy Outpatient Clinic, Department of Pneumology, University of Luebeck, Borstel, Germany
| | - Christian Schwager
- Division of Clinical and Molecular Allergology, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Andra B. Schromm
- Division of Immunobiophysics, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Nestor González Roldán
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Karina Stein
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Holger Heine
- Division of Innate Immunity, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| | - Katarzyna A. Duda
- Junior Research Group of Allergobiochemistry, Research Center Borstel, Leibniz Lung Center, Airway Research Center North, German Center for Lung Research, Borstel, Germany
| |
Collapse
|
30
|
Chen C, Zhang X, Lin Q, Remlinger NT, Gilbert TW, Di YP. Urinary Bladder Matrix Protects Host in a Murine Model of Bacterial-Induced Lung Infection. Tissue Eng Part A 2019; 25:257-270. [DOI: 10.1089/ten.tea.2018.0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chen Chen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoping Zhang
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qiao Lin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Thomas W. Gilbert
- ACell, Inc., Columbia, Maryland
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuanpu Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Woods AG, Wormwood KL, Iosifescu DV, Murrough J, Darie CC. Protein Biomarkers in Major Depressive Disorder: An Update. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:585-600. [DOI: 10.1007/978-3-030-15950-4_35] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One 2018; 13:e0203621. [PMID: 30216370 PMCID: PMC6138395 DOI: 10.1371/journal.pone.0203621] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa. The goal of this study was to determine whether (1) the antibiofilm property is broad (including S. aureus, another prevalent organism in cystic fibrosis); (2) the α4 region is responsible for such activity; and (3), if so, this motif could be structurally optimized as an antimicrobial peptide with enhanced activities. We used S. aureus biofilm-prevention assays to determine bacterial biomass in the presence of SPLUNC1 and SPLUNC1Δα4 recombinant proteins, or SPLUNC1-derived peptides (α4 and α4M1), using the well-established crystal-violet biofilm detection assay. The SPLUNC1Δα4 showed markedly reduced biofilm prevention compared to the parent protein. Surprisingly, the 30-residue long α4 motif alone demonstrated minimal biofilm prevention activities. However, structural optimization of the α4 motif resulted in a modified peptide (α4M1) with significantly enhanced antibiofilm properties against methicillin–sensitive (MSSA) and–resistant (MRSA) S. aureus, including six different clinical strains of MRSA and the well-known USA300. Hemolytic activity was undetectable at up to 100μM for the peptides. The data warrant further investigation of α4-derived AMPs to explore the potential application of antimicrobial peptides to combat bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William G. Walton
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
33
|
The Role of BPIFA1 in Upper Airway Microbial Infections and Correlated Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2021890. [PMID: 30255091 PMCID: PMC6140130 DOI: 10.1155/2018/2021890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/04/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022]
Abstract
The mucosa is part of the first line of immune defense against pathogen exposure in humans and prevents viral and bacterial infection of the soft palate, lungs, uvula, and nasal cavity that comprise the ear-nose-throat (ENT) region. Bactericidal/permeability-increasing fold containing family A, member 1 (BPIFA1) is a secretory protein found in human upper aerodigestive tract mucosa. This innate material is secreted in mucosal fluid or found in submucosal tissue in the human soft palate, lung, uvula, and nasal cavity. BPIFA1 is a critical component of the innate immune response that prevents upper airway diseases. This review will provide a brief introduction of the roles of BPIFA1 in the upper airway (with a focus on the nasal cavity, sinus, and middle ear), specifically its history, identification, distribution in various human tissues, function, and diagnostic value in various upper airway infectious diseases.
Collapse
|
34
|
Little MS, Redinbo MR. Crystal structure of the mouse innate immunity factor bacterial permeability-increasing family member A1. Acta Crystallogr F Struct Biol Commun 2018; 74:268-276. [PMID: 29717993 PMCID: PMC5931138 DOI: 10.1107/s2053230x18004600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 01/14/2023] Open
Abstract
Bacterial permeability-increasing family member A1 (BPIFA1) is an innate immunity factor and one of the most abundantly secreted proteins in the upper airways. BPIFA1 is multifunctional, with antimicrobial, surfactant and lipopolysaccharide-binding activities, as well as established roles in lung hydration. Here, the 2.5 Å resolution crystal structure of BPIFA1 from Mus musculus (mBPIFA1) is presented and compared with those of human BPIFA1 (hBPIFA1) and structural homologs. Structural distinctions between mBPIFA1 and hBPIFA1 suggest potential differences in biological function, including the regulation of a key pulmonary ion channel.
Collapse
Affiliation(s)
- Michael S. Little
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| | - Matthew R. Redinbo
- Department of Chemistry, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Biochemistry and Biophysics, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
- Department of Microbiology and Immunology and the Integrated Program for Biological and Genome Science, University of North Carolina, 4350 Genome Sciences Building, Chapel Hill, NC 27599-3290, USA
| |
Collapse
|
35
|
Mulay A, Hood DW, Williams D, Russell C, Brown SDM, Bingle L, Cheeseman M, Bingle CD. Loss of the homeostatic protein BPIFA1, leads to exacerbation of otitis media severity in the Junbo mouse model. Sci Rep 2018; 8:3128. [PMID: 29449589 PMCID: PMC5814562 DOI: 10.1038/s41598-018-21166-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2018] [Indexed: 02/02/2023] Open
Abstract
Otitis Media (OM) is characterized by epithelial abnormalities and defects in innate immunity in the middle ear (ME). Although, BPIFA1, a member of the BPI fold containing family of putative innate defence proteins is abundantly expressed by the ME epithelium and SNPs in Bpifa1 have been associated with OM susceptibility, its role in the ME is not well characterized. We investigated the role of BPIFA1 in protection of the ME and the development of OM using murine models. Loss of Bpifa1 did not lead to OM development. However, deletion of Bpifa1 in Evi1Jbo/+ mice, a model of chronic OM, caused significant exacerbation of OM severity, thickening of the ME mucosa and increased collagen deposition, without a significant increase in pro-inflammatory gene expression. Our data suggests that BPIFA1 is involved in maintaining homeostasis within the ME under steady state conditions and its loss in the presence of inflammation, exacerbates epithelial remodelling leading to more severe OM.
Collapse
Affiliation(s)
- Apoorva Mulay
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Derek W Hood
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Debbie Williams
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Catherine Russell
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell Institute, Didcot, UK
| | - Lynne Bingle
- Oral and Maxillofacial Pathology, Department of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Michael Cheeseman
- Roslin Institute, University of Edinburgh, Edinburgh, UK.,Division of Pathology, University of Edinburgh, Edinburgh, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. .,Florey Institute for Host Pathogen Interactions, University of Sheffield, Sheffield, UK.
| |
Collapse
|
36
|
Leiva-Juárez MM, Kolls JK, Evans SE. Lung epithelial cells: therapeutically inducible effectors of antimicrobial defense. Mucosal Immunol 2018; 11:21-34. [PMID: 28812547 PMCID: PMC5738267 DOI: 10.1038/mi.2017.71] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Lung epithelial cells are increasingly recognized to be active effectors of microbial defense, contributing to both innate and adaptive immune function in the lower respiratory tract. As immune sentinels, lung epithelial cells detect diverse pathogens through an ample repertoire of membrane-bound, endosomal, and cytosolic pattern-recognition receptors (PRRs). The highly plastic epithelial barrier responds to detected threats via modulation of paracellular flux, intercellular communications, mucin production, and periciliary fluid composition. Epithelial PRR stimulation also induces production of cytokines that recruit and sculpt leukocyte-mediated responses, and promotes epithelial generation of antimicrobial effector molecules that are directly microbicidal. The epithelium can alternately enhance tolerance to pathogens, preventing tissue damage through PRR-induced inhibitory signals, opsonization of pathogen-associated molecular patterns, and attenuation of injurious leukocyte responses. The inducibility of these protective responses has prompted attempts to therapeutically harness epithelial defense mechanisms to protect against pneumonias. Recent reports describe successful strategies for manipulation of epithelial defenses to protect against a wide range of respiratory pathogens. The lung epithelium is capable of both significant antimicrobial responses that reduce pathogen burdens and tolerance mechanisms that attenuate immunopathology. This manuscript reviews inducible lung epithelial defense mechanisms that offer opportunities for therapeutic manipulation to protect vulnerable populations against pneumonia.
Collapse
Affiliation(s)
- Miguel M. Leiva-Juárez
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jay K. Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA,The University of Texas Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
37
|
An innate defense peptide BPIFA1/SPLUNC1 restricts influenza A virus infection. Mucosal Immunol 2018; 11:71-81. [PMID: 28513596 DOI: 10.1038/mi.2017.45] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 02/04/2023]
Abstract
The airway epithelium secretes proteins that function in innate defense against infection. Bactericidal/permeability-increasing fold-containing family member A1 (BPIFA1) is secreted into airways and has a protective role during bacterial infections, but it is not known whether it also has an antiviral role. To determine a role in host defense against influenza A virus (IAV) infection and to find the underlying defense mechanism, we developed transgenic mouse models that are deficient in BPIFA1 and used these, in combination with in vitro three-dimensional mouse tracheal epithelial cell (mTEC) cultures, to investigate its antiviral properties. We show that BPIFA1 has a significant role in mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a higher viral load and virus reached the peripheral lung earlier, indicative of a defect in the control of infection. Further analysis using mTEC cultures showed that BPIFA1-deficient cells bound more virus particles, displayed increased nuclear import of IAV ribonucleoprotein complexes, and supported higher levels of viral replication. Our results identify a critical role of BPIFA1 in the initial phase of infection by inhibiting the binding and entry of IAV into airway epithelial cells.
Collapse
|
38
|
van den Berge M, Sijen T. Extended specificity studies of mRNA assays used to infer human organ tissues and body fluids. Electrophoresis 2017; 38:3155-3160. [DOI: 10.1002/elps.201700241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/25/2023]
Affiliation(s)
- Margreet van den Berge
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| | - Titia Sijen
- Department of Biological Traces; Netherlands Forensic Institute; The Hague The Netherlands
| |
Collapse
|
39
|
Chen C, Deslouches B, Montelaro RC, Di YP. Enhanced efficacy of the engineered antimicrobial peptide WLBU2 via direct airway delivery in a murine model of Pseudomonas aeruginosa pneumonia. Clin Microbiol Infect 2017; 24:547.e1-547.e8. [PMID: 28882728 DOI: 10.1016/j.cmi.2017.08.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/19/2017] [Accepted: 08/23/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Pseudomonas aeruginosa is a common cause of pneumonia in patients with cystic fibrosis with the property to generate multidrug resistance against clinically used antibiotics. Antimicrobial peptides (AMPs) are a diverse group of effector molecules of the innate immune system that protect the host against pathogens. However, the lack of activity in common biological matrices has hampered efforts towards clinical development. In this study, we evaluated the therapeutic potential of the engineered AMP WLBU2 via direct airway delivery in a murine model of P. aeruginosa infection. METHODS The human AMPs LL37 and WLBU2 were compared for (i) antibiofilm activity using P. aeruginosa on polarized human bronchial epithelial cells, and (ii) efficacy in P. aeruginosa pneumonia in mice using intratracheal instillation of bacteria and AMPs. RESULTS WLBU2 (16 μM) prevents biofilm formation by up to 3-log compared with 1-log reduction by LL37. With a single dose of 1 μg (0.05 mg/kg) delivered intratracheally, the initial effect of LL37 was moderate and transitory, as bacterial load and inflammatory cytokines increased at 24 h with observed signs of disease such as lethargy and hypothermia, consistent with moribund state requiring euthanasia. In sharp contrast, WLBU2 reduced bacterial burden (by 2 logs) and bacteria-induced inflammation (leucocytic infiltrates, cytokine and chemokine gene expression) at 6 h and 24 h post-exposure, with no observed signs of disease or host toxicity. CONCLUSION These promising results now establish a much lower minimum therapeutic dose of WLBU2 (a net gain of 80-fold) compared with the previously reported 4 mg/kg systemic minimum therapeutic dose, with significant implications for clinical development.
Collapse
Affiliation(s)
- C Chen
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - B Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R C Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y P Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA.
| |
Collapse
|
40
|
Chen C, Mangoni ML, Di YP. In vivo therapeutic efficacy of frog skin-derived peptides against Pseudomonas aeruginosa-induced pulmonary infection. Sci Rep 2017; 7:8548. [PMID: 28819175 PMCID: PMC5561116 DOI: 10.1038/s41598-017-08361-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic and frequently drug-resistant pulmonary pathogen especially in cystic fibrosis sufferers. Recently, the frog skin-derived antimicrobial peptide (AMP) Esc(1-21) and its diastereomer Esc(1-21)-1c were found to possess potent in vitro antipseudomonal activity. Here, they were first shown to preserve the barrier integrity of airway epithelial cells better than the human AMP LL-37. Furthermore, Esc(1-21)-1c was more efficacious than Esc(1-21) and LL-37 in protecting host from pulmonary bacterial infection after a single intra-tracheal instillation at a very low dosage of 0.1 mg/kg. The protection was evidenced by 2-log reduction of lung bacterial burden and was accompanied by less leukocytes recruitment and attenuated inflammatory response. In addition, the diastereomer was more efficient in reducing the systemic dissemination of bacterial cells. Importantly, in contrast to what reported for other AMPs, the peptide was administered at 2 hours after bacterial challenge to better reflect the real life infectious conditions. To the best of our knowledge, this is also the first study investigating the effect of AMPs on airway-epithelia associated genes upon administration to infected lungs. Overall, our data highly support advanced preclinical studies for the development of Esc(1-21)-1c as an efficacious therapeutic alternative against pulmonary P. aeruginosa infections.
Collapse
Affiliation(s)
- Chen Chen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, 00185, Italy.
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
41
|
Khoshgoo N, Visser R, Falk L, Day CA, Ameis D, Iwasiow BM, Zhu F, Öztürk A, Basu S, Pind M, Fresnosa A, Jackson M, Siragam VK, Stelmack G, Hicks GG, Halayko AJ, Keijzer R. MicroRNA-200b regulates distal airway development by maintaining epithelial integrity. Sci Rep 2017; 7:6382. [PMID: 28743913 PMCID: PMC5526907 DOI: 10.1038/s41598-017-05412-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
miR-200b plays a role in epithelial-to-mesenchymal transition (EMT) in cancer. We recently reported abnormal expression of miR-200b in the context of human pulmonary hypoplasia in congenital diaphragmatic hernia (CDH). Smaller lung size, a lower number of airway generations, and a thicker mesenchyme characterize pulmonary hypoplasia in CDH. The aim of this study was to define the role of miR-200b during lung development. Here we show that miR-200b-/- mice have abnormal lung function due to dysfunctional surfactant, increased fibroblast-like cells and thicker mesenchyme in between the alveolar walls. We profiled the lung transcriptome in miR-200b-/- mice, and, using Gene Ontology analysis, we determined that the most affected biological processes include cell cycle, apoptosis and protein transport. Our results demonstrate that miR-200b regulates distal airway development through maintaining an epithelial cell phenotype. The lung abnormalities observed in miR-200b-/- mice recapitulate lung hypoplasia in CDH.
Collapse
Affiliation(s)
- Naghmeh Khoshgoo
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robin Visser
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Landon Falk
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chelsea A Day
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Barbara M Iwasiow
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fuqin Zhu
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arzu Öztürk
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Molly Pind
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Agnes Fresnosa
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mike Jackson
- Small Animal and Materials Imaging Core Facility, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vinaya Kumar Siragam
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gerald Stelmack
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Geoffrey G Hicks
- Research Institute of Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
- Departments of Surgery, Division of Pediatric Surgery and Pediatrics & Child Health, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
42
|
Tsou YA, Tung YT, Wu TF, Chang GRL, Chen HC, Lin CD, Lai CH, Chen HL, Chen CM. Lactoferrin interacts with SPLUNC1 to attenuate lipopolysaccharide-induced inflammation of human nasal epithelial cells via down-regulated MEK1/2-MAPK signaling. Biochem Cell Biol 2017; 95:394-399. [PMID: 28178421 DOI: 10.1139/bcb-2016-0047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The short palate, lung, and nasal epithelium clone 1 (SPLUNC1) protein is an important innate material in the upper airway, and lactoferrin (LF) aids the innate functions in humans. In this study, a nasal epithelial model was used to investigate how LF modulates SPLUNC1 to reduce the inflammatory process mediated by lipopolysaccharide (LPS). The inflammation of human RPMI-2650 cells was induced with LPS to evaluate SPLUNC1 expression after treating the cells with bovine LF (bLF). The interaction pathway between LF and SPLUNC1 in LPS-induced inflammation was further investigated. Our study reveals that the addition of bLF results in the recovery of SPLUNC1 expression in nasal epithelial cells under LPS-induced inflammation. MAPK is involved in the main pathway for the SPLUNC1 and bLF interaction. Decreased SPLUNC1 function could be recovered by addition of bLF. The MEK1/2-MAPK signaling pathway is crucial for the SPLUNC1 and bLF interaction. Therefore, LF could support SPLUNC1 in the innate immunity recovery process.
Collapse
Affiliation(s)
- Yung-An Tsou
- a Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.,b Department of Otolaryngology-Head and Neck Surgery, China Medical University and Hospital, Taichung 40402, Taiwan.,c Graduate Institute of Biomedicine Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yu-Tong Tung
- a Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tsu-Fang Wu
- c Graduate Institute of Biomedicine Sciences, China Medical University, Taichung 40402, Taiwan
| | - Gary Ro-Lin Chang
- a Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Chien Chen
- a Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chia-Der Lin
- b Department of Otolaryngology-Head and Neck Surgery, China Medical University and Hospital, Taichung 40402, Taiwan.,c Graduate Institute of Biomedicine Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chih-Ho Lai
- d Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Hsiao-Ling Chen
- e Department of Bioresources, Da-Yeh University, Changhua 51591, Taiwan
| | - Chuan-Mu Chen
- a Department of Life Sciences, and Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.,f Rong-Hsing Translational Medicine Center, iEGG Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
43
|
Wu T, Huang J, Moore PJ, Little MS, Walton WG, Fellner RC, Alexis NE, Peter Di Y, Redinbo MR, Tilley SL, Tarran R. Identification of BPIFA1/SPLUNC1 as an epithelium-derived smooth muscle relaxing factor. Nat Commun 2017; 8:14118. [PMID: 28165446 PMCID: PMC5303822 DOI: 10.1038/ncomms14118] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
Asthma is a chronic airway disease characterized by inflammation, mucus hypersecretion and abnormal airway smooth muscle (ASM) contraction. Bacterial permeability family member A1, BPIFA1, is a secreted innate defence protein. Here we show that BPIFA1 levels are reduced in sputum samples from asthmatic patients and that BPIFA1 is secreted basolaterally from healthy, but not asthmatic human bronchial epithelial cultures (HBECs), where it suppresses ASM contractility by binding to and inhibiting the Ca2+ influx channel Orai1. We have localized this effect to a specific, C-terminal α-helical region of BPIFA1. Furthermore, tracheas from Bpifa1-/- mice are hypercontractile, and this phenotype is reversed by the addition of recombinant BPIFA1. Our data suggest that BPIFA1 deficiency in asthmatic airways promotes Orai1 hyperactivity, increased ASM contraction and airway hyperresponsiveness. Strategies that target Orai1 or the BPIFA1 deficiency in asthma may lead to novel therapies to treat this disease.
Collapse
Affiliation(s)
- Tongde Wu
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Julianne Huang
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Patrick J Moore
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Michael S Little
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - William G Walton
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert C Fellner
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, 331 Bridgeside Point Building, Pittsburgh, Pennsylvania 15260, USA
| | - Matthew R Redinbo
- Department of Chemistry, Genome Science Building, 250 Bell Tower Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Stephen L Tilley
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Center for Environmental Medicine, Asthma, and Lung Biology, US EPA Human Studies Facility, 104 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| | - Robert Tarran
- Cystic Fibrosis Center/Marsico Lung Institute, Marsico Hall, 125 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA.,Department of Cell Biology &Physiology, 5200 Medical Biomolecular Research Building, 111 Mason Farm Road, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7248, USA
| |
Collapse
|
44
|
Sunde M, Pham CLL, Kwan AH. Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annu Rev Biochem 2017; 86:585-608. [PMID: 28125290 DOI: 10.1146/annurev-biochem-061516-044847] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many critical biological processes take place at hydrophobic:hydrophilic interfaces, and a wide range of organisms produce surface-active proteins and peptides that reduce surface and interfacial tension and mediate growth and development at these boundaries. Microorganisms produce both small lipid-associated peptides and amphipathic proteins that allow growth across water:air boundaries, attachment to surfaces, predation, and improved bioavailability of hydrophobic substrates. Higher-order organisms produce surface-active proteins with a wide variety of functions, including the provision of protective foam environments for vulnerable reproductive stages, evaporative cooling, and gas exchange across airway membranes. In general, the biological functions supported by these diverse polypeptides require them to have an amphipathic nature, and this is achieved by a diverse range of molecular structures, with some proteins undergoing significant conformational change or intermolecular association to generate the structures that are surface active.
Collapse
Affiliation(s)
- Margaret Sunde
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Chi L L Pham
- Discipline of Pharmacology, School of Medical Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia; ,
| | - Ann H Kwan
- School of Life and Environmental Sciences and Australian Institute for Nanoscale Science and Technology, University of Sydney, NSW 2006, Australia;
| |
Collapse
|
45
|
Shang YP, Lin L, Li CC. [Streptococcus pneumoniae induces SPLUNC1 and the regulatory effects of resveratrol]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:111-116. [PMID: 28100333 PMCID: PMC7390127 DOI: 10.7499/j.issn.1008-8830.2017.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the host-defense role of short palate, lung, and nasal epithelium clone 1 (SPLUNC1) in Streptococcus pneumoniae (SP) infection and the effect of resveratrol (Res) on SPLUNC1 expression, and to provide new thoughts for the treatment of diseases caused by SP infection. METHODS According to the multiplicity of infection (MOI), BEAS-2B cells with SP infection were divided into control group, MOI20 SP group, and MOI50 SP group. According to the different concentrations of Res, the BEAS-2B cells with MOI20 SP infection pretreated by Res were divided into 12.5Res+SP group, 25Res+SP group, and 50Res+SP group (the final concentrations of Res were 12.5, 25, and 50 μmol/L, respectively). Cell Counting Kit-8 was used to measure cell activity and determine the optimal concentration and action time of SP and Res. In the formal experiment, the cells were divided into control group, Res group, SP group, and Res+SP group. Real-time PCR and ELISA were used to measure the mRNA and protein expression of SPLUNC1. RESULTS Over the time of SP infection, cell activity tended to decrease. Compared with the control group and the MOI20 SP group, the MOI50 SP group had a reduction in cell activity. Compared with the MOI20 SP group, the 25Res+SP group had increased cell activity and the 50Res+SP group had reduced cell activity (P<0.05). MOI20 SP bacterial suspension and 25 μmol/L Res were used for the formal experiment. Over the time of SP infection, the mRNA expression of SPLUNC1 in BEAS-2B cells firstly increased and then decreased in the SP group and the Res+SP group (P<0.05). Compared with the SP group, the Res+SP group had significant increases in the mRNA and protein expression of SPLUNC1 at all time points (P<0.05). Compared with the control group, the Res group had no significant changes in the mRNA and protein expression of SPLUNC1 (P>0.05). CONCLUSIONS SP infection can induce SPLUNC1 expression and the host-defense role of SPLUNC1. Res can upregulate SPLUNC1 expression during the development of infection and enhance cell protection in a concentration- and time-dependent manner.
Collapse
Affiliation(s)
- Yan-Ping Shang
- Department of Pediatric Pulmonology, Second Affiliated Hospital/Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | | | | |
Collapse
|
46
|
Malik E, Dennison SR, Harris F, Phoenix DA. pH Dependent Antimicrobial Peptides and Proteins, Their Mechanisms of Action and Potential as Therapeutic Agents. Pharmaceuticals (Basel) 2016; 9:ph9040067. [PMID: 27809281 PMCID: PMC5198042 DOI: 10.3390/ph9040067] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) are potent antibiotics of the innate immune system that have been extensively investigated as a potential solution to the global problem of infectious diseases caused by pathogenic microbes. A group of AMPs that are increasingly being reported are those that utilise pH dependent antimicrobial mechanisms, and here we review research into this area. This review shows that these antimicrobial molecules are produced by a diverse spectrum of creatures, including vertebrates and invertebrates, and are primarily cationic, although a number of anionic examples are known. Some of these molecules exhibit high pH optima for their antimicrobial activity but in most cases, these AMPs show activity against microbes that present low pH optima, which reflects the acidic pH generally found at their sites of action, particularly the skin. The modes of action used by these molecules are based on a number of major structure/function relationships, which include metal ion binding, changes to net charge and conformational plasticity, and primarily involve the protonation of histidine, aspartic acid and glutamic acid residues at low pH. The pH dependent activity of pore forming antimicrobial proteins involves mechanisms that generally differ fundamentally to those used by pH dependent AMPs, which can be described by the carpet, toroidal pore and barrel-stave pore models of membrane interaction. A number of pH dependent AMPs and antimicrobial proteins have been developed for medical purposes and have successfully completed clinical trials, including kappacins, LL-37, histatins and lactoferrin, along with a number of their derivatives. Major examples of the therapeutic application of these antimicrobial molecules include wound healing as well as the treatment of multiple cancers and infections due to viruses, bacteria and fungi. In general, these applications involve topical administration, such as the use of mouth washes, cream formulations and hydrogel delivery systems. Nonetheless, many pH dependent AMPs and antimicrobial proteins have yet to be fully characterized and these molecules, as a whole, represent an untapped source of novel biologically active agents that could aid fulfillment of the urgent need for alternatives to conventional antibiotics, helping to avert a return to the pre-antibiotic era.
Collapse
Affiliation(s)
- Erum Malik
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Sarah R Dennison
- School of Pharmacy and Biological Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Frederick Harris
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - David A Phoenix
- Office of the Vice Chancellor, London South Bank University, 103 Borough Road, London SE1 0AA, UK.
| |
Collapse
|
47
|
Wåhlén K, Fornander L, Olausson P, Ydreborg K, Flodin U, Graff P, Lindahl M, Ghafouri B. Protein profiles of nasal lavage fluid from individuals with work-related upper airway symptoms associated with moldy and damp buildings. INDOOR AIR 2016; 26:743-754. [PMID: 26451694 DOI: 10.1111/ina.12257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Upper airway irritation is common among individuals working in moldy and damp buildings. The aim of this study was to investigate effects on the protein composition of the nasal lining fluid. The prevalence of symptoms in relation to work environment was examined in 37 individuals working in two damp buildings. Microbial growth was confirmed in one of the buildings. Nasal lavage fluid was collected from 29 of the exposed subjects and 13 controls, not working in a damp building. Protein profiles were investigated with a proteomic approach and evaluated by multivariate statistical models. Subjects from both workplaces reported upper airway and ocular symptoms. Based on protein profiles, symptomatic subjects in the two workplaces were discriminated from each other and separated from healthy controls. The groups differed in proteins involved in inflammation and host defense. Measurements of innate immunity proteins showed a significant increase in protein S100-A8 and decrease in SPLUNC1 in subjects from one workplace, while alpha-1-antitrypsin was elevated in subjects from the other workplace, compared with healthy controls. The results show that protein profiles in nasal lavage fluid can be used to monitor airway mucosal effects in personnel working in damp buildings and indicate that the profile may be separated when the dampness is associated with the presence of molds.
Collapse
Affiliation(s)
- K Wåhlén
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden
| | - L Fornander
- Occupational and Environmental Medicine, Div of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - P Olausson
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden
| | - K Ydreborg
- Clinic of Otorhinolaryngology, County Hospital Ryhov, Jönköping, Sweden
| | - U Flodin
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Occupational and Environmental Medicine Center, Heart and Medicine Center, Region Östergötland, Linkoping, Sweden
| | - P Graff
- Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - M Lindahl
- Occupational and Environmental Medicine, Div of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - B Ghafouri
- Division of Community Medicine, Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Pain and Rehabilitation Center, Anaesthetics, Operations and Speciality Surgery Center, Region Östergötland, Linkoping, Sweden.
- Division of Neuro and Inflammation Science, Department of Clinical and Experimental Medicine, Linköping University, Occupational and Environmental Medicine Center, Heart and Medicine Center, Region Östergötland, Linkoping, Sweden.
| |
Collapse
|
48
|
Short Palate, Lung, and Nasal Epithelial Clone 1 Has Antimicrobial and Antibiofilm Activities against the Burkholderia cepacia Complex. Antimicrob Agents Chemother 2016; 60:6003-12. [PMID: 27458217 DOI: 10.1128/aac.00975-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/17/2016] [Indexed: 02/07/2023] Open
Abstract
The opportunistic bacteria of the Burkholderia cepacia complex (Bcc) are extremely pathogenic to cystic fibrosis (CF) patients, and acquisition of Bcc bacteria is associated with a significant increase in mortality. Treatment of Bcc infections is difficult because the bacteria are multidrug resistant and able to survive in biofilms. Short palate, lung, and nasal epithelial clone 1 (SPLUNC1) is an innate defense protein that is secreted by the upper airways and pharynx. While SPLUNC1 is known to have antimicrobial functions, its effects on Bcc strains are unclear. We therefore tested the hypothesis that SPLUNC1 is able to impair Bcc growth and biofilm formation. We found that SPLUNC1 exerted bacteriostatic effects against several Bcc clinical isolates, including B. cenocepacia strain J2315 (50% inhibitory concentration [IC50] = 0.28 μM), and reduced biofilm formation and attachment (IC50 = 0.11 μM). We then determined which domains of SPLUNC1 are responsible for its antimicrobial activity. Deletions of SPLUNC1's N terminus and α6 helix did not affect its function. However, deletion of the α4 helix attenuated antimicrobial activity, while the corresponding α4 peptide displayed antimicrobial activity. Chronic neutrophilia is a hallmark of CF lung disease, and neutrophil elastase (NE) cleaves SPLUNC1. However, we found that the ability of SPLUNC1 to disrupt biofilm formation was significantly potentiated by NE pretreatment. While the impact of CF on SPLUNC1-Bcc interactions is not currently known, our data suggest that understanding this interaction may have important implications for CF lung disease.
Collapse
|
49
|
Shen W, Chen K, Sun Y, Guo H, Chen D, Cao Y. Cloning and sequence analysis of Wild Argali short palate, lung and nasal epithelium clone 1 cDNA. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 30:736-742. [PMID: 27620892 PMCID: PMC5411834 DOI: 10.5713/ajas.15.0557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 11/02/2015] [Accepted: 09/10/2016] [Indexed: 11/27/2022]
|
50
|
Koringa PG, Jakhesara SJ, Rank DN, Joshi CG. Identification of novel SNPs in differentially expressed genes and its association with horn cancer of Bos indicus bullocks by next-generation sequencing. 3 Biotech 2016; 6:38. [PMID: 28330108 PMCID: PMC4729760 DOI: 10.1007/s13205-015-0351-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 11/04/2022] Open
Abstract
The use of polymorphic markers like SNPs promises to provide comprehensive tool for analysing genome and identifying genomic regions that contribute to cancer phenotype. Horn cancer is the most common cancer among Bos indicus animals. Increased expression of some genes due to polymorphisms increases risk of HC incidence. We successfully amplified 91 SNPs located in 69 genes in 52 samples, each of HC and HN. Equimolar concentration of amplicons from 69 PCR products of each sample was pooled and subjected to sequencing using Ion Torrent PGM. Data obtained were analysed using DNASTAR software package and case control analysis using SAS software. We found SNP present in BPIFA1 gene of B. indicus shows association with event of HC which reflects its potential to be a genetic marker. Bioinformatic analysis to detect structural and functional impact nsSNP of BPIFA1 added another layer of confirmation to our result. We successfully identified SNP associated with HC as well as demonstrated efficient approach for limited number of SNP discovery and validation in targeted genomics regions in large number of samples combining PCR amplification and Ion Torrent PGM sequencing which suits small-scale laboratories with limited budget.
Collapse
|