1
|
Huang Z, Chen LJ, Huang D, Yi J, Chen Z, Lin P, Wang Y, Zheng J, Chen W. Preoperative Intravitreal Conbercept Injection Reduced Both Angiogenic and Inflammatory Cytokines in Patients With Proliferative Diabetic Retinopathy. J Diabetes Res 2024; 2024:2550367. [PMID: 39308630 PMCID: PMC11416173 DOI: 10.1155/2024/2550367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/21/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Aims: To investigate the impact of intravitreal injection of conbercept, a recombinant fusion protein with decoy receptors for the vascular endothelial growth factor (VEGF) family, on intraocular concentrations of angiogenic and inflammatory mediators in patients with proliferative diabetic retinopathy (PDR), analyzed its potential impact on surgical outcomes. Methods: Forty eyes from 40 patients with PDR were included in this prospective study. Patients received intravitreal injection of conbercept followed by vitrectomy or phacovitrectomy in 1 week. Aqueous humor samples were collected before and 1 week after the conbercept injection. The concentrations of angiogenic and inflammatory cytokines and chemokines were measured by flow cytometry. Follow-up clinical data were collected and analyzed. Results: Intravitreal conbercept injection significantly decreased aqueous concentrations of VEGF (325.5 (baseline) versus 22.3 pg/mL (postinjection), p < 0.0001), PlGF (39.5 versus 24.5 pg/mL, p < 0.0001), and PDGF-A (54.1 versus 47.0 pg/mL, p = 0.0016), while no impact on bFGF levels. For inflammatory mediators, the concentration of TNF-α (0.79 versus 0.45 pg/mL, p = 0.0004) and IL-8 (180.6 versus 86 pg/mL, p < 0.0001) were decreased, while IL-6 (184.1 versus 333.7 pg/mL, p = 0.0003) and IL-10 (1.1 versus 1.5 pg/mL, p = 0.0032) were increased. No significant changes in IFN-γ or MCP-1 were detected. Three months after surgery, the mean best-corrected visual acuity improved from a baseline of 1.8 ± 0.1 logMAR to 0.7 ± 0.1 logMAR (p < 0.0001), with 36 eyes (90%) achieving an improvement of visual function. Conclusions: Intravitreal conbercept injection presents dual effects of antiangiogenesis and anti-inflammation and can be served as an adjuvant treatment to vitrectomy for PDR patients.
Collapse
Affiliation(s)
- Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Li Jia Chen
- Department of Ophthalmology & Visual SciencesThe Chinese University of Hong Kong, Sha Tin, New Territories, Hong Kong
| | - Dingguo Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jingsheng Yi
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Zhiying Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Fifth Clinical InstituteShantou University Medical College, Shantou, Guangdong, China
| | - Peimin Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yifan Wang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Jianlong Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Weiqi Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| |
Collapse
|
2
|
Mammo DA, Wai K, Rahimy E, Pan CK, Srivastava SK, Mruthyunjaya P. Association of Cutaneous Keloids, Hypertrophic Scarring, and Fibrosis with Risk of Postoperative Proliferative Vitreoretinopathy. Ophthalmology 2024; 131:961-966. [PMID: 38296203 DOI: 10.1016/j.ophtha.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 03/21/2024] Open
Abstract
PURPOSE To assess an association between cutaneous keloids, hypertrophic scarring, and fibrosis (KHF) and risk of postoperative proliferative vitreoretinopathy (PVR) after rhegmatogenous retinal detachment (RRD) repair. DESIGN Retrospective, population-based cohort study. PARTICIPANTS Patients aged ≥ 18 years who underwent initial retinal detachment (RD) repair with pars plana vitrectomy with or without scleral buckle (SB) (Current Procedural Terminology [CPT] 67108), pneumatic retinopexy (67110), and primary SB (67107) from January 1, 2003, to March 1, 2023. METHODS A de-identified electronic health record database through TriNetX, a global health research network, was used to analyze patients. Patients were queried for International Classification of Diseases, 10th Revision (ICD-10) codes L91.0 (hypertrophic scar) and L90.5 (scar conditions and fibrosis of skin). Frequency of subsequent diagnosis of PVR (H35.2) and CPT codes for secondary surgery including complex RD repair (67113) were determined. Patients with proliferative diabetic retinopathy (PDR) (ICD-10 H10.35/H11.35) were excluded. Descriptive statistics (Z-test) and propensity score matching (PSM) were used to match for age, sex, and race. MAIN OUTCOME MEASURES Prevalence of H35.2 and CPT 67113 within 180 days after RRD repair in the KHF cohort versus the non-KHF cohort. RESULTS Among patients with CPT 67108, 1061 in each cohort (KHF and non-KHF) were analyzed after PSM. The mean (standard deviation) age was 60.7 (15.2) years. Within 180 days, 10.1% of patients in the KHF cohort and 3.4% in the non-KHF cohort had a diagnosis of PVR (H35.2) (P < 0.001, odds ratio [OR], 3.2; 95% confidence interval [CI], 2.13-4.71). A total of 8.3% of patients in the KHF cohort and 5.4% of patients in the non-KHF cohort underwent complex RD repair (CPT 67113) (P = 0.008; OR, 3.2; 95% CI, 1.13-2.25). When including all RD repair types (CPT 67108, 67110, 67107), the rate of PVR diagnosis was still significantly greater in the KHF cohort than in the non-KHF cohort (9.0% vs 4.2%, P < 0.01; OR, 2.28; 95% CI, 1.64-3.16). CONCLUSIONS A dermatologic history of KHF may be a risk factor for PVR after RD repair. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Danny A Mammo
- Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
| | - Karen Wai
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | - Ehsan Rahimy
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | - Carolyn K Pan
- Byers Eye Institute, Stanford Health Care, Palo Alto, California
| | | | | |
Collapse
|
3
|
Gahon M, Luc A, Zessler A, Pastor G, Angioi-Duprez K, Thilly N, Berrod JP, Conart JB. Intravitreal Injection of Bevacizumab for the Prevention of Postoperative Proliferative Vitreoretinopathy in High-Risk Patients Selected by Laser Flare Photometry. Ophthalmologica 2023; 246:306-313. [PMID: 37769629 DOI: 10.1159/000533750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/05/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION To evaluate the effect of an intravitreal injection of bevacizumab at the time of rhegmatogenous retinal detachment (RRD) surgery, on postoperative proliferative vitreoretinopathy (PVR) in high-risk patients selected by laser flare photometry. METHODS This single-center observational retrospective cohort study included 137 consecutive patients who underwent pars plana vitrectomy and gas tamponade for primary RRD with increased aqueous flare between July 2016 and June 2021. From June 2019, an intravitreal injection of bevacizumab was administered as an adjunct to RRD repair. Patients who underwent surgery before this time and who did not receive intravitreal bevacizumab served as controls. The main outcome was the rate of retinal redetachment due to PVR. RESULTS The median flare value was 22.0 (16.5-36.5) pc/ms in the control group and 28.2 (19.7-41.0) pc/ms in the bevacizumab group (p = 0.063). Eyes treated with bevacizumab were more likely to have macula-off RRD (p = 0.003), grade B PVR (p = 0.038), and worse visual acuity (p = 0.004) than controls. The rate of PVR redetachment was significantly lower in the bevacizumab group (11.1%) than in the control (30.1%) (p = 0.012). This difference was more pronounced after adjusting for potential confounding factors (p = 0.005); the risk of developing PVR was 4.5-fold higher in controls (95% CI, 1.6-12.8). After adjustment, the final median visual acuity was also significantly higher in eyes treated with bevacizumab (p = 0.025). CONCLUSION This pilot study provides preliminary evidence that bevacizumab may reduce the risk of PVR-related recurrent RRD and improve visual outcomes in high-risk patients selected by laser flare photometry.
Collapse
Affiliation(s)
- Marie Gahon
- Department of Ophthalmology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Amandine Luc
- Methodology, Promotion and Investigation Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | | | - Geoffrey Pastor
- Department of Ophthalmology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Karine Angioi-Duprez
- Department of Ophthalmology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Nathalie Thilly
- Methodology, Promotion and Investigation Department, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Paul Berrod
- Department of Ophthalmology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| | - Jean-Baptiste Conart
- Department of Ophthalmology, University Hospital of Nancy, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
4
|
Carpineto P, Licata AM, Ciancaglini M. Proliferative Vitreoretinopathy: A Reappraisal. J Clin Med 2023; 12:5287. [PMID: 37629329 PMCID: PMC10455099 DOI: 10.3390/jcm12165287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Proliferative vitreoretinopathy (PVR) remains the main cause of failure after retinal detachment (RD) surgery. Despite the development of modern technologies and sophisticated techniques for the management of RD, the growth of fibrocellular membranes within the vitreous cavity and on both sides of the retinal surface, as well as intraretinal fibrosis, can compromise surgical outcomes. Since 1983, when the term PVR was coined by the Retina Society, a lot of knowledge has been obtained about the physiopathology and risk factors of PVR, but, despite the proposal of a lot of therapeutic challenges, surgical skills seem to be the only effective way to manage PVR complications.
Collapse
Affiliation(s)
- Paolo Carpineto
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Arturo Maria Licata
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Ciancaglini
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| |
Collapse
|
5
|
Ferro Desideri L, Zandi S, Zinkernagel MS, Anguita R. Challenges in proliferative vitreoretinopathy: is biological therapy a solution? Expert Opin Biol Ther 2023; 23:937-939. [PMID: 37581430 DOI: 10.1080/14712598.2023.2248881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Lorenzo Ferro Desideri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Souska Zandi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Photographic Reading Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rodrigo Anguita
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Vitreoretinal department, Moorfields Eye Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Hasanpour H, Kenney MC, Kuppermann BD, Esfahani MR, Kanavi MR, Singh MK, Soheilian M. Vitreal Concentrations of Vascular Endothelial Growth Factor in Patients with Rhegmatogenous Retinal Detachment. J Clin Med 2023; 12:jcm12041259. [PMID: 36835796 PMCID: PMC9961416 DOI: 10.3390/jcm12041259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study is to evaluate the concentration of vascular endothelial growth factor (VEGF) in the vitreous humor of patients with primary rhegmatogenous retinal detachment (RRD). This is a prospective case control study. Eighteen patients with primary RRD without proliferative vitreoretinopathy C (PVR C) were enrolled as cases, and twenty-two non-diabetic retinopathy patients who were candidates for complete pars plana vitrectomy due to Macular Hole or Epiretinal Membrane were included as the control group. Undiluted vitreal samples were collected during the initiation of Pars Plana Vitrectomy (PPV) prior to any infusion into the posterior cavity. Vitreous samples were also collected from 21 fresh cadaveric globes. The vitreous concentration of VEGF was measured by enzyme-linked immunosorbent assay (ELISA) technique and compared between these two groups. The vitreal concentration of VEGF was 0.643 ± 0.088 ng/mL in the RRD group. Measured concentrations of VEGF in controls were 0.043 ± 0.104 ng/mL, and in cadaveric eyes they were 0.033 ± 0.058 ng/mL. The mean VEGF concentration in the RRD group was statistically higher than in the control group (p < 0.0001) and cadaveric eyes (p < 0.0001). Our study shows that vitreal VEGF concentrations significantly increase in patients with RRD.
Collapse
Affiliation(s)
- Hossein Hasanpour
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Mitochondrial Research, Gavin Herbert Eye Institute Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: (H.H.); (M.C.K.)
| | - Maria Cristina Kenney
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Mitochondrial Research, Gavin Herbert Eye Institute Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Correspondence: (H.H.); (M.C.K.)
| | - Baruch D. Kuppermann
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Mohammad Riazi Esfahani
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran 15167-45811, Iran
| | - Mithalesh Kumar Singh
- Gavin Herbert Eye Institute, Department of Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
- Mitochondrial Research, Gavin Herbert Eye Institute Ophthalmology, University of California Irvine, Irvine, CA 92697, USA
| | - Masoud Soheilian
- Ophthalmic Research Center, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran 15167-45811, Iran
| |
Collapse
|
7
|
NFκB-Mediated Expression of Phosphoinositide 3-Kinase δ Is Critical for Mesenchymal Transition in Retinal Pigment Epithelial Cells. Cells 2023; 12:cells12020207. [PMID: 36672142 PMCID: PMC9857235 DOI: 10.3390/cells12020207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) plays a vital role in a variety of human diseases including proliferative vitreoretinopathy (PVR), in which retinal pigment epithelial (RPE) cells play a key part. Transcriptomic analysis showed that the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway was up-regulated in human RPE cells upon treatment with transforming growth factor (TGF)-β2, a multifunctional cytokine associated with clinical PVR. Stimulation of human RPE cells with TGF-β2 induced expression of p110δ (the catalytic subunit of PI3Kδ) and activation of NFκB/p65. CRISPR-Cas9-mediated depletion of p110δ or NFκB/p65 suppressed TGF-β2-induced fibronectin expression and activation of Akt as well as migration of these cells. Intriguingly, abrogating expression of NFκB/p65 also blocked TGF-β2-induced expression of p110δ, and luciferase reporter assay indicated that TGF-β2 induced NFκB/p65 binding to the promoter of the PIK3CD that encodes p110δ. These data reveal that NFκB/p65-mediated expression of PI3Kδ is essential in human RPE cells for TGF-β2-induced EMT, uncovering hindrance of TGF-β2-induced expression of p110δ as a novel approach to inhibit PVR.
Collapse
|
8
|
Prasad M, Xu J, Agranat JS, Xia W, Daley S, Ness S, Chen X, Siegel NH, Stein TD, Chung J, Subramanian ML. Upregulation of Neuroinflammatory Protein Biomarkers in Acute Rhegmatogenous Retinal Detachments. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010118. [PMID: 36676067 PMCID: PMC9862737 DOI: 10.3390/life13010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
The purpose of this study is to characterize the inflammatory cytokine profile in rhegmatogenous retinal detachments (RRDs) compared to surgical controls. Vitreous humor was collected from patients undergoing vitrectomy for RRD and noninflammatory vitreoretinal diseases. A quantitative immunoassay was used to measure the levels of 36 cytokine markers. Linear regression analysis with the duration of detachment as the predictor and log-transformed cytokine levels as the outcome was conducted for normally distributed cytokines as determined by the Shapiro-Wilk test. The analysis was adjusted for age, sex, and race. The Kruskal-Wallis test was used for cytokines not normally distributed. Twenty-seven RRD cases and thirteen control cases were studied. Between all RRDs and controls, fibroblast growth factor 2 (FGF2) (p = 0.0029), inducible protein-10(IP-10) (p = 0.0021), monocyte chemoattractant protein-1 (MCP-1) (p = 0.0040), interleukin (IL)-16 (p = 0.018), IL-8 (p = 0.0148), IL-6 (p = 0.0071), eotaxin (p = 0.0323), macrophage inflammatory protein (MIP)-1 alpha (p = 0.0149), MIP-1 beta (p = 0.0032), and the thymus and activation regulated cytokine (TARC) (p = 0.0121) were elevated in RRD cases. Between acute RRDs (n = 16) and controls, FGF2 (p = 0.0001), IP10 (p = 0.0027), MCP-1 (p = 0.0015), MIP-1β (p = 0.0004), IL-8 (p = 0.0146), and IL-6 (p = 0.0031) were elevated. Determining alterations in inflammatory cytokine profiles may aid in understanding their impact on RRD development, clinical course, and complications before and after surgical repair.
Collapse
Affiliation(s)
- Minali Prasad
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Jia Xu
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Joshua S. Agranat
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Weiming Xia
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Geriatric Research Education and Clinical Center, VA Bedford Healthcare System, Bedford, MA 01730, USA
| | - Sarah Daley
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
- Geriatric Research Education and Clinical Center, VA Bedford Healthcare System, Bedford, MA 01730, USA
| | - Steven Ness
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Xuejing Chen
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Nicole H. Siegel
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
| | - Thor D. Stein
- Laboratory Medicine, Department of Pathology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Bedford Healthcare System, Bedford, MA 01730, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Manju L. Subramanian
- Department of Ophthalmology, Boston University School of Medicine & Boston Medical Center, Boston, MA 02118, USA
- Correspondence: ; Tel.: +617-414-2020
| |
Collapse
|
9
|
Dos Santos FM, Ciordia S, Mesquita J, de Sousa JPC, Paradela A, Tomaz CT, Passarinha LAP. Vitreous humor proteome: unraveling the molecular mechanisms underlying proliferative and neovascular vitreoretinal diseases. Cell Mol Life Sci 2022; 80:22. [PMID: 36585968 PMCID: PMC11072707 DOI: 10.1007/s00018-022-04670-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 12/12/2022] [Indexed: 01/01/2023]
Abstract
Proliferative diabetic retinopathy (PDR), proliferative vitreoretinopathy (PVR), and neovascular age-related macular degeneration (nAMD) are among the leading causes of blindness. Due to the multifactorial nature of these vitreoretinal diseases, omics approaches are essential for a deeper understanding of the pathophysiologic processes underlying the evolution to a proliferative or neovascular etiology, in which patients suffer from an abrupt loss of vision. For many years, it was thought that the function of the vitreous was merely structural, supporting and protecting the surrounding ocular tissues. Proteomics studies proved that vitreous is more complex and biologically active than initially thought, and its changes reflect the physiological and pathological state of the eye. The vitreous is the scenario of a complex interplay between inflammation, fibrosis, oxidative stress, neurodegeneration, and extracellular matrix remodeling. Vitreous proteome not only reflects the pathological events that occur in the retina, but the changes in the vitreous itself play a central role in the onset and progression of vitreoretinal diseases. Therefore, this review offers an overview of the studies on the vitreous proteome that could help to elucidate some of the pathological mechanisms underlying proliferative and/or neovascular vitreoretinal diseases and to find new potential pharmaceutical targets.
Collapse
Affiliation(s)
- Fátima Milhano Dos Santos
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain.
| | - Sergio Ciordia
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Joana Mesquita
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - João Paulo Castro de Sousa
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- Department of Ophthalmology, Centro Hospitalar de Leiria, 2410-197, Leiria, Portugal
| | - Alberto Paradela
- Functional Proteomics Laboratory, Centro Nacional de Biotecnología (CNB-CSIC), Unidad de Proteomica, Calle Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Cândida Teixeira Tomaz
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal
- C4-UBI, Cloud Computing Competence Centre, University of Beira Interior, 6200-501, Covilhã, Portugal
- Chemistry Department, Faculty of Sciences, Universidade da Beira Interior, 6201-001, Covilhã, Portugal
| | - Luís António Paulino Passarinha
- Health Sciences Research Centre (CICS-UBI), Universidade da Beira Interior, 6201-001, Covilhã, Portugal.
- Associate Laboratory i4HB, Faculdade de Ciências e Tecnologia, Institute for Health and Bioeconomy, Universidade NOVA, 2819-516, Caparica, Portugal.
- UCIBIO-Applied Molecular Biosciences Unit, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- Pharmaco-Toxicology Laboratory, UBIMedical, Universidade da Beira Interior, 6200-000, Covilhã, Portugal.
| |
Collapse
|
10
|
Short-Term In Vitro ROS Detection and Oxidative Stress Regulators in Epiretinal Membranes and Vitreous from Idiopathic Vitreoretinal Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7497816. [PMID: 36567907 PMCID: PMC9788888 DOI: 10.1155/2022/7497816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 12/23/2022]
Abstract
Background A plethora of inflammatory, angiogenic, and tissue remodeling factors has been reported in idiopathic epiretinal membranes (ERMs). Herein we focused on the expression of a few mediators (oxidative, inflammatory, and angiogenic/vascular factors) by means of short-term vitreal cell cultures and biomolecular analysis. Methods Thirty-nine (39) ERMs and vitreal samples were collected at the time of vitreoretinal surgery and biomolecular analyses were performed in clear vitreous, vitreal cell pellets, and ERMs. ROS products and iNOS were investigated in adherent vitreal cells and/or ERMs, and iNOS, VEGF, Ang-2, IFNγ, IL18, and IL22 were quantified in vitreous (ELISA/Ella, IF/WB); transcripts specific for iNOS, p65NFkB, KEAP1, NRF2, and NOX1/NOX4 were detected in ERMs (PCR). Biomolecular changes were analyzed and correlated with disease severity. Results The higher ROS production was observed in vitreal cells at stage 4, and iNOS was found in ERMs and increased in the vitreous as early as at stage 3. Both iNOS and NOX4 were upregulated at all stages, while p65NFkB was increased at stage 3. iNOS and NOX1 were positively and inversely related with p65NFkB. While NOX4 transcripts were always upregulated, NRF2 was upregulated at stage 3 and inverted at stage 4. No significant changes occurred in the release of angiogenic (VEGF, Ang-2) and proinflammatory (IL18, IL22 and IFNγ) mediators between all stages investigated. Conclusions ROS production was strictly associated with iNOS and NOX4 overexpression and increased depending on ERM stadiation. The higher iNOS expression occurred as early as stage 3, with respect to p65NFkB and NRF2. These last mediators might have potential prognostic values in ERMs as representative of an underneath retinal damage.
Collapse
|
11
|
Han H, Yang Y, Liu B, Tian J, Dong L, Qi H, Zhu W, Wang J, Lei H. Chalcomoracin prevents vitreous-induced activation of AKT and migration of retinal pigment epithelial cells. J Cell Mol Med 2021; 25:9102-9111. [PMID: 34432370 PMCID: PMC8500972 DOI: 10.1111/jcmm.16590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 01/17/2023] Open
Abstract
Retinal pigment epithelial (RPE) cells are the major cell type in the epi‐ or sub‐retinal membranes in the pathogenesis of proliferative vitreoretinopathy (PVR), which is a blinding fibrotic eye disease and still short of effective medicine. The purpose of this study is to demonstrate whether Chalocomoracin (CMR), a novel purified compound from fungus‐infected mulberry leaves, is able to inhibit vitreous‐induced signalling events and cellular responses intrinsic to PVR. Our studies have revealed that the CMR IC50 for ARPE‐19 cells is 35.5 μmol/L at 72 hours, and that 5 μmol/L CMR inhibits vitreous‐induced Akt activation and p53 suppression; in addition, we have discovered that this chemical effectively blocks vitreous‐stimulated proliferation, migration and contraction of ARPE‐19 cells, suggesting that CMR is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Haote Han
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China.,Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA.,Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bing Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jingkui Tian
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Lijun Dong
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Hui Qi
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Wei Zhu
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| |
Collapse
|
12
|
Daftarian N, Baigy O, Suri F, Kanavi MR, Balagholi S, Afsar Aski S, Moghaddasi A, Nourinia R, Abtahi SH, Ahmadieh H. Intravitreal connective tissue growth factor neutralizing antibody or bevacizumab alone or in combination for prevention of proliferative vitreoretinopathy in an experimental model. Exp Eye Res 2021; 208:108622. [PMID: 34022176 DOI: 10.1016/j.exer.2021.108622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Connective tissue growth factor (CTGF) is released by retinal pigment epithelial (RPE) cells and detectable in proliferative membranes (PrMs). This experimental study was performed to investigate the mRNA and protein levels of both CTGF and vascular endothelial growth factor A (VEGF-A) in a rabbit model of proliferative vitreoretinopathy (PVR). In addition, the effects of a single intravitreal injection of the safe dose of anti-CTGF or bevacizumab as monotherapy and in combination were evaluated. PVR was induced in the right eye of albino rabbits by intravitreal injection of cultured adult human RPE cells. Quantitative real-time reverse transcription PCR (qRT-PCR) and Western blot analysis of CTGF and VEGF-A were performed on whole eye tissue in the PVR model versus controls at different time points. In the next step, the PVR models were assigned to five groups. The monotherapy groups received a single intravitreal injection of 0.1 ml of anti-CTGF 100 μg/ml (final concentration of 6.6 μg/ml in the vitreous) or 0.03 ml of 25 mg/ml bevacizumab. In the combined group, the abovementioned amounts of anti-CTGF and bevacizumab were injected intravitreally from separate sites in one session. No antibody injection was performed in the control group. Intravitreal injection of 0.1 ml of control IgG (1 mg/ml of isotype matched) antibody was performed in the placebo group. After 2 weeks, histologic evaluation including, trichrome staining for collagen, immunostaining by anti-alpha-smooth muscle actin for myofibroblasts, and anti-collagen type-1 antibody on paraffin embedded anterior-posterior sections was done. In addition, fundus photography was performed for clinically equivalent PVR staging. Twenty-four hours following PVR induction, CTGF mRNA and protein levels increased five- and- three-fold compared to controls, respectively (P < 0.001). VEGF-A mRNA and protein levels decreased significantly after 72 h of PVR induction compared to controls (P < 0.05). Means of PrM thickness and myofibroblast cell counts significantly decreased in the anti-CTGF group (P < 0.001 and P < 0.05, respectively). The mean area of collagen type-1 fibers of PrM in the mono- and combination therapy groups that received intravitreal anti-CTGF was significantly reduced (P < 0.001); in addition, mild PVR (stage-1 and 2) formation occurred in comparison with moderate to severe PVR (stage-4 and higher) in other groups. In conclusion, we found that intravitreal injection of CTGF neutralizing antibody resulted in a reduction in PrM thickness, collagen fibers and myofibroblast density in the PVR model. CTGF inhibition may represent a potential therapeutic target for PVR.
Collapse
Affiliation(s)
- Narsis Daftarian
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omolbanin Baigy
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Suri
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Balagholi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sasha Afsar Aski
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afrooz Moghaddasi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Nourinia
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed-Hossein Abtahi
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
The Role of Intravitreal Anti-VEGF Agents in Rabbit Eye Model of Open-Globe Injury. J Ophthalmol 2021; 2021:5565178. [PMID: 33953964 PMCID: PMC8064804 DOI: 10.1155/2021/5565178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/17/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose To evaluate the effects of intravitreal anti-VEGF agents in a rabbit model of open-globe injury (OGI). Methods OGI was induced in the right eyes of 75 Belgian rabbits by making 5 mm circumferential incision placed 6 mm behind the limbus. The rabbits were divided into 4 groups: control (n = 5), OGI group (n = 40), and intravitreal Ranibizumab and Conbercept (n = 15 each). Ranibizumab or Conbercept was injected into the vitreous at 0.5 hours, 3 days, or 7 days. Vitreous fluid was collected, and levels of growth factors and cytokines were measured by enzyme-linked immunosorbent assay (ELISA). On day 28 after OGI, B scan examination and histological examination were performed to evaluate intravitreal proliferation and formation of epiretinal fibrosis. Results Vitreous levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-β), and plasminogen activator inhibitor-1 (PAI-1) were significantly increased in rabbit eyes after OGI. Compared to eyes in OGI group, anti-VEGF treatments significantly reduced these growth factors and cytokines. Among the 7 eyes examined from each group for intravitreal proliferative changes, they were found in 7 of 7 (100%) in OGI group and were decreased by Ranibizumab and Conbercept to 5 of 7 (71.4%) and 4 of 7 (57.1%), respectively. Both Ranibizumab and Conbercept inhibited epiretinal scar formation at the wound site, with Conbercept showing the greatest effect (maximal length of scar (L), LOGI = 503 ± 82.44 μm, LRanibizumab = 355 ± 43.66 μm, and LConbercept = 250.33 ± 36.02 μm). Conclusion Anti-VEGF treatments after OGI significantly attenuated the upregulation of growth factors and cytokines in the vitreous and prevented intravitreal proliferation and epiretinal scar formation and thus may protect against the development of posttraumatic complications such as proliferative vitreoretinopathy (PVR).
Collapse
|
14
|
Uslubas I, Kanli A, Kasap M, Akpinar G, Karabas L. Effect of aflibercept on proliferative vitreoretinopathy: Proteomic analysis in an experimental animal model. Exp Eye Res 2021; 203:108425. [PMID: 33417914 DOI: 10.1016/j.exer.2020.108425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 11/17/2022]
Abstract
PURPOSE The aim of this study was to monitor inflammatory, proliferative and progressive effects of proliferative vitreoretinopathy (PVR) and aflibercept treatment in dispase induced PVR rat model by proteomic analysis. MATERIAL AND METHODS A total of 35 male Long Evans pigmented rats were divided into three groups, namely, PVR (dispase+saline), PVR+aflibercept (dispase+aflibercept) and control. The PVR group received 2 μl of 0.03 IU/μl dispase and 2 μl saline, the PVR+aflibercept group received 2 μl of 0.03 IU/μl and 2 μl of 40 mg/ml aflibercept at the first day of the experiment. At the end of the 6th week all retina and vitreous specimens were collected by evisceration and transferred to the proteomics laboratory for analysis. Proteomic analysis by 2D gel electrophoresis coupled with MALDI-TOF/TOF was performed. RESULTS In the PVR and PVR+aflibercept group 16 different proteins that were identified to be differentially regulated in comparison to the control group. In the PVR+aflibercept group, ENO1, ENO2, LDH-B, PEBP-1 and GS levels were higher than the PVR group. In addition, the association of proteins such as UCHL, PEBP1, PDHB and ENO1 with PVR has been demonstrated for the first time. CONCLUSION STRING analysis elucidated the functional protein-protein interaction among the differentially regulated proteins and highlighted that those proteins mainly played roles in carbon and nucleotide metabolisms. Functional analysis of the differentially regulated proteins indicated the presence of inflammation, gliosis and retinal damage in the PVR group. Aflibercept treatment had pronounced effect on prevention of inflammation and retinal damage while causing a slight increase in gliosis. However, aflibercept treatment was not effective enough to normalize the levels of differentially regulated proteins of the PVR group. Therefore, we predict that the treatment dose of aflibercept used in this study was below of its ideal concentration and should be increased in the future studies. The differential regulation of these structural proteins in this study should shed some light to the mechanism of glial wound formation in the retina and guide future treatment modalities.
Collapse
MESH Headings
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Endopeptidases/toxicity
- Eye Proteins/metabolism
- Male
- Proteome/metabolism
- Proteomics
- Rats
- Rats, Long-Evans
- Receptors, Vascular Endothelial Growth Factor/therapeutic use
- Recombinant Fusion Proteins/therapeutic use
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vitreoretinopathy, Proliferative/chemically induced
- Vitreoretinopathy, Proliferative/drug therapy
- Vitreoretinopathy, Proliferative/metabolism
Collapse
Affiliation(s)
- Isil Uslubas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey.
| | - Aylin Kanli
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Murat Kasap
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Gurler Akpinar
- Kocaeli University School of Medicine, Department of Medical Biology, Turkey
| | - Levent Karabas
- Kocaeli University School of Medicine, Department of Ophthalmology, Turkey
| |
Collapse
|
15
|
Balogh A, Milibák T, Szabó V, Nagy ZZ, Kaarniranta K, Resch MD. Immunological biomarkers of the vitreous responsible for proliferative alteration in the different forms of retinal detachment. BMC Ophthalmol 2020; 20:491. [PMID: 33371882 PMCID: PMC7768644 DOI: 10.1186/s12886-020-01745-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Background The purpose of the study was to explore the immunological components that are responsible for the proliferative alterations in the different forms of retinal detachment (RD). Methods Vitreous fluids were collected during 23G pars plana vitrectomy from 54 eyes of 54 patients with different RD types, such as rhegmatogenous RD (RRD) without proliferative vitreoretinopathy (PVR) (n = 30), PVR (n = 16) and proliferative diabetic retinopathy (PDR) with tractional RD (n = 8). Vitreous fluids were obtained from 19 eyes with epiretinal membrane (ERM), which were used as control samples. A multiplex chemiluminescent immunoassay was performed to evaluate the concentrations of 48 cytokines, chemokines and growth factors. Results The expression levels of eotaxin, IFN-gamma, IL-6, IL-8, IL-16, MCP-1, MIF and MIP-1 beta were significantly higher in all RD groups than in the ERM group. The levels of CTACK, IP-10, SCGF-beta, and SDF-1 alpha were significantly higher in patients with diabetic tractional RD and PVR than in other patients. The upregulation of VEGF and IL-18 was detected in PDR. Conclusions Our results indicate that complex and significant immunological mechanisms are associated with the pathogenesis of different forms of RD: selected cytokines, chemokines and growth factors are upregulated in the vitreous of eyes with RD. The detected proteins are present in different concentrations both in RRD and PVR. In the presence of PVR and PDR, the majority of cytokines are upregulated; thus, they may serve as biomarkers to estimate the progression or severity level of proliferation and later to develop personalized therapeutic strategies to slow down or prevent pathological changes.
Collapse
Affiliation(s)
- Anikó Balogh
- Department of Ophthalmology, Semmelweis University, Mária u 39, Budapest, 1085, Hungary.,Department of Ophthalmology, Uzsoki Hospital Budapest, Uzsoki u. 29-41, Budapest, 1145, Hungary
| | - Tibor Milibák
- Department of Ophthalmology, Uzsoki Hospital Budapest, Uzsoki u. 29-41, Budapest, 1145, Hungary
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Mária u 39, Budapest, 1085, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária u 39, Budapest, 1085, Hungary
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Miklós D Resch
- Department of Ophthalmology, Semmelweis University, Mária u 39, Budapest, 1085, Hungary.
| |
Collapse
|
16
|
Yang Y, Huang X, Ma G, Cui J, Matsubara JA, Kazlauskas A, Zhao J, Wang J, Lei H. PDGFRβ plays an essential role in patient vitreous-stimulated contraction of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2020; 197:108116. [PMID: 32561481 DOI: 10.1016/j.exer.2020.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
Platelet-derived growth factor (PDGF) is associated with clinical proliferative vitreoretinopathy (PVR), which is characterized by formation of sub- or epi-retinal membranes that consist of cells including retinal pigment epithelial (RPE) cells and extracellular matrix. RPE cells play an important role in PVR pathogenesis. Previous findings indicated that PDGF receptor (PDGFR)α was essential in experimental PVR induced by fibroblasts. In RPE cells derived from epiretinal membranes from patients with PVR (RPEMs), Akt was activated by PDGF-B but not PDGF-A, which suggested that PDGFRβ was the predominant PDGFR isoform expressed in RPEMs. Indeed, CRISPR/Cas9-mediated depletion of PDGFRβ in RPEMs attenuated patient vitreous-induced Akt activation and cellular responses intrinsic to PVR including cell proliferation, migration, and contraction. We conclude that PDGFRβ appears to be the PVR relevant PDGFR isoform in RPEMs.
Collapse
Affiliation(s)
- Yanhui Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xionggao Huang
- Department of Ophthalmology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, PR China
| | - Gaoen Ma
- Department of Ophthalmology, The Third Hospital of Xinxiang Medical University, Xinxiang, Henan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Andrius Kazlauskas
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, USA
| | - Jun Zhao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong Province, PR China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong Province, PR China.
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong Province, PR China.
| |
Collapse
|
17
|
Balogh A, Milibák T, Szabó V, Nagy ZZ, Resch MD. Position of macula lutea and presence of proliferative vitreoretinopathy affect vitreous cytokine expression in rhegmatogenous retinal detachment. PLoS One 2020; 15:e0234525. [PMID: 32542038 PMCID: PMC7295219 DOI: 10.1371/journal.pone.0234525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022] Open
Abstract
Our purpose was to evaluate the concentrations of vitreous cytokines in patients with rhegmatogenous retinal detachment (RRD). We hypothesized that patients with macula on RRD have lower levels of cytokines compared to patients with macula off RRD and proliferative vitreoretinopathy (PVR). Vitreous fluids were collected during 23G pars plana vitrectomy from 58 eyes of 58 patients. Indication for vitrectomy included macula off and macula on RRD, PVR, and idiopathic epiretinal membrane (ERM). A multiplex chemiluminescent immunoassay was performed to measure the concentrations of 48 cytokines, chemokines, and growth factors. Levels of HGF, IL-6, IL-8, IL-16, IFN-gamma, MCP-1, and MIF were significantly higher in all groups of retinal detachment compared to ERM. Levels of CTACK, eotaxin, G-CSF, IP-10, MIG, SCF, SCGF-beta, SDF-1alpha were significantly higher in PVR compared to macula on RRD and ERM. Levels of IL-1ra, IL-5, IL-9, M-CSF, MIP-1alpha, and TRIAL were significantly higher in PVR compared to macula on RRD. Our results indicate that the position of macula lutea and the presence of PVR significantly influence vitreous cytokine expression. The detected proteins may serve as biomarkers to estimate the possibility of PVR formation and may help to invent personalized therapeutic strategies to slow down or prevent PVR.
Collapse
Affiliation(s)
- Anikó Balogh
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- Department of Ophthalmology, Uzsoki Hospital, Budapest, Hungary
| | - Tibor Milibák
- Department of Ophthalmology, Uzsoki Hospital, Budapest, Hungary
| | - Viktória Szabó
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
18
|
Xin T, Han H, Wu W, Huang X, Cui J, Matsubara JA, Song J, Wang F, Colyer M, Lei H. Idelalisib inhibits vitreous-induced Akt activation and proliferation of retinal pigment epithelial cells from epiretinal membranes. Exp Eye Res 2019; 190:107884. [PMID: 31786159 DOI: 10.1016/j.exer.2019.107884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/19/2019] [Accepted: 11/19/2019] [Indexed: 01/01/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding fibrotic eye disease that develops in 8-10% of patients who undergo primary retinal detachment-reparative surgery and in 40-60% of patients with open-globe injury. At present, there is no pharmacological treatment for this devastating disease. Vitreal growth factors activate their respective receptors of cells in the vitreous, trigger their downstream signaling transduction (e.g. phosphoinositide 3 kinases (PI3Ks)/Akt), and drive cellular responses intrinsic to the pathogenesis of PVR. PI3Ks play a central role in experimental PVR. However, which isoform(s) are involved in PVR pathogenesis remain unknown. Herein, we show that p110δ, a catalytic subunit of receptor-regulated PI3K isoform δ, is highly expressed in epiretinal membranes from patients with PVR, and that idelalisib, a specific inhibitor of PI3Kδ, effectively inhibits vitreous-induced Akt activation, proliferation, migration and contraction of retinal pigment epithelial cells derived from an epiretinal membrane of a PVR patient. Small molecules of kinase inhibitors have shown great promise as a class of therapeutics for a variety of human diseases. The data herein suggest that idelalisib is a promising PVR prophylactic.
Collapse
Affiliation(s)
- Tianyi Xin
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Haote Han
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Wenyi Wu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan Province, PR China
| | - Xionggao Huang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA; Department of Ophthalmology, Hainan Medical University, Haikou, Hainan Province, PR China
| | - Jing Cui
- The University of British Columbia, Canada
| | | | - Jingyuan Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Fang Wang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Marcus Colyer
- Department of Surgery, Walter Reed-Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Hetian Lei
- Shenzhen Eye Hospital, Shenzhen, Guangdong Province, PR China; Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, USA.
| |
Collapse
|
19
|
Wong CW, Cheung N, Ho C, Barathi V, Storm G, Wong TT. Characterisation of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy. Sci Rep 2019; 9:15419. [PMID: 31659187 PMCID: PMC6817814 DOI: 10.1038/s41598-019-51633-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
To clarify the mechanisms and their temporal relationship in the development of proliferative vitreoretinopathy (PVR), we measured vitreous levels of pro-inflammatory cytokines and growth factors in a rabbit model of PVR. PVR was surgically induced in 11 rabbit eyes by vitrectomy, retinotomy, cryotherapy and injection of platelet-rich plasma at baseline. Severity of PVR was assessed on dilated fundal examination with indirect binocular ophthalmoscopy and graded based on the revised experimental PVR classification. Severe PVR was defined as stage 5 or worse. Vitreous concentrations of interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 1 beta (IL-1 β), tumor necrosis factor beta (TNF-β), granulocyte macrophage colony stimulating factor (GM-CSF), interferon gamma (IFN-γ), C reactive protein; (CRP), placental growth factor (PlGF), platelet derived growth factor BB (PDGF-BB), vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang-2) at weeks 2, 3 and 4 were compared to baseline and correlations between the cytokines with PVR severity were assessed. Four weeks after PVR induction, 5 eyes (45.5%) had developed severe PVR. IL-8 was raised at 2 weeks post PVR induction (1.46 ± 0.48 pg/ml vs 0.53 ± 0.25 pg/ml, p = 0.04) and remained significantly elevated at week 4 (2.6 ± 3.1 pg/ml, p = 0.03). CRP was significantly raised at week 4 (34.8 ± 12.0 pg/ml vs 13.0 ± 13.1 pg/ml, p < 0.001). Among the growth factors, PDGF-BB was the earliest to show significantly elevated levels, at 3 weeks (50.4 ± 19.0 pg/ml vs 6.2 ± 10.1 pg/ml) and remained elevated at week 4 (p = 0.002), while PlGF (11.2 ± 7.7 pg/ml vs 5.3 ± 3.8 pg/ml, p = 0.002) and Ang2 (13617.0 ± 8170.2 pg/ml vs 38593.8 ± 8313.4, p = 0.02) were significantly raised at week 4. IFN-γ (p = 0.03), PDGF-BB (p = 0.02) and VEGF (p = 0.02) were significantly associated with PVR severity. We demonstrated that inflammatory cytokines IL-6, -8, elevation post PVR induction is followed by elevated levels of fibroproliferative growth factors, Ang2, PlGF, VEGF and PDGF-BB in the development of PVR. These findings will guide future studies targeting appropriate therapeutic strategies for the treatment of PVR.
Collapse
Affiliation(s)
- Chee Wai Wong
- Singapore National Eye Centre (SNEC), 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Ning Cheung
- Singapore National Eye Centre (SNEC), 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Candice Ho
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore
| | - Veluchamy Barathi
- Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS Medical School, 8 College Rd, Singapore, 169857, Singapore
| | - Gert Storm
- Department Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, PO Box 80082, 3508 TB, Utrecht, The Netherlands.,Department Biomaterials Science & Technology (BST), Section Targeted Therapeutics, University of Twente, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Tina T Wong
- Singapore National Eye Centre (SNEC), 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,Singapore Eye Research Institute, 11 Third Hospital Avenue, Singapore, 168751, Singapore. .,School of Materials Science and Engineering (MSE), Nanyang Technological University, 11 Faculty Avenue, Singapore, 639977, Singapore. .,Ophthalmology and Visual Sciences Academic Clinical Program, Duke NUS Medical School, 8 College Rd, Singapore, 169857, Singapore.
| |
Collapse
|
20
|
Garweg JG, Zandi S, Pfister I, Rieben R, Skowronska M, Tappeiner C. Cytokine profiles of phakic and pseudophakic eyes with primary retinal detachment. Acta Ophthalmol 2019; 97:e580-e588. [PMID: 30561135 PMCID: PMC6590374 DOI: 10.1111/aos.13998] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE To compare the cytokine profiles of phakic (p) and pseudophakic (ps) eyes with primary rhegmatogenous retinal detachment (RD) to eyes with macular holes (MH) and to identify differences in the specific cytokine profiles. METHODS Aqueous humour (AH) and vitreous fluid (VF) were obtained from patients with primary RD without proliferative vitreoretinopathy undergoing vitrectomy. AH and VF of patients with macular holes (MH) served as controls. Forty-three different cytokines were quantified using multiplex cytokine analysis. Intergroup and intragroup comparisons were performed. To control for multiple comparisons, Holm's correction was applied. RESULTS VF and AH samples of 71 eyes with RD (pRD N = 38; psRD N = 33) and 26 eyes with MH were included. Cytokine levels in psRD and pRD were similar (none with >10-fold difference). The levels of 39 of 43 cytokines in the VF were significantly higher in eyes with RD than in those with MH (>10-fold: CXLC5, CCL26, CCL1, IL-6, CXCL11, CCL7, CCL13, MIG/CXCL9, CCL19 and TGF-β1). In the AH, 23 of 43 cytokines were significantly higher compared to MH (>10-fold: CXCL5, IL-4, IL-6, IL-8/CXCL8 and CCL7). CONCLUSION A complex, but nonspecific cytokine environmental response seems to initiate immunological and profibrotic processes following RD. Relevant differences in the cytokine profiles of eyes with pRD and psRD were not identified, whereas cytokine differences between AH and VF in RD could be explained by upregulation in the vitreous, a higher turn around in the anterior chamber, or differences in inflammatory cascades in both compartments.
Collapse
Affiliation(s)
- Justus G. Garweg
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases Berner Augenklinik am Lindenhofspital Bern Switzerland
- Department of Ophthalmology, Inselspital Bern University Hospital University of Bern Bern Switzerland
| | - Souska Zandi
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases Berner Augenklinik am Lindenhofspital Bern Switzerland
| | - Isabel Pfister
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases Berner Augenklinik am Lindenhofspital Bern Switzerland
| | - Robert Rieben
- Department for BioMedical Research University of Bern Bern Switzerland
| | - Magdalena Skowronska
- Swiss Eye Institute and Clinic for Vitreoretinal Diseases Berner Augenklinik am Lindenhofspital Bern Switzerland
- Department for BioMedical Research University of Bern Bern Switzerland
| | - Christoph Tappeiner
- Department of Ophthalmology, Inselspital Bern University Hospital University of Bern Bern Switzerland
| |
Collapse
|
21
|
Abstract
Proliferative vitreoretinopathy (PVR) is the most common cause for failure of rhegmatogenous retinal detachment repair and is characterized by the growth and contraction of cellular membranes within the vitreous cavity and on both sides of the retinal surface as well as intraretinal fibrosis. Currently, PVR is thought to be an abnormal wound healing response that is primarily driven by inflammatory, retinal, and RPE cells. At this time, surgery is the only management option for PVR as there is no proven pharmacologic agent for the treatment or prevention of PVR. Laboratory research to better understand PVR pathophysiology and clinical trials of various agents to prevent PVR formation are ongoing.
Collapse
Affiliation(s)
- Sana Idrees
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Ajay E. Kuriyan
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
London NJS, Kaiser RS, Khan MA, Alshareef RA, Khuthaila M, Shahlaee A, Obeid A, London VA, DeCroos FC, Gupta OP, Hsu J, Vander JF, Spirn MJ, Regillo CD. Determining the effect of low-dose isotretinoin on proliferative vitreoretinopathy: the DELIVER trial. Br J Ophthalmol 2018; 103:1306-1313. [PMID: 30381390 DOI: 10.1136/bjophthalmol-2018-312839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/07/2018] [Accepted: 10/09/2018] [Indexed: 11/04/2022]
Abstract
PURPOSE To examine the effect of low-dose, oral isotretinoin in lowering the risk of proliferative vitreoretinopathy (PVR) following rhegmatogenous retinal detachment (RRD) repair. METHODS Prospective, open label, dual-cohort study with pathology-matched historical controls. The prospective experimental arms included two cohorts, composed of 51 eyes with recurrent PVR-related RRD and 58 eyes with primary RRD associated with high-risk features for developing PVR. Eyes in the experimental arms received 20 mg of isotretinoin by mouth once daily for 12 weeks starting the day after surgical repair. The primary outcome measure was single surgery anatomical success rate at 3 months following the study surgery. RESULTS The single surgery anatomic success rate was 78.4% versus 70.0% (p=0.358) in eyes with recurrent PVR-related retinal detachment exposed to isotretinoin versus historical controls, respectively. In eyes with RRD at high risk for developing PVR, the single surgery success rate was 84.5% versus 61.1% (p=0.005) for eyes exposed to isotretinoin versus historical controls, respectively. For eyes enrolled in the experimental arms, the most common isotretinoin-related side effects were dry skin/mucus membranes in 106 patients (97.2%), abnormal sleep/dreams in 4 patients (3.7%) and fatigue in 3 patients (2.8%). CONCLUSION The management and prevention of PVR is challenging and complex. At the dose and duration given in this study, oral istotretinoin may reduce the risk of PVR-associated recurrent retinal detachment in eyes with primary RRD at high risk of developing PVR.
Collapse
Affiliation(s)
- Nikolas J S London
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA .,Retina Consultants San Diego, San Diego, California, USA
| | - Richard S Kaiser
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Mohammed Ali Khan
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Rayan A Alshareef
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Khuthaila
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Abtin Shahlaee
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA.,Department of Ophthalmology, University of California San Francisco, San Francisco, USA
| | - Anthony Obeid
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | | | - Francis Char DeCroos
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Omesh P Gupta
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Jason Hsu
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - James F Vander
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Marc J Spirn
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| | - Carl D Regillo
- The Retina Service of Wills Eye Hospital, Mid Atlantic Retina, Philadelphia, Pennsylvania, USA
| |
Collapse
|
23
|
Loukovaara S, Haukka J. Repair of primary RRD - comparing pars plana vitrectomy procedure with combined phacovitrectomy with standard foldable intraocular lens implantation. Clin Ophthalmol 2018; 12:1449-1457. [PMID: 30147297 PMCID: PMC6101008 DOI: 10.2147/opth.s171451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Pars plana vitrectomy (PPV) combined with phacoemulsification and primary intraocular lens implantation can be performed for the repair of primary rhegmatogenous retinal detachment (RRD; PHACOVIT group). The safety and efficacy of this combined ophthalmic procedure on RRD surgery outcomes remain unclear compared with more conventional PPV technique alone (VITRET group). We explored the need for reoperation after primary surgical procedure in these two groups. Methods Retrospective, longitudinal, register-based cohort of RRD patients was operated in University Eye Clinic, Helsinki, Finland, during 2008–2014. The main outcome measure was reoperation rate during a postoperative follow-up period of 1 year due to retinal re-detachment, vitreous rehemorrhage, postoperative endophthalmitis, secondary pucker, macular hole or other reasons. Results We analyzed 1,690 consecutive RRD cases, out of which 1,564 patients were treated in the PPV VITRET group and 126 patients in the PHACOVIT-operated group. Risk for reoperation was 2.67 times higher in the PHACOVIT group compared to the PPV VITRET group (95% CI 1.85–3.85). Conclusion The reoperation rate was higher in RRD eyes operated with combined cataract surgery plus PPV, suggesting that RRD eyes should not primarily undergo combined PHACOVIT surgery.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland,
| | - Jari Haukka
- Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Loukovaara S, Sahanne S, Takala A, Haukka J. Statin use and vitreoretinal surgery: Findings from a Finnish population-based cohort study. Acta Ophthalmol 2018; 96:442-451. [PMID: 29338115 DOI: 10.1111/aos.13641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/12/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Vitreoretinal (VR) surgery is the third most common intraocular surgery after refractive and cataract surgery. The impact of statin therapy on VR surgery outcomes remains unclear, despite a potentially beneficial effect. We explored the association of preoperative statin therapy and the need for revitrectomy after primary vitrectomy. METHODS Our historical, population-based, register-based, VR surgery cohort consisted of 5709 patients operated in a tertiary, academic referral hospital in Finland, during 2008-2014, covering 6.5 years. Subgroup analysis was performed as follows: eyes operated due to (i) rhegmatogenous retinal detachment (RRD), (ii) VR interface diseases (macular pucker/hole), (iii) diabetic maculopathy or proliferative retinopathy, (iv) vitreous haemorrhage, (v) lens subluxation, (vi) vitreous opacities or (vii) other VR indication. The primary end-point event was revitrectomy during a postoperative follow-up period of 1 year due to retinal redetachment, vitreous rehaemorrhage, postoperative endophthalmitis, recurrent pucker or unclosed macular hole. RESULTS Rhegmatogenous retinal detachment (RRD) was the second most frequent indication of VR surgery, including 1916 patients, with 305 re-operations with rate 0.20 (95% CI 0.18-0.23) per person-year. Statin treatment in time of operation was associated with lower risk of re-operation according to relative scale (incidence rate ratio 0.72, 95% CI 0.53-0.97), but not in absolute scale (incidence rate difference -0.58, 95% CI -4.30 to 3.15 for 100 person-years). No association with statin therapy and vitrectomy outcome was observed in the other VR subgroups. CONCLUSION Use of statin treatment was associated with a 28% lower risk of revitrectomy in patients operated due to RRD. Further randomized clinical trials are highly warranted.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Department of Ophthalmology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Sari Sahanne
- Department of Anesthesiology and Intensive Care Medicine; Helsinki University Hospital; Helsinki Finland
| | - Annika Takala
- Department of Anesthesiology and Intensive Care Medicine; Helsinki University Hospital; Helsinki Finland
| | - Jari Haukka
- Department of Public Health; University of Helsinki; Helsinki Finland
| |
Collapse
|
25
|
EFFICACY OF INTRAVITREAL INJECTION OF BEVACIZUMAB IN VITRECTOMY FOR PATIENTS WITH PROLIFERATIVE VITREORETINOPATHY RETINAL DETACHMENT: A Meta-analysis of Prospective Studies. Retina 2018; 38:462-470. [PMID: 28272285 DOI: 10.1097/iae.0000000000001584] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE To evaluate the effect of intravitreal injection of bevacizumab in vitrectomy for patients with proliferative vitreoretinopathy (PVR)-related retinal detachment. METHODS The PubMed, Embase, and the Cochrane Central Register of Controlled Trials were searched from their earliest entries through October, 2016, to identify the studies that had evaluated the effects of intravitreal injection of bevacizumab in vitrectomy for eyes with PVR-related retinal detachment. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines were followed. The relevant data were analyzed using Stata 12.0 software. The weighted mean difference, relative risk, and their 95% confidence intervals were used to assess the strength of the association. RESULTS The authors' search yielded 133 records from which 3 studies that have examined the effects of intravitreal injection of bevacizumab (120 eyes with PVR-related retinal detachment) were included for review and analysis. Their meta-analyses showed that neither the best-corrected visual acuity nor retinal redetachment rate showed any clinically or statistically important difference between the nonbevacizumab and bevacizumab groups (P > 0.05). In addition, bevacizumab did not influence the interval between vitrectomy and retinal redetachment (P > 0.05). CONCLUSION Based on the available evidence, intravitreal injection of bevacizumab in vitrectomy for patients with PVR-related retinal detachment did not decrease retinal redetachment rate or improve visual acuity. Better-designed studies with larger simple sizes and longer follow-up periods are required to reach valid conclusions regarding benefits and harms. Moreover, evaluation of anti-vascular endothelial growth factor therapy on surgical outcomes in eyes with milder subtypes of PVR or no PVR, but deemed at high risk of PVR, may be worthy of future consideration.
Collapse
|
26
|
Matoba R, Morizane Y, Shiode Y, Hirano M, Doi S, Toshima S, Araki R, Hosogi M, Yonezawa T, Shiraga F. Suppressive effect of AMP-activated protein kinase on the epithelial-mesenchymal transition in retinal pigment epithelial cells. PLoS One 2017; 12:e0181481. [PMID: 28719670 PMCID: PMC5515442 DOI: 10.1371/journal.pone.0181481] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 06/30/2017] [Indexed: 01/28/2023] Open
Abstract
The epithelial-mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells plays a central role in the development of proliferative vitreoretinopathy (PVR). The purpose of this study was to investigate the effect of AMP-activated protein kinase (AMPK), a key regulator of energy homeostasis, on the EMT in RPE cells. In this study, EMT-associated formation of cellular aggregates was induced by co-stimulation of cultured ARPE-19 cells with tumor necrosis factor (TNF)-α (10 ng/ml) and transforming growth factor (TGF)-β2 (5 ng/ml). 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), a potent activator of AMPK, significantly suppressed TNF-α and TGF-β2-induced cellular aggregate formation (p < 0.01). Dipyridamole almost completely reversed the suppressive effect of AICAR, whereas 5’-amino-5’-deoxyadenosine restored aggregate formation by approximately 50%. AICAR suppressed the downregulation of E-cadherin and the upregulation of fibronectin and α-smooth muscle actin by TNF-α and TGF-β2. The levels of matrix metalloproteinase (MMP)-2, MMP-9, interleukin-6, and vascular endothelial growth factor were significantly decreased by AICAR. Activation of the mitogen-activated protein kinase and mammalian target of rapamycin pathways, but not the Smad pathway, was inhibited by AICAR. These findings indicate that AICAR suppresses the EMT in RPE cells at least partially via activation of AMPK. AMPK is a potential target molecule for the prevention and treatment of PVR, so AICAR may be a promising candidate for PVR therapy.
Collapse
Affiliation(s)
- Ryo Matoba
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Morizane
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Yusuke Shiode
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masayuki Hirano
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichiro Doi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Toshima
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoichi Araki
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mika Hosogi
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Yonezawa
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Fumio Shiraga
- Department of Ophthalmology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
27
|
Kazlauskas A. PDGFs and their receptors. Gene 2017; 614:1-7. [PMID: 28267575 DOI: 10.1016/j.gene.2017.03.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/28/2023]
Abstract
The platelet-derived growth factor (PDGF)/PDGFR receptor (PDGFR) family is essential for a vast array of physiological processes such as migration and proliferation of percityes that contribute to the formation and proper function of blood vessels. While ligand-dependent de-repression of the PDGFR's kinase activity is the major mode by which the PDGFR is activated, there are additional mechanisms to activate PDGFRs. Deregulated PDGFR activity contributes to various pathological conditions, and hence the PDGF/PDGFR family members are viable therapeutic targets. An increased appreciation of which PDGFR contributes to pathology, biomarkers that indicate the amplitude and mode of activation, and receptor-specific antagonists are necessary for the development of next-generation therapies that target the PDGF/PDGFR family.
Collapse
Affiliation(s)
- Andrius Kazlauskas
- Schepens Eye Research Institute, Massachusetts Eye and Ear Institute, 20 Staniford St, Boston, MA 02114, United States.
| |
Collapse
|
28
|
Tousi A, Hasanpour H, Soheilian M. Intravitreal Injection of Bevacizumab in Primary Vitrectomy to Decrease the Rate of Retinal Redetachment: A Randomized Pilot Study. J Ophthalmic Vis Res 2016; 11:271-6. [PMID: 27621784 PMCID: PMC5000529 DOI: 10.4103/2008-322x.188390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose: To evaluate the effect of intravitreal bevacizumab (IVB) as a surgical adjunct in prevention of proliferative vitreoretinopathy (PVR) after retinal detachment surgery. Methods: In this controlled, randomized pilot study, 27 patients with primary retinal detachment undergoing pars plana deep vitrectomy were included. Of these, 12 received IVB at the end of procedure. The anatomic success and best corrected visual acuity (BCVA) were compared to the control group at months 3 and 6 postoperatively. Results: At three month follow-up, 3 of 11 eyes (27.3%) had detached retinas in the IVB group versus 6 of 12 (50.0%) in the control group (P = 0.40). At six-month follow-up, 3 of 10 eyes (30%) had detached retinas in the IVB group versus 3 in 8 (37.5%) in the control group (P > 0.99). Mean logMAR BCVA improved significantly in both groups relative to baseline, but did not show a significant difference at three-and six-month follow-ups between the two groups. Conclusion: Our preliminary results show neither a benefit nor any harm from intervention in both anatomic and visual outcomes. Our results support conducting additional studies to evaluate the effect of intravitreal bevacizumab on postoperative PVR.
Collapse
Affiliation(s)
- Adib Tousi
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hasanpour
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soheilian
- Ocular Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Vascular Endothelial Cell Growth Factor A Acts via Platelet-Derived Growth Factor Receptor α To Promote Viability of Cells Enduring Hypoxia. Mol Cell Biol 2016; 36:2314-27. [PMID: 27325673 DOI: 10.1128/mcb.01019-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/07/2016] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial cell growth factor A (VEGF) is a biologically and therapeutically important growth factor because it promotes angiogenesis in response to hypoxia, which underlies a wide variety of both physiological and pathological settings. We report here that both VEGF receptor 2 (VEGFR2)-positive and -negative cells depended on VEGF to endure hypoxia. VEGF enhanced the viability of platelet-derived growth factor receptor α (PDGFRα)-positive and VEGFR2-negative cells by enabling indirect activation of PDGFRα, thereby reducing the level of p53. We conclude that the breadth of VEGF's influence extends beyond VEGFR-positive cells and propose a plausible mechanistic explanation of this phenomenon.
Collapse
|
30
|
Jun JH, Sohn WJ, Lee Y, Kim JY. Effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab) on lens epithelial cells. Clin Ophthalmol 2016; 10:1167-74. [PMID: 27418802 PMCID: PMC4935105 DOI: 10.2147/opth.s103443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The molecular and cellular effects of anti-vascular endothelial growth factor monoclonal antibody (bevacizumab) on lens epithelial cells (LECs) were examined using both an immortalized human lens epithelial cell line and a porcine capsular bag model. After treatment with various concentrations of bevacizumab, cell viability and proliferation patterns were evaluated using the water-soluble tetrazolium salt assay and 5-bromo-2′-deoxyuridine enzyme-linked immunosorbent assay, respectively. The scratch assay and Western blot analysis were employed to validate the cell migration pattern and altered expression levels of signaling molecules related to the epithelial–mesenchymal transition (EMT). Application of bevacizumab induced a range of altered cellular events in a concentration-dependent manner. A 0.1–2 mg/mL concentration demonstrated dose-dependent increase in proliferation and viability of LECs. However, 4 mg/mL decreased cell proliferation and viability. Cell migrations displayed dose-dependent retardation from 0.1 mg/mL bevacizumab treatment. Transforming growth factor-β2 expression was markedly increased in a dose-dependent manner, and α-smooth muscle actin, matrix metalloproteinase-9, and vimentin expression levels showed dose-dependent changes in a B3 cell line. Microscopic observation of porcine capsular bag revealed changes in cellular morphology and a decline in cell density compared to the control after 2 mg/mL treatment. The central aspect of posterior capsule showed delayed confluence, and the factors related to EMT revealed similar expression patterns to those identified in the cell line. Based on these results, bevacizumab modulates the proliferation and viability of LECs and induces morphological alterations through the modulation of expression patterns of specific factors related to the EMT.
Collapse
Affiliation(s)
- Jong Hwa Jun
- Department of Ophthalmology, School of Medicine, Dongsan Medical Center, Keimyung University
| | - Wern-Joo Sohn
- Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Oral Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
31
|
Tuuminen R, Loukovaara S. Statin medication in patients with epiretinal membrane is associated with low intravitreal EPO, TGF-beta-1, and VEGF levels. Clin Ophthalmol 2016; 10:921-8. [PMID: 27284236 PMCID: PMC4883812 DOI: 10.2147/opth.s105686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background In eyes with idiopathic epiretinal membrane (iERM), the intravitreal growth factor and cytokine levels may associate with postvitrectomy outcomes. Here, we have analyzed the perioperative intravitreal protein levels of potent vasoactive, proinflammatory, and extracellular matrix-remodeling factors in iERM eyes and evaluated the postvitrectomy outcomes. Methods This was an institutional, observational study. Eyes operated on for iERM (n=26) were analyzed according to the use of statin medication. Vitreous samples were subjected to protein measurements of angiopoietin-1 and -2, erythropoietin, transforming growth factor-β1, and vascular endothelial growth factor by enzyme-linked immunosorbent assay, and of matrix metalloproteinase-2 and -9 by gelatin zymography. One-month visual outcomes and 1-year revitrectomy rates were recorded. Results In iERM eyes of patients taking statins, intravitreal levels of erythropoietin (mean ± standard deviation, 10.8±4.9 vs 82.9±119.5 mIU/mg, P=0.003), transforming growth factor-β1 (2.3±4.7 vs 15.8±16.3 pg/mg, P=0.035), and vascular endothelial growth factor (5.5±9.9 vs 236.6±491.6 pg/mg, P=0.006) were lower than in nonstatin-treated patients. At 1-month, visual gain did not significantly differ between iERM eyes of patients with statins and those without (improvement 0.27±0.20 vs 0.16±0.38 logarithm of the minimum angle of resolution units, P=0.118). Conclusion Systemic statin therapy might have a favorable effect on intravitreal factors involved in vascular permeability, inflammation, and fibroproliferation in aging human iERM eyes.
Collapse
Affiliation(s)
- Raimo Tuuminen
- Department of Ophthalmology, Kymenlaakso Central Hospital, Kotka, Finland
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Tamiya S, Kaplan HJ. Role of epithelial–mesenchymal transition in proliferative vitreoretinopathy. Exp Eye Res 2016; 142:26-31. [DOI: 10.1016/j.exer.2015.02.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/10/2023]
|
33
|
Hsu J, Khan MA, Shieh WS, Chiang A, Maguire JI, Park CH, Garg SJ, Ho AC, Kaiser RS. Effect of Serial Intrasilicone Oil Bevacizumab Injections in Eyes With Recurrent Proliferative Vitreoretinopathy Retinal Detachment. Am J Ophthalmol 2016; 161:65-70.e1-2. [PMID: 26432568 DOI: 10.1016/j.ajo.2015.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/23/2015] [Accepted: 09/23/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE To investigate the effect of serial intrasilicone oil bevacizumab injections (1.25 mg/0.05 mL) on visual acuity (VA) and anatomic outcomes in eyes undergoing proliferative vitreoretinopathy (PVR)-related retinal detachment (RD) repair. DESIGN Prospective, nonrandomized, historical-control pilot study. METHODS setting: Tertiary care center. STUDY POPULATION Nondiabetic eyes undergoing pars plana vitrectomy (PPV) and silicone oil tamponade with or without scleral buckling procedure (SBP) for recurrent RD due to PVR. INTERVENTION Intrasilicone oil injection of 1.25 mg bevacizumab was performed intraoperatively and at postoperative months 1, 2, and 3. OUTCOMES Retinal reattachment rate, final VA, and rate of epiretinal membrane (ERM) formation at month 6. RESULTS Twenty eyes of 20 patients were enrolled and compared to a historical control group composed of 35 age- and sex-matched controls. In the study group, logMAR VA improved from mean 1.78 ± 0.43 (Snellen 20/1205) to 1.43 ± 0.70 (Snellen 20/538, P = .04), retinal reattachment was achieved in 14 of 20 eyes (70%), and ERM formation was observed in 7 of 20 eyes (35%) at 6 months. In the control group, logMAR VA improved from mean 1.50 ± 0.74 (Snellen 20/632) to 1.43 ± 0.58 (Snellen 20/538, P = .64), retinal reattachment was achieved in 25 of 35 eyes (71%), and ERM formation was observed in 7 of 35 eyes (20%) at 6 months. No significant difference in final VA (P = .96), retinal reattachment rate (P = .75), or ERM formation (P = .33) was observed between groups. No intrasilicone oil injection-related adverse events occurred. CONCLUSIONS Serial intrasilicone oil injections of bevacizumab did not improve retinal reattachment rate, improve final VA, or reduce ERM formation in patients undergoing PVR-related RD surgery.
Collapse
|
34
|
Pastor JC, Rojas J, Pastor-Idoate S, Di Lauro S, Gonzalez-Buendia L, Delgado-Tirado S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog Retin Eye Res 2015. [PMID: 26209346 DOI: 10.1016/j.preteyeres.2015.07.005] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last four decades, proliferative vitreoretinopathy (PVR) has defied the efforts of many researchers to prevent its occurrence or development. Thus, PVR is still the major complication following retinal detachment (RD) surgery and a bottle-neck for advances in cell therapy that require intraocular surgery. In this review we tried to combine basic and clinical knowledge, as an example of translational research, providing new and practical information for clinicians. PVR was defined as the proliferation of cells after RD. This idea was used for classifying PVR and also for designing experimental models used for testing many drugs, none of which were successful in humans. We summarize current information regarding the pathogenic events that follow any RD because this information may be the key for understanding and treating the earliest stages of PVR. A major focus is made on the intraretinal changes derived mainly from retinal glial cell reactivity. These responses can lead to intraretinal PVR, an entity that has not been clearly recognized. Inflammation is one of the major components of PVR, and we describe new genetic biomarkers that have the potential to predict its development. New treatment approaches are analyzed, especially those directed towards neuroprotection, which can also be useful for preventing visual loss after any RD. We also summarize the results of different surgical techniques and clinical information that is oriented toward the identification of high risk patients. Finally, we provide some recommendations for future classification of PVR and for designing comparable protocols for testing new drugs or techniques.
Collapse
Affiliation(s)
- J Carlos Pastor
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain.
| | - Jimena Rojas
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Universitario Austral, Universidad Austral, Buenos Aires, Argentina
| | - Salvador Pastor-Idoate
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Manchester Royal Eye Hospital, Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester, United Kingdom
| | - Salvatore Di Lauro
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Lucia Gonzalez-Buendia
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Santiago Delgado-Tirado
- Retina Group, IOBA (Eye Institute), University of Valladolid, Valladolid, Spain; Department of Ophthalmology, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| |
Collapse
|
35
|
Abstract
BACKGROUND Proliferative vitreoretinopathy (PVR) remains the most significant obstacle to successful retinal reattachment surgery. Preclinical studies continue to add insights into the complex molecular events leading to PVR development, helping to identify new targets for potential prophylactic or therapeutic agents. This article reviews the recent evidence supporting surgical and medical treatments for PVR. METHODS PUBMED was used for literature search. Clinical studies regarding surgical management of PVR from January 1, 2000 to August 1, 2014 were included. Clinical studies regarding medical management of PVR from January 1, 2000 to August 1, 2014 were included if the design of study was a randomized controlled trial. RESULTS Many recent studies have evaluated surgical and medical strategies for the treatment and prevention of PVR. Newer vitreoretinal surgery technology (23- and 25-gauge vitrectomy) and tamponade agents (heavy silicone oils) have been studied. Medical therapies evaluated include antiinflammatory agents, low molecular weight heparin, 5-fluorouracil, 13-cis-retinoic acid, and daunorubicin, amongst others. CONCLUSION Surgical management with pars plana vitrectomy, with or without scleral buckle or inferior retinectomy, remains an effective treatment for PVR-related detachments. Consensus regarding a preferred surgical strategy remains controversial. Many medical therapies have been studied but fail to demonstrate a statistically significant benefit in clinical trials. Further studies to clarify the efficacy of available and novel treatment options are warranted.
Collapse
|
36
|
RasGAP Promotes Autophagy and Thereby Suppresses Platelet-Derived Growth Factor Receptor-Mediated Signaling Events, Cellular Responses, and Pathology. Mol Cell Biol 2015; 35:1673-85. [PMID: 25733681 DOI: 10.1128/mcb.01248-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/24/2015] [Indexed: 11/20/2022] Open
Abstract
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) make profound contributions to both physiology and pathology. While it is widely believed that direct (PDGF-mediated) activation is the primary mode of activating PDGFRs, the discovery that they can also be activated indirectly begs the question of the relevance of the indirect mode of activating PDGFRs. In the context of a blinding eye disease, indirect activation of PDGFRα results in persistent signaling, which suppresses the level of p53 and thereby promotes viability of cells that drive pathogenesis. Under the same conditions, PDGFRβ fails to undergo indirect activation. In this paper, we report that RasGAP (GTPase-activating protein of Ras) prevented indirect activation of PDGFRβ. RasGAP, which associates with PDGFRβ but not PDGFRα, reduced the level of mitochondrion-derived reactive oxygen species, which are required for enduring activation of PDGFRs. Furthermore, preventing PDGFRβ from associating with RasGAP allowed it to signal enduringly and drive pathogenesis of a blinding eye disease. These results indicate a previously unappreciated role of RasGAP in antagonizing indirect activation of PDGFRβ, define the underlying mechanism, and raise the possibility that PDGFRβ-mediated diseases involve indirect activation of PDGFRβ.
Collapse
|
37
|
Tuuminen R, Haukka J, Loukovaara S. Statins in rhegmatogenous retinal detachment are associated with low intravitreal angiopoietin-2, VEGF and MMP-2 levels, and improved visual acuity gain in vitrectomized patients. Graefes Arch Clin Exp Ophthalmol 2014; 253:1685-93. [PMID: 25432094 DOI: 10.1007/s00417-014-2873-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/22/2014] [Accepted: 11/19/2014] [Indexed: 01/08/2023] Open
Abstract
PURPOSE In rhegmatogenous retinal detachment (RRD), intravitreal growth factors and cytokines may compromise post-vitrectomy outcomes. Here, we analysed perioperative intravitreal protein levels of potent vasoactive, pro-inflammatory, and extracellular matrix-remodelling factors in RRD eyes of patients treated with statins and evaluated post-vitrectomy outcome in the same study eyes. METHODS Institutional, retrospective, observational study of 14 patients operated on for RRD while on statins compared to patients without statin medication (n = 82). Vitreous samples were subjected to protein measurements of angiopoietin (ANGPT)-1 and -2, transforming growth factor-β1, and vascular endothelial growth factor (VEGF) by ELISA, and of matrix metalloproteinase (MMP)-2 and -9 by gelatin zymography. A 1-month best-corrected visual acuity (BCVA) gain was modelled by Student's T-test and multivariate linear regression with concomitant perioperative medication. Cumulative 12-month revitrectomy frequency was modelled by Kaplan-Meier log-rank test. RESULTS Intravitreal levels of ANGPT-2 (49.2 ± 33.1 vs. 112.8 ± 134.1 pg/ml, mean ± SD, p < 0.001), VEGF (2.3 ± 2.4 vs. 17.7 ± 57.8 pg/ml, p = 0.021), and MMP-2 (1107.1 ± 884.6 vs 1976.4 ± 970.1 AU/ml, p = 0.005) in RRD eyes of patients treated with statins were lower than in non-statin-treated controls. Patients on statins had better 1-month BCVA improvement than did those not on statins (p = 0.022), with no difference in 1-year re-vitrectomy rates. CONCLUSIONS Intravitreal levels of ANGPT-2, VEGF, factors involved in vascular permeability and inflammation, and activity of MMP-2, the factor connected with breakdown of basement membrane and fibroproliferation, were lower in RRD eyes of patients with statin treatment. At 1-month, postoperative BCVA gain was improved in statin-treated RRD eyes, suggesting that statin administration may be effective in preventing inflammation-related PVR formation.
Collapse
Affiliation(s)
- Raimo Tuuminen
- Department of Ophthalmology, Helsinki University Central Hospital, Haartmaninkatu 4 C, FI-00290, Helsinki, Finland
| | - Jari Haukka
- Hjelt Institute, Faculty of Medicine, University of Helsinki, Haartmaninkatu 4 C, FI-00290, Helsinki, Finland
| | - Sirpa Loukovaara
- Unit of Vitreoretinal Surgery, Department of Ophthalmology, Helsinki University Central Hospital, Haartmaninkatu 4 C, FI-00290, Helsinki, Finland.
| |
Collapse
|
38
|
Jung E, Kim J, Kim SH, Kim S, Cho MH. Gemigliptin, a novel dipeptidyl peptidase-4 inhibitor, exhibits potent anti-glycation properties in vitro and in vivo. Eur J Pharmacol 2014; 744:98-102. [PMID: 25448307 DOI: 10.1016/j.ejphar.2014.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 11/30/2022]
Abstract
This study evaluated the inhibitory effects of gemigliptin, a highly selective dipeptidyl peptidase-4 inhibitor, on the formation of advanced glycation end products (AGEs) and AGE cross-links with proteins in in vitro as well as in type 2 diabetic db/db mice. In in vitro assay, gemigliptin dose-dependently inhibited methylglyoxal-modified AGE-bovine serum albumin (BSA) formation (IC50=11.69 mM). AGE-collagen cross-linking assays showed that gemigliptin had a potent inhibitory effect (IC50=1.39 mM) on AGE-BSA cross-links to rat tail tendon collagen, and its activity was stronger than aminoguanidine (IC50=26.4 mM). In addition, gemigliptin directly trapped methylglyoxal in a concentration-dependent manner in vitro. To determine whether gemigliptin inhibits the in vivo glycation processes, gemigliptin (100 mg/kg/day) was orally administered into type 2 diabetic db/db mice for 12 weeks. Elevated serum levels of AGEs in db/db mice were suppressed by the administration of gemigliptin. These inhibitory effects of gemigliptin on the glycation process in both in vitro and in vivo suggest its therapeutic potential for ameliorating AGE-related diabetic complications.
Collapse
Affiliation(s)
- Eunsoo Jung
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; LG Life Sciences Ltd., R&D Park, Daejeon 305-343, Republic of Korea
| | - Junghyun Kim
- Korean Medicine Based Herbal Drug Development Group, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 305-811, Republic of Korea
| | - Sung Ho Kim
- LG Life Sciences Ltd., R&D Park, Daejeon 305-343, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Myung-Haing Cho
- Laboratory of Toxicology, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 443-270, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 151-742, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 443-270, Republic of Korea.
| |
Collapse
|
39
|
Pennock S, Haddock LJ, Mukai S, Kazlauskas A. Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3052-68. [PMID: 25261788 DOI: 10.1016/j.ajpath.2014.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/09/2014] [Accepted: 07/24/2014] [Indexed: 01/22/2023]
Abstract
Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration-approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti-VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated.
Collapse
Affiliation(s)
- Steven Pennock
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Luis J Haddock
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Shizuo Mukai
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Andrius Kazlauskas
- The Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts; Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
40
|
Proliferative vitreoretinopathy and antivascular endothelial growth factor treatment. Eye (Lond) 2014; 28:1525-6. [PMID: 25104737 DOI: 10.1038/eye.2014.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Pennock S, Haddock LJ, Eliott D, Mukai S, Kazlauskas A. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog Retin Eye Res 2014; 40:16-34. [PMID: 24412519 DOI: 10.1016/j.preteyeres.2013.12.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/23/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022]
Abstract
Proliferative vitreoretinopathy (PVR) is a blinding disorder that occurs in eyes with rhegmatogenous retinal detachment and in eyes that have recently undergone retinal detachment surgery. There are presently no treatment strategies to reduce the risk of developing PVR in eyes with retinal detachment, and surgical intervention is the only option for eyes with retinal detachment and established PVR. Given the poor visual outcome associated with the surgical treatment of PVR, considerable work has been done to identify pharmacologic agents that could antagonize the PVR process. Intensive efforts to identify molecular determinants of PVR implicate vitreal growth factors. A surprise that emerged in the course of testing the 'growth factor hypothesis' of PVR was the existence of a functional relationship amongst growth factors that engage platelet-derived growth factor (PDGF) receptor α (PDGFRα), a receptor tyrosine kinase that is key to pathogenesis of experimental PVR. Vascular endothelial cell growth factor A (VEGF), which is best known for its ability to activate VEGF receptors (VEGFRs) and induce permeability and/or angiogenesis, enables activation of PDGFRα by a wide spectrum of vitreal growth factors outside of the PDGF family (non-PDGFs) in a way that triggers signaling events that potently enhance the viability of cells displaced into vitreous. Targeting these growth factors or signaling events effectively neutralizes the bioactivity of PVR vitreous and prevents PVR in a number of preclinical models. In this review, we discuss recent conceptual advances in understanding the role of growth factors in PVR, and consider the tangible treatment strategies for clinical application.
Collapse
Affiliation(s)
- Steven Pennock
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Luis J Haddock
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Dean Eliott
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Shizuo Mukai
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Andrius Kazlauskas
- The Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
42
|
A reactive oxygen species-mediated, self-perpetuating loop persistently activates platelet-derived growth factor receptor α. Mol Cell Biol 2013; 34:110-22. [PMID: 24190966 DOI: 10.1128/mcb.00839-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet-derived growth factor (PDGF) receptors (PDGFRs) are central to a spectrum of human diseases. When PDGFRs are activated by PDGF, reactive oxygen species (ROS) and Src family kinases (SFKs) act downstream of PDGFRs to enhance PDGF-mediated tyrosine phosphorylation of various signaling intermediates. In contrast to these firmly established principles of signal transduction, much less is known regarding the recently appreciated ability of ROS and SFKs to indirectly and chronically activate monomeric PDGF receptor α (PDGFRα) in the setting of a blinding condition called proliferative vitreoretinopathy (PVR). In this context, we made a series of discoveries that substantially expands our appreciation of epigenetic-based mechanisms to chronically activate PDGFRα. Vitreous, which contains growth factors outside the PDGF family but little or no PDGFs, promoted formation of a unique SFK-PDGFRα complex that was dependent on SFK-mediated phosphorylation of PDGFRα and activated the receptor's kinase activity. While vitreous engaged a total of five receptor tyrosine kinases, PDGFRα was the only one that was activated persistently (at least 16 h). Prolonged activation of PDGFRα involved mTOR-mediated inhibition of autophagy and accumulation of mitochondrial ROS. These findings reveal that growth factor-containing biological fluids, such as vitreous, are able to tirelessly activate PDGFRα by engaging a ROS-mediated, self-perpetuating loop.
Collapse
|
43
|
Expression of VEGF-A, Otx homeobox and p53 family genes in proliferative vitreoretinopathy. Mediators Inflamm 2013; 2013:857380. [PMID: 24227910 PMCID: PMC3818919 DOI: 10.1155/2013/857380] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Proliferative vitreoretinopathy (PVR) is a severe inflammatory complication of retinal detachment. Pathological epiretinal membranes grow on the retina surface leading to contraction, and surgery fails in 5% to 10% of the cases. We evaluated the expression of VEGF-A, Otx1, Otx2, Otx3, and p53 family members from PVR specimens to correlate their role in inducing or preventing the pathology. METHODS Twelve retinal samples were taken from patients affected by PVR during therapeutic retinectomies in vitreoretinal surgery. Gene expression was evaluated using quantitative real-time reverse transcriptase PCR analysis and immunohistochemistry, using four healthy human retinae as control. RESULT Controls showed basal expression of all genes. PVR samples showed little or no expression of Otx1 and variable expression of VEGF-A, Otx2, Otx3, p53, and p63 genes. Significant correlation was found among VEGF-A, Otx2, p53, and p63 and between Otx1 and Otx3. CONCLUSIONS Otx homeobox, p53 family, and VEGF-A genes are expressed in PVR human retina. We individuated two possible pathways (VEGF-A, Otx2, p53, p63 and Otx1 and Otx3) involved in PVR progression that could influence in different manners the course of the pathology. Individuating the genetic pathways of PVR represents a novel approach to PVR therapies.
Collapse
|
44
|
Proliferative vitreoretinopathy after eye injuries: an overexpression of growth factors and cytokines leading to a retinal keloid. Mediators Inflamm 2013; 2013:269787. [PMID: 24198445 PMCID: PMC3806231 DOI: 10.1155/2013/269787] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/26/2013] [Indexed: 01/16/2023] Open
Abstract
Eye injury is a significant disabling worldwide health problem. Proliferative Vitreoretinopathy (PVR) is a common complication that develops in up to 40–60% of patients with an open-globe injury. Our knowledge about the pathogenesis of PVR has improved in the last decades. It seems that the introduction of immune cells into the vitreous, like in penetrating ocular trauma, triggers the production of growth factors and cytokines that come in contact with intra-retinal cells, like Müller cells and RPE cells. Growth factors and cytokines drive the cellular responses leading to PVR's development. Knowledge of the pathobiological and pathophysiological mechanisms involved in posttraumatic PVR is increasing the possibilities of management, and it is hoped that in the future our treatment strategies will evolve, in particular adopting a multidrug approach, and become even more effective in vision recovery. This paper reviews the current literature and clinical trial data on the pathogenesis of PVR and its correlation with ocular trauma and describes the biochemical/molecular events that will be fundamental for the development of novel treatment strategies. This literature review included PubMed articles published from 1979 through 2013. Only studies written in English were included.
Collapse
|