1
|
Hamczyk MR, Nevado RM, Gonzalo P, Andrés-Manzano MJ, Nogales P, Quesada V, Rosado A, Torroja C, Sánchez-Cabo F, Dopazo A, Bentzon JF, López-Otín C, Andrés V. Endothelial-to-Mesenchymal Transition Contributes to Accelerated Atherosclerosis in Hutchinson-Gilford Progeria Syndrome. Circulation 2024; 150:1612-1630. [PMID: 39206565 DOI: 10.1161/circulationaha.123.065768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Atherosclerosis is the main medical problem in Hutchinson-Gilford progeria syndrome, a rare premature aging disorder caused by the mutant lamin-A protein progerin. Recently, we found that limiting progerin expression to vascular smooth muscle cells (VSMCs) is sufficient to hasten atherosclerosis and death in Apoe-deficient mice. However, the impact of progerin-driven VSMC defects on endothelial cells (ECs) remained unclear. METHODS Apoe- or Ldlr-deficient C57BL/6J mice with ubiquitous, VSMC-, EC- or myeloid-specific progerin expression fed a normal or high-fat diet were used to study endothelial phenotype during Hutchinson-Gilford progeria syndrome-associated atherosclerosis. Endothelial permeability to low-density lipoproteins was assessed by intravenous injection of fluorescently labeled human low-density lipoprotein and confocal microscopy analysis of the aorta. Leukocyte recruitment to the aortic wall was evaluated by en face immunofluorescence. Endothelial-to-mesenchymal transition (EndMT) was assessed by quantitative polymerase chain reaction and RNA sequencing in the aortic intima and by immunofluorescence in aortic root sections. TGFβ (transforming growth factor β) signaling was analyzed by multiplex immunoassay in serum, by Western blot in the aorta, and by immunofluorescence in aortic root sections. The therapeutic benefit of TGFβ1/SMAD3 pathway inhibition was evaluated in mice by intraperitoneal injection of SIS3 (specific inhibitor of SMAD3), and vascular phenotype was assessed by Oil Red O staining, histology, and immunofluorescence in the aorta and the aortic root. RESULTS Both ubiquitous and VSMC-specific progerin expression in Apoe-null mice provoked alterations in aortic ECs, including increased permeability to low-density lipoprotein and leukocyte recruitment. Atherosclerotic lesions in these progeroid mouse models, but not in EC- and myeloid-specific progeria models, contained abundant cells combining endothelial and mesenchymal features, indicating extensive EndMT triggered by dysfunctional VSMCs. Accordingly, the intima of ubiquitous and VSMC-specific progeroid models at the onset of atherosclerosis presented increased expression of EndMT-linked genes, especially those specific to fibroblasts and extracellular matrix. Aorta in both models showed activation of the TGFβ1/SMAD3 pathway, a major trigger of EndMT, and treatment of VSMC-specific progeroid mice with SIS3 alleviated the aortic phenotype. CONCLUSIONS Progerin-induced VSMC alterations promote EC dysfunction and EndMT through TGFβ1/SMAD3, identifying this process as a candidate target for Hutchinson-Gilford progeria syndrome treatment. These findings also provide insight into the complex role of EndMT during atherogenesis.
Collapse
Affiliation(s)
- Magda R Hamczyk
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
| | - Rosa M Nevado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Pilar Gonzalo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - María J Andrés-Manzano
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Paula Nogales
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Víctor Quesada
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Centro de Investigación Biomédica en Red de Cáncer, Spain (V.Q.)
| | - Aránzazu Rosado
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Carlos Torroja
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Fátima Sánchez-Cabo
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Ana Dopazo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| | - Jacob F Bentzon
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
- Department of Clinical Medicine, Aarhus University, Denmark (J.F.B.)
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología, Universidad de Oviedo, Spain (M.R.H., V.Q., C.L.-O.)
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain (C.L.-O.)
- Centre de Recherche des Cordeliers, Université de Paris Cité, Sorbonne Université, INSERM U1138, France (C.L.-O.)
| | - Vicente Andrés
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Spain (M.R.H., R.M.N., P.G., M.J.A.-M., A.D., V.A.)
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (R.M.N., P.G., M.J.A.-M., P.N., A.R., C.T., F.S.-C., A.D., J.F.B., V.A.)
| |
Collapse
|
2
|
Li Q, Tintut Y, Demer LL, Vazquez-Padron RI, Bendeck MP, Hsu JJ. Collagen VIII in vascular diseases. Matrix Biol 2024; 133:64-76. [PMID: 39154854 PMCID: PMC11473120 DOI: 10.1016/j.matbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.
Collapse
Affiliation(s)
- Qian Li
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Yin Tintut
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Orthopedic Surgery, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Linda L Demer
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; Bruce W. Carter Veteran Affairs Medical Center, Miami, Florida, USA
| | - Michelle P Bendeck
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ted Rogers Heart Research Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey J Hsu
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California, USA.
| |
Collapse
|
3
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
4
|
Liu M, Liang W, Su Y, Wen Y, Qi J, Wang L, Su S, Zhao J, Shan J, Wang J. COL8A1 is a potential prognostic biomarker associated with migration, proliferation, and tumor microenvironment in glioma. Exp Cell Res 2024; 439:114076. [PMID: 38719174 DOI: 10.1016/j.yexcr.2024.114076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Glioblastoma (GBM) is a common primary central nervous system tumor. The molecular mechanisms of glioma are unknown, and the prognosis is poor. Therefore, exploring the underlying mechanisms and screening for new prognostic markers and therapeutic targets is crucial. We utilized the weighted gene co-expression network analysis (WGCNA), Differentially Expressed Genes (DEGs), and LASSO-COX analysis to identify three target genes. Next, we constructed and evaluated a prognostic model, screening out COL8A1 as a risk gene. Through a sequence of cellular functional experiments, in vivo studies, and RNA sequencing, we delved into exploring the functional effects and molecular mechanisms of COL8A1 on GBM cells. Finally, the correlation between COL8A1 and tumor immune cells and different inflammatory responses was analyzed. Immunohistochemistry experiments revealed the influence of COL8A1 on macrophage polarization. The COL8A1 expression level was associated with the grade, prognosis, and tumor microenvironment (TME) of glioma. Functional experiments showed that COL8A1 inhibited GBM cell apoptosis and promoted migration, invasion, and proliferation in vitro and in vivo. We also found that COL8A1 promotes the epithelial-mesenchymal transition process and may mediate the activation of the ERK pathway through SHC1. In addition, immune infiltration analysis showed that COL8A1 was closely associated with macrophages in glioma tissues, significantly suppressing the signaling of M1-like -type macrophages and enhancing the signaling of M2-like -type macrophages. COL8A1 was first found to be associated with prognosis, progression, and immune microenvironment of glioma and may serve as a new marker of prognosis and a therapeutic target.
Collapse
Affiliation(s)
- Mingkai Liu
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Weiye Liang
- Department of Radiology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yuling Su
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulin Wen
- Center for Health Research, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jiaming Qi
- Center for Pancreatic Cancer Research, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lili Wang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuquan Su
- Data Science Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
| | - Jie Zhao
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiajie Shan
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jian Wang
- Department of Neurobiology, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
5
|
Vo NDN, Gaßler N, Wolf G, Loeffler I. The Role of Collagen VIII in the Aging Mouse Kidney. Int J Mol Sci 2024; 25:4805. [PMID: 38732023 PMCID: PMC11084264 DOI: 10.3390/ijms25094805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
The gradual loss of kidney function due to increasing age is accompanied by structural changes such as fibrosis of the tissue. The underlying molecular mechanisms are complex, but not yet fully understood. Non-fibrillar collagen type VIII (COL8) could be a potential factor in the fibrosis processes of the aging kidney. A pathophysiological significance of COL8 has already been demonstrated in the context of diabetic kidney disease, with studies showing that it directly influences both the development and progression of renal fibrosis occurring. The aim of this study was to investigate whether COL8 impacts age-related micro-anatomical and functional changes in a mouse model. The kidneys of wild-type (Col8-wt) and COL8-knockout (Col8-ko) mice of different age and sex were characterized with regard to the expression of molecular fibrosis markers, the development of nephrosclerosis and renal function. The age-dependent regulation of COL8 mRNA expression in the wild-type revealed sex-dependent effects that were not observed with collagen IV (COL4). Histochemical staining and protein analysis of profibrotic cytokines TGF-β1 (transforming growth factor) and CTGF (connective tissue growth factor) in mouse kidneys showed significant age effects as well as interactions of the factors age, sex and Col8 genotype. There were also significant age and Col8 genotype effects in the renal function data analyzed by urinary cystatin C. In summary, the present study shows, for the first time, that COL8 is regulated in an age- and sex-dependent manner in the mouse kidney and that the expression of COL8 influences the severity of age-induced renal fibrosis and function.
Collapse
Affiliation(s)
- Ngoc Dong Nhi Vo
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Nikolaus Gaßler
- Institute of Forensic Medicine, Section Pathology, University Hospital Jena, 07745 Jena, Germany;
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| | - Ivonne Loeffler
- Department of Internal Medicine III, University Hospital Jena, 07745 Jena, Germany; (N.D.N.V.); (G.W.)
| |
Collapse
|
6
|
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy. J Transl Med 2024; 22:382. [PMID: 38659022 PMCID: PMC11040975 DOI: 10.1186/s12967-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Tumors are highly complex and heterogenous ecosystems where malignant cells interact with healthy cells and the surrounding extracellular matrix (ECM). Solid tumors contain large ECM deposits that can constitute up to 60% of the tumor mass. This supports the survival and growth of cancerous cells and plays a critical role in the response to immune therapy. There is untapped potential in targeting the ECM and cell-ECM interactions to improve existing immune therapy and explore novel therapeutic strategies. The most abundant proteins in the ECM are the collagen family. There are 28 different collagen subtypes that can undergo several post-translational modifications (PTMs), which alter both their structure and functionality. Here, we review current knowledge on tumor collagen composition and the consequences of collagen PTMs affecting receptor binding, cell migration and tumor stiffness. Furthermore, we discuss how these alterations impact tumor immune responses and how collagen could be targeted to treat cancer.
Collapse
Affiliation(s)
- Rowie Borst
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Linde Meyaard
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - M Ines Pascoal Ramos
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
7
|
Zou X, Liu Q, Guan Q, Zhao M, Zhu X, Pan Y, Liu L, Gao Z. Muscle Fiber Characteristics and Transcriptome Analysis in Slow- and Fast-Growing Megalobrama amblycephala. Genes (Basel) 2024; 15:179. [PMID: 38397169 PMCID: PMC10888202 DOI: 10.3390/genes15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Growth is an important trait in aquaculture that is influenced by various factors, among which genetic regulation plays a crucial role. Megalobrama amblycephala, one of the most important freshwater species in China, exhibits wide variations in body mass among individuals of the same age within the same pool. But the molecular mechanisms underlying wide variation in body mass remain unclear. Here, we performed muscle histological and transcriptome analysis of muscle tissues from Fast-Growing (FG) and Slow-Growing (SG) M. amblycephala at the age of 4 months old (4 mo) and 10 months old (10 mo) to elucidate its muscle development and growth mechanism. The muscle histological analysis showed smaller diameter and higher total number of muscle fibers in FG compared to SG at 4 mo, while larger diameter and total number of muscle fibers were detected in FG at 10 mo. The transcriptome analysis of muscle tissue detected 1171 differentially expressed genes (DEGs) between FG and SG at 4 mo, and 718 DEGs between FG and SG at 10 mo. Furthermore, 44 DEGs were consistently up-regulated in FG at both 4 mo and 10 mo. Up-regulated DEGs in FG at 4 mo were mainly enriched in the pathways related to cell proliferation, while down-regulated DEGs were significantly enriched in cell fusion and muscle contraction. Up-regulated DEGs in FG at 10 mo were mainly enriched in the pathways related to cell proliferation and protein synthesis. Therefore, these results provide novel insights into the molecular mechanism of M. amblycephala muscle growth at different stages, and will be of great guiding significance to promote the fast growth of M. amblycephala.
Collapse
Affiliation(s)
- Xue Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qi Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qianqian Guan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China
| |
Collapse
|
8
|
Wilson C, Thompson JM, Terrian L, Lauver AD, Flood ED, Fink GD, Sather L, Bhattacharya S, Contreras GA, Watts SW. Perivascular Adipose Tissue Remodels Only after Elevation of Blood Pressure in the Dahl SS Rat Fed a High-Fat Diet. J Vasc Res 2023; 61:26-37. [PMID: 38113863 PMCID: PMC10836923 DOI: 10.1159/000535513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023] Open
Abstract
INTRODUCTION Tunica media extracellular matrix (ECM) remodeling is well understood to occur in response to elevated blood pressure, unlike the remodeling of other tunicas. We hypothesize that perivascular adipose tissue (PVAT) is responsive to hypertension and remodels as a protective measure. METHODS The adventitia and PVAT of the thoracic aorta were used in measuring ECM genes from 5 pairs of Dahl SS male rats on 8 or 24 weeks of feeding from weaning on a control (10% Kcal fat) or high-fat (HF; 60%) diet. A PCR array of ECM genes was performed with cDNA from adventitia and PVAT after 8 and 24 weeks. A gene regulatory network of the differentially expressed genes (DEGs) (HF 2-fold > con) was created using Cytoscape. RESULTS After 8 weeks, 29 adventitia but 0 PVAT DEGs were found. By contrast, at 24 weeks, PVAT possessed 47 DEGs while adventitia had 3. Top DEGs at 8 weeks in adventitia were thrombospondin 1 and collagen 8a1. At 24 weeks, thrombospondin 1 was also a top DEG in PVAT. The transcription factor Adarb1 was identified as a regulator of DEGs in 8-week adventitia and 24-week PVAT. CONCLUSION These data support that PVAT responds biologically once blood pressure is elevated.
Collapse
Affiliation(s)
- Caitlin Wilson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Janice M. Thompson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Leah Terrian
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Adam D. Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Emma D. Flood
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gregory D. Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Lisa Sather
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Sudin Bhattacharya
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
9
|
Mahdinia E, Shokri N, Taheri AT, Asgharzadeh S, Elahimanesh M, Najafi M. Cellular crosstalk in atherosclerotic plaque microenvironment. Cell Commun Signal 2023; 21:125. [PMID: 37254185 DOI: 10.1186/s12964-023-01153-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Atherosclerosis is an underlying pathology of many vascular diseases as a result of cellular, structural and molecular dysfunctions within the sub-endothelial space. This review deals with the events involved in the formation, growth and remodeling of plaque, including the cell recruitment, cell polarization, and cell fat droplets. It also describes cross talking between endothelial cells, macrophages, and vascular smooth muscle cells, as well as the cellular pathways involved in plaque development in the plaque microenvironment. Finally, it describes the plaque structural components and the role of factors involved in the rupture and erosion of plaques in the vessel. Video Abstract.
Collapse
Affiliation(s)
- Elmira Mahdinia
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Asgharzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ghazvin University of Medical Sciences, Ghazvin, Iran
| | - Mohammad Elahimanesh
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Microbial Biotechnology Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Gnanaguru G, Tabor SJ, Bonilla GM, Sadreyev R, Yuda K, Köhl J, Connor KM. Microglia refine developing retinal astrocytic and vascular networks through the complement C3/C3aR axis. Development 2023; 150:dev201047. [PMID: 36762625 PMCID: PMC10110418 DOI: 10.1242/dev.201047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.
Collapse
Affiliation(s)
- Gopalan Gnanaguru
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Steven J. Tabor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Gracia M. Bonilla
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kentaro Yuda
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| | - Jörg Köhl
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck 23562, Germany
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kip M. Connor
- Angiogenesis Laboratory, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
11
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
12
|
Zhao Y, Mei S, Huang Y, Chen J, Zhang X, Zhang P. Integrative analysis deciphers the heterogeneity of cancer-associated fibroblast and implications on clinical outcomes in ovarian cancers. Comput Struct Biotechnol J 2022; 20:6403-6411. [PMID: 36420154 PMCID: PMC9679440 DOI: 10.1016/j.csbj.2022.11.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Accumulating evidence has recognized that cancer-associated fibroblasts (CAFs) are major players in the desmoplastic stroma of ovarian cancer, modulating tumor progression and therapeutic response. However, it is unclear regarding the signatures of CAFs could be utilized to predict the clinical outcomes of ovarian cancer patients. To fill in this gap, we explored the intratumoral compartment of ovarian cancer by analyzing the single-cell RNA-sequencing (scRNA-seq) datasets of ovarian carcinoma samples, and identified two distinct CAFs (tumor-promoting CAF_c1 subtype and myofibroblasts-like CAF_c2 subtype). The clinical significance of CAF subtypes was further validated in The Cancer Genomics Atlas (TCGA) database and other independent immunotherapy response datasets, and the results revealed that the patients with a higher expression of CAF_c1 signatures had a worse prognosis and showed a tendency of resistance to immunotherapy. This work uncovered the signatures of the CAF_c1 subtype that could serve as a novel prognostic indicator and predictive marker for immunotherapy.
Collapse
|
13
|
Vlaicu SI, Tatomir A, Fosbrink M, Nguyen V, Boodhoo D, Cudrici C, Badea TC, Rus V, Rus H. RGC-32′ dual role in smooth muscle cells and atherogenesis. Clin Immunol 2022; 238:109020. [DOI: 10.1016/j.clim.2022.109020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/16/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
|
14
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Mohabeer AL, Kroetsch JT, McFadden M, Khosraviani N, Broekelmann TJ, Hou G, Zhang H, Zhou YQ, Wang M, Gramolini AO, Mecham RP, Heximer SP, Bolz SS, Bendeck MP. Deletion of type VIII collagen reduces blood pressure, increases carotid artery functional distensibility and promotes elastin deposition. Matrix Biol Plus 2021; 12:100085. [PMID: 34693248 PMCID: PMC8517381 DOI: 10.1016/j.mbplus.2021.100085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 11/19/2022] Open
Abstract
Arterial stiffening is a significant predictor of cardiovascular disease development and mortality. In elastic arteries, stiffening refers to the loss and fragmentation of elastic fibers, with a progressive increase in collagen fibers. Type VIII collagen (Col-8) is highly expressed developmentally, and then once again dramatically upregulated in aged and diseased vessels characterized by arterial stiffening. Yet its biophysical impact on the vessel wall remains unknown. The purpose of this study was to test the hypothesis that Col-8 functions as a matrix scaffold to maintain vessel integrity during extracellular matrix (ECM) development. These changes are predicted to persist into the adult vasculature, and we have tested this in our investigation. Through our in vivo and in vitro studies, we have determined a novel interaction between Col-8 and elastin. Mice deficient in Col-8 (Col8-/-) had reduced baseline blood pressure and increased arterial compliance, indicating an enhanced Windkessel effect in conducting arteries. Differences in both the ECM composition and VSMC activity resulted in Col8-/- carotid arteries that displayed increased crosslinked elastin and functional distensibility, but enhanced catecholamine-induced VSMC contractility. In vitro studies revealed that the absence of Col-8 dramatically increased tropoelastin mRNA and elastic fiber deposition in the ECM, which was decreased with exogenous Col-8 treatment. These findings suggest a causative role for Col-8 in reducing mRNA levels of tropoelastin and the presence of elastic fibers in the matrix. Moreover, we also found that Col-8 and elastin have opposing effects on VSMC phenotype, the former promoting a synthetic phenotype, whereas the latter confers quiescence. These studies further our understanding of Col-8 function and open a promising new area of investigation related to elastin biology.
Collapse
Affiliation(s)
- Amanda L. Mohabeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey T. Kroetsch
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Ontario, Canada
| | - Meghan McFadden
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Negin Khosraviani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Guangpei Hou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Qing Zhou
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Minyao Wang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Anthony O. Gramolini
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott P. Heximer
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
| | - Steffen-Sebastian Bolz
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Toronto Centre for Microvascular Medicine at TBEP, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P. Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, Canada
- Corresponding author at: TBEP, University of Toronto, 661 University Ave, Rm. 1432, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
16
|
Ray S, Adelnia H, Ta HT. Collagen and the effect of poly-l-lactic acid based materials on its synthesis. Biomater Sci 2021; 9:5714-5731. [PMID: 34296717 DOI: 10.1039/d1bm00516b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Collagen is an important protein in various biological functions such as providing elasticity and waterproofing to the skin, structural stability to the cells in connective tissues (e.g. tendons, and bone) and stabilisation of atherosclerotic plaques. Collagen as a peptide with a peculiar triple helical structure is majorly composed of glycine and proline amino acids and is synthesised by fibroblasts via intracellular and extracellular mechanisms. Collagen plays an important role in wound healing, bone repair and plaque build-up during atherosclerosis. Various factors such as interleukins, insulin-like growth factor-I, nicotine, and glucose have been shown to influence collagen synthesis. This paper provides an overview of collagen structure, synthesis mechanisms, and the parameters that stimulate those mechanisms. Poly-l-lactic acid as a well-known biocompatible and biodegradable polymer has proved to stimulate collagen synthesis in various physical forms. As such, in this review special emphasis is laid on the effects of poly-l-lactic acid as well as its mechanism of action on collagen synthesis.
Collapse
Affiliation(s)
- Subarna Ray
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, 4111, Queensland, Australia.
| | | | | |
Collapse
|
17
|
Takeda H, Nagai S, Ikeda D, Kaneko S, Tsuji T, Fujita N. Collagen profiling of ligamentum flavum in patients with lumbar spinal canal stenosis. J Orthop Sci 2021; 26:560-565. [PMID: 32753253 DOI: 10.1016/j.jos.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Although several causes of ligamentum flavum (LF) hypertrophy have been identified, the pathomechanisms underlying LF hypertrophy are not fully understood. Because collagen fibers are essential for the maintenance of LF tissues, characterization of the collagen composition of hypertrophied LF may help to elucidate the pathology of lumbar spinal canal stenosis (LCS). This study aimed to determine the association between the collagen composition and LF hypertrophy. METHODS LF tissues were collected from 23 patients who underwent spinal decompression surgery for lumbar disorders. The cross-sectional area of LF was measured using the axial images of lumbar MRI. The expression of each collagen in human surgical samples was evaluated by real-time RT-PCR and immunohistochemical analysis. To investigate the impact of inflammatory cytokines on the expression of each collagen, we treated primary human LF cells with TNF-α or IL-1β. RESULTS Real-time RT-PCR analysis and immunohistochemistry showed that of the 28 types of collagen, collagen type I, III, V, VI, VIII were highly expressed regardless of LF hypertrophy. In addition, we found the moderate correlation between the cross-sectional area of LF and the mRNA expression level of collagen type I, III, and VI. In vitro analysis showed that the mRNA expression of collagen type I, III, V, VI, and VIII was up-regulated by treatment with TNF-α and with IL-1β. CONCLUSION Our results suggested that collagen type I, III, V, VI, and VIII were the main components of the LF extracellular matrix and that collagen type I, III, and VI may serve as useful markers of LF hypertrophy. These findings may contribute to the future development of diagnostic and treatment modalities for LF hypertrophy and even LCS.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan; Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Sota Nagai
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Daiki Ikeda
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan
| | - Shinjiro Kaneko
- Department of Spine and Spinal Cord, Fujita Health University, Aichi, Japan
| | - Takashi Tsuji
- Department of Orthopaedic Surgery, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.
| | - Nobuyuki Fujita
- Department of Orthopaedic Surgery, School of Medicine, Fujita Health University, Aichi, Japan.
| |
Collapse
|
18
|
Bao H, Li ZT, Xu LH, Su TY, Han Y, Bao M, Liu Z, Fan YJ, Lou Y, Chen Y, Jiang ZL, Gong XB, Qi YX. Platelet-Derived Extracellular Vesicles Increase Col8a1 Secretion and Vascular Stiffness in Intimal Injury. Front Cell Dev Biol 2021; 9:641763. [PMID: 33738288 PMCID: PMC7960786 DOI: 10.3389/fcell.2021.641763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/31/2022] Open
Abstract
The arterial mechanical microenvironment, including stiffness, is a crucial pathophysiological feature of vascular remodeling, such as neointimal hyperplasia after carotid endarterectomy and balloon dilatation surgeries. In this study, we examined changes in neointimal stiffness in a Sprague-Dawley rat carotid artery intimal injury model and revealed that extracellular matrix (ECM) secretion and vascular stiffness were increased. Once the endothelial layer is damaged in vivo, activated platelets adhere to the intima and may secrete platelet-derived extracellular vesicles (pEVs) and communicate with vascular smooth muscle cells (VSMCs). In vitro, pEVs stimulated VSMCs to promote collagen secretion and cell adhesion. MRNA sequencing analysis of a carotid artery intimal injury model showed that ECM factors, including col8a1, col8a2, col12a1, and elastin, were upregulated. Subsequently, ingenuity pathway analysis (IPA) was used to examine the possible signaling pathways involved in the formation of ECM, of which the Akt pathway played a central role. In vitro, pEVs activated Akt signaling through the PIP3 pathway and induced the production of Col8a1. MicroRNA (miR) sequencing of pEVs released from activated platelets revealed that 14 of the top 30 miRs in pEVs targeted PTEN, which could promote the activation of the Akt pathway. Further research showed that the most abundant miR targeting PTEN was miR-92a-3p, which promoted Col8a1 expression. Interestingly, knockdown of Col8a1 expression in vivo abrogated the increase in carotid artery stiffness and simultaneously increased the degree of neointimal hyperplasia. Our results revealed that pEVs may deliver miR-92a-3p to VSMCs to induce the production and secretion of Col8a1 via the PTEN/PIP3/Akt pathway, subsequently increasing vascular stiffness. Therefore, pEVs and key molecules may be potential therapeutic targets for treating neointimal hyperplasia.
Collapse
Affiliation(s)
- Han Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Tong Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei-Han Xu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Tong-Yue Su
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Bao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ze Liu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang-Jing Fan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zong-Lai Jiang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Bo Gong
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| |
Collapse
|
19
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 362] [Impact Index Per Article: 120.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany.,Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
20
|
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuña JM, Perez-Romero BA, Guerrero-Rodriguez JF, Martinez-Avila N, Martinez-Fierro ML. The Roles of Matrix Metalloproteinases and Their Inhibitors in Human Diseases. Int J Mol Sci 2020; 21:E9739. [PMID: 33419373 PMCID: PMC7767220 DOI: 10.3390/ijms21249739] [Citation(s) in RCA: 671] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases that have the capacity to degrade almost every component of the ECM. The degradation of the ECM is of great importance, since it is related to embryonic development and angiogenesis. It is also involved in cell repair and the remodeling of tissues. When the expression of MMPs is altered, it can generate the abnormal degradation of the ECM. This is the initial cause of the development of chronic degenerative diseases and vascular complications generated by diabetes. In addition, this process has an association with neurodegeneration and cancer progression. Within the ECM, the tissue inhibitors of MMPs (TIMPs) inhibit the proteolytic activity of MMPs. TIMPs are important regulators of ECM turnover, tissue remodeling, and cellular behavior. Therefore, TIMPs (similar to MMPs) modulate angiogenesis, cell proliferation, and apoptosis. An interruption in the balance between MMPs and TIMPs has been implicated in the pathophysiology and progression of several diseases. This review focuses on the participation of both MMPs (e.g., MMP-2 and MMP-9) and TIMPs (e.g., TIMP-1 and TIMP-3) in physiological processes and on how their abnormal regulation is associated with human diseases. The inclusion of current strategies and mechanisms of MMP inhibition in the development of new therapies targeting MMPs was also considered.
Collapse
Affiliation(s)
| | - Idalia Garza-Veloz
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| | | | | | | | | | | | - Margarita L Martinez-Fierro
- Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Carretera Zacatecas-Guadalajara Km.6. Ejido la Escondida, Zacatecas 98160, Mexico; (G.AC.-P.); (C.C.-D.l.R.); (J.MR.-A.); (B.AP.-R.); (J.FG.-R.); (N.M.-A.)
| |
Collapse
|
21
|
Zhang L, Jiang X, Li Y, Fan Q, Li H, Jin L, Li L, Jin Y, Zhang T, Mao Y, Hua D. Clinical Correlation of Wnt2 and COL8A1 With Colon Adenocarcinoma Prognosis. Front Oncol 2020; 10:1504. [PMID: 32983993 PMCID: PMC7484937 DOI: 10.3389/fonc.2020.01504] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Wnt2 mRNA is widely expressed in various tumor tissues. Wnt2 overexpression promotes tumor growth, migration, invasion, and metastasis. However, its underlying molecular action mechanisms and clinical implications in colon adenocarcinoma (COAD) remain unclear. mRNA expression data, obtained from tissue samples, and pathophysiological data of 368 COAD patients were obtained from the Cancer Genome Atlas (TCGA) database. Further, Pearson's correlation analysis was performed to explore the correlation between the expression levels of Wnt2 and other genes in the human genome. Subsequently, a protein-protein interaction (PPI) network was constructed for hub gene identification. Overall survival and significance were determined by Kaplan-Meier analysis, and the log-rank test was used to further identify genes with prognostic significance in COAD from GEO datasets (GSE17538 and GSE39582). Subsequently, 158 tissue samples from Affiliated Hospital of Jiangnan University were used for expression verification. Gene set enrichment analysis (GSEA) was performed on high and low Wnt2 expression datasets to identify potential signaling pathways activated in COAD. In all, 10 hub genes associated with Wnt2 were screened by Pearson's correlation analysis and PPI network, with Wnt2 and COL8A1 having significantly poor prognosis by Kaplan-Meier analysis and log-rank test. Furthermore, high expressions of COL8A1 and Wnt2 were associated with poor survival both in TCGA and GEO cohorts. We further found a correlation between the expressions of Wnt2 and COL8A1 in COAD as per immunohistochemical analysis. To further elucidate the underlying molecular mechanisms of Wnt2 in COAD, we searched for pathways enriched in Wnt2 overexpressing datasets by GSEA. Our findings revealed that high Wnt2 levels were significantly associated with extracellular matrix receptor and focal adhesion pathways. Wnt2 expression correlated with COL8A1 expression in COAD; patients with high Wnt2 and COL8A1 expressions had worse survival outcomes. Pathways identified in this study prompt the molecular role of Wnt2 in COAD and provide directions to further elucidate the involved molecular mechanisms in COAD.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.,Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Xin Jiang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yan Li
- Department of Pharmacy, Maternal and Child Health Hospital of Zaozhuang, Zaozhuang, China
| | - Qianqian Fan
- Department of Gynecology, Maternal and Child Health Hospital of Zaozhuang, Zaozhuang, China
| | - Hongjuan Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Linfang Jin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liqi Li
- Department of Thyroid Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yufen Jin
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yong Mao
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Hua
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, China.,School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China.,Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Watson MG, Byrne HM, Macaskill C, Myerscough MR. A multiphase model of growth factor-regulated atherosclerotic cap formation. J Math Biol 2020; 81:725-767. [PMID: 32728827 DOI: 10.1007/s00285-020-01526-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is characterised by the growth of fatty plaques in the inner artery wall. In mature plaques, vascular smooth muscle cells (SMCs) are recruited from adjacent tissue to deposit a collagenous cap over the fatty plaque core. This cap isolates the thrombogenic plaque content from the bloodstream and prevents the clotting cascade that leads to myocardial infarction or stroke. Despite the protective role of the cap, the mechanisms that regulate cap formation and maintenance are not well understood. It remains unclear why some caps become stable, while others become vulnerable to rupture. We develop a multiphase PDE model with non-standard boundary conditions to investigate collagen cap formation by SMCs in response to diffusible growth factor signals from the endothelium. Platelet-derived growth factor stimulates SMC migration, proliferation and collagen degradation, while transforming growth factor (TGF)-[Formula: see text] stimulates SMC collagen synthesis and inhibits collagen degradation. The model SMCs respond haptotactically to gradients in the collagen phase and have reduced rates of migration and proliferation in dense collagenous tissue. The model, which is parameterised using in vivo and in vitro experimental data, reproduces several observations from plaque growth in mice. Numerical and analytical results demonstrate that a stable cap can be formed by a relatively small SMC population and emphasise the critical role of TGF-[Formula: see text] in effective cap formation. These findings provide unique insight into the mechanisms that may lead to plaque destabilisation and rupture. This work represents an important step towards the development of a comprehensive in silico plaque model.
Collapse
Affiliation(s)
- Michael G Watson
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia.
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | - Mary R Myerscough
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Lightbody RJ, Taylor JMW, Dempsie Y, Graham A. MicroRNA sequences modulating inflammation and lipid accumulation in macrophage “foam” cells: Implications for atherosclerosis. World J Cardiol 2020; 12:303-333. [PMID: 32843934 PMCID: PMC7415235 DOI: 10.4330/wjc.v12.i7.303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Accumulation of macrophage “foam” cells, laden with cholesterol and cholesteryl ester, within the intima of large arteries, is a hallmark of early “fatty streak” lesions which can progress to complex, multicellular atheromatous plaques, involving lipoproteins from the bloodstream and cells of the innate and adaptive immune response. Sterol accumulation triggers induction of genes encoding proteins mediating the atheroprotective cholesterol efflux pathway. Within the arterial intima, however, this mechanism is overwhelmed, leading to distinct changes in macrophage phenotype and inflammatory status. Over the last decade marked gains have been made in understanding of the epigenetic landscape which influence macrophage function, and in particular the importance of small non-coding micro-RNA (miRNA) sequences in this context. This review identifies some of the miRNA sequences which play a key role in regulating “foam” cell formation and atherogenesis, highlighting sequences involved in cholesterol accumulation, those influencing inflammation in sterol-loaded cells, and novel sequences and pathways which may offer new strategies to influence macrophage function within atherosclerotic lesions.
Collapse
Affiliation(s)
- Richard James Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Janice Marie Walsh Taylor
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Yvonne Dempsie
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| |
Collapse
|
24
|
Forte E, Skelly DA, Chen M, Daigle S, Morelli KA, Hon O, Philip VM, Costa MW, Rosenthal NA, Furtado MB. Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice. Cell Rep 2020; 30:3149-3163.e6. [PMID: 32130914 PMCID: PMC7059115 DOI: 10.1016/j.celrep.2020.02.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 12/08/2019] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiac ischemia leads to the loss of myocardial tissue and the activation of a repair process that culminates in the formation of a scar whose structural characteristics dictate propensity to favorable healing or detrimental cardiac wall rupture. To elucidate the cellular processes underlying scar formation, here we perform unbiased single-cell mRNA sequencing of interstitial cells isolated from infarcted mouse hearts carrying a genetic tracer that labels epicardial-derived cells. Sixteen interstitial cell clusters are revealed, five of which were of epicardial origin. Focusing on stromal cells, we define 11 sub-clusters, including diverse cell states of epicardial- and endocardial-derived fibroblasts. Comparing transcript profiles from post-infarction hearts in C57BL/6J and 129S1/SvImJ inbred mice, which displays a marked divergence in the frequency of cardiac rupture, uncovers an early increase in activated myofibroblasts, enhanced collagen deposition, and persistent acute phase response in 129S1/SvImJ mouse hearts, defining a crucial time window of pathological remodeling that predicts disease outcome.
Collapse
Affiliation(s)
- Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.
| | | | - Mandy Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Olivia Hon
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW72BX, UK
| | | |
Collapse
|
25
|
Shi L, Ji Q, Liu L, Shi Y, Lu Z, Ye J, Zeng T, Xue Y, Yang Z, Liu Y, Lu J, Huang X, Qin Q, Li T, Lin Y. IL-22 produced by Th22 cells aggravates atherosclerosis development in ApoE -/- mice by enhancing DC-induced Th17 cell proliferation. J Cell Mol Med 2020; 24:3064-3078. [PMID: 32022386 PMCID: PMC7077608 DOI: 10.1111/jcmm.14967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Th22 cells are a novel subset of CD4+ T cells that primarily mediate biological effects through IL-22, with both Th22 cells and IL-22 being closely associated with multiple autoimmune and chronic inflammatory diseases. In this study, we investigated whether and how Th22 cells affect atherosclerosis. ApoE-/- mice and age-matched C57BL/6J mice were fed a Western diet for 0, 4, 8 or 12 weeks. The results of dynamic analyses showed that Th22 cells, which secrete the majority of IL-22 among the known CD4+ cells, play a major role in atherosclerosis. ApoE-/- mice fed a Western diet for 12 weeks and administered recombinant mouse IL-22 (rIL-22) developed substantially larger plaques in both the aorta and aortic root and higher levels of CD3+ T cells, CD68+ macrophages, collagen, IL-6, Th17 cells, dendritic cells (DCs) and pSTAT3 but lower smooth muscle cell (SMC) α-actin expression than the control mice. Treatment with a neutralizing anti-IL-22 monoclonal antibody (IL-22 mAb) reversed the above effects. Bone marrow-derived DCs exhibited increased differentiation into mature DCs following rIL-22 and ox-LDL stimulation. IL-17 and pSTAT3 were up-regulated after stimulation with IL-22 and ox-LDL in cells cocultured with CD4+ T cells and mature DC supernatant, but this up-regulation was significantly inhibited by IL-6mAb or the cell-permeable STAT3 inhibitor S31-201. Thus, Th22 cell-derived IL-22 aggravates atherosclerosis development through a mechanism that is associated with IL-6/STAT3 activation, DC-induced Th17 cell proliferation and IL-22-stimulated SMC dedifferentiation into a synthetic phenotype.
Collapse
Affiliation(s)
- Lei Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qingwei Ji
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ling Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying Shi
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zhengde Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jing Ye
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tao Zeng
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yan Xue
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Zicong Yang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Yu Liu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jianyong Lu
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Xinshun Huang
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Qiuwen Qin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Tianzhu Li
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Ying‐zhong Lin
- Department of CardiologyThe People's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| |
Collapse
|
26
|
Hauck JS, Lowe J, Rastogi N, McElhanon KE, Petrosino JM, Peczkowski KK, Chadwick AN, Zins JG, Accornero F, Janssen PML, Weisleder NL, Rafael-Fortney JA. Mineralocorticoid receptor antagonists improve membrane integrity independent of muscle force in muscular dystrophy. Hum Mol Genet 2020; 28:2030-2045. [PMID: 30759207 DOI: 10.1093/hmg/ddz039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022] Open
Abstract
Mineralocorticoid receptor (MR) drugs have been used clinically for decades to treat cardiovascular diseases. MR antagonists not only show preclinical efficacy for heart in Duchenne muscular dystrophy (DMD) models but also improve skeletal muscle force and muscle membrane integrity. The mechanisms of action of MR antagonists in skeletal muscles are entirely unknown. Since MR are present in many cell types in the muscle microenvironment, it is critical to define cell-intrinsic functions in each cell type to ultimately optimize antagonist efficacy for use in the widest variety of diseases. We generated a new conditional knockout of MR in myofibers and quantified cell-intrinsic mechanistic effects on functional and histological parameters in a DMD mouse model. Skeletal muscle MR deficiency led to improved respiratory muscle force generation and less deleterious fibrosis but did not reproduce MR antagonist efficacy on membrane susceptibility to induced damage. Surprisingly, acute application of MR antagonist to muscles led to improvements in membrane integrity after injury independent of myofiber MR. These data demonstrate that MR antagonists are efficacious to dystrophic skeletal muscles through both myofiber intrinsic effects on muscle force and downstream fibrosis and extrinsic functions on membrane stability. MR antagonists may therefore be applicable for treating more general muscle weakness and possibly other conditions that result from cell injuries.
Collapse
Affiliation(s)
| | | | | | - Kevin E McElhanon
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Jennifer M Petrosino
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | | | | | - Federica Accornero
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | | - Noah L Weisleder
- Department of Physiology and Cell Biology.,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
| | | |
Collapse
|
27
|
Allahverdian S, Ortega C, Francis GA. Smooth Muscle Cell-Proteoglycan-Lipoprotein Interactions as Drivers of Atherosclerosis. Handb Exp Pharmacol 2020; 270:335-358. [PMID: 33340050 DOI: 10.1007/164_2020_364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In humans, smooth muscle cells (SMCs) are the main cell type in the artery medial layer, in pre-atherosclerotic diffuse thickening of the intima, and in all stages of atherosclerotic lesion development. SMCs secrete the proteoglycans responsible for the initial binding and retention of atherogenic lipoproteins in the artery intima, with this retention driving foam cell formation and subsequent stages of atherosclerosis. In this chapter we review current knowledge of the extracellular matrix generated by SMCs in medial and intimal arterial layers, their relationship to atherosclerotic lesion development and stabilization, how these findings correlate with mouse models of atherosclerosis, and potential therapies aimed at targeting the SMC matrix-lipoprotein interaction for atherosclerosis prevention.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Carleena Ortega
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Healthcare Research Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Arévalo-Martínez M, Cidad P, García-Mateo N, Moreno-Estar S, Serna J, Fernández M, Swärd K, Simarro M, de la Fuente MA, López-López JR, Pérez-García MT. Myocardin-Dependent Kv1.5 Channel Expression Prevents Phenotypic Modulation of Human Vessels in Organ Culture. Arterioscler Thromb Vasc Biol 2019; 39:e273-e286. [DOI: 10.1161/atvbaha.119.313492] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective:
We have previously described that changes in the expression of Kv channels associate to phenotypic modulation (PM), so that Kv1.3/Kv1.5 ratio is a landmark of vascular smooth muscle cells phenotype. Moreover, we demonstrated that the Kv1.3 functional expression is relevant for PM in several types of vascular lesions. Here, we explore the efficacy of Kv1.3 inhibition for the prevention of remodeling in human vessels, and the mechanisms linking the switch in Kv1.3 /Kv1.5 ratio to PM.
Approach and Results:
Vascular remodeling was explored using organ culture and primary cultures of vascular smooth muscle cells obtained from human vessels. We studied the effects of Kv1.3 inhibition on serum-induced remodeling, as well as the impact of viral vector-mediated overexpression of Kv channels or myocardin knock-down. Kv1.3 blockade prevented remodeling by inhibiting proliferation, migration, and extracellular matrix secretion. PM activated Kv1.3 via downregulation of Kv1.5. Hence, both Kv1.3 blockers and Kv1.5 overexpression inhibited remodeling in a nonadditive fashion. Finally, myocardin knock-down induced vessel remodeling and Kv1.5 downregulation and myocardin overexpression increased Kv1.5, while Kv1.5 overexpression inhibited PM without changing myocardin expression.
Conclusions:
We demonstrate that Kv1.5 channel gene is a myocardin-regulated, vascular smooth muscle cells contractile marker. Kv1.5 downregulation upon PM leaves Kv1.3 as the dominant Kv1 channel expressed in dedifferentiated cells. We demonstrated that the inhibition of Kv1.3 channel function with selective blockers or by preventing Kv1.5 downregulation can represent an effective, novel strategy for the prevention of intimal hyperplasia and restenosis of the human vessels used for coronary angioplasty procedures.
Collapse
Affiliation(s)
- Marycarmen Arévalo-Martínez
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Pilar Cidad
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Nadia García-Mateo
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Sara Moreno-Estar
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Julia Serna
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
| | - Mirella Fernández
- Cardiovascular Surgery Department, Hospital Clínico Universitario de Valladolid, Spain (M.F.)
| | - Karl Swärd
- Department of Experimental Medical Science, University of Lund, Sweden (K.S.)
| | - María Simarro
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
- Departamento de Enfermería, Universidad de Valladolid, Spain (M.S.)
| | - Miguel A. de la Fuente
- Instituto de Biología y Genética Molecular (IBGM), CSIC, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., M.S., M.A.d.l.F.)
- Departamento de Biología Celular, Universidad de Valladolid, Spain (M.A.d.l.F.)
| | - José R. López-López
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
| | - M. Teresa Pérez-García
- From the Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Spain (M.A.-M., P.C., N.G.-M., S.M.-E., J.S., J.R.L.-L., M.T.P.-G.)
| |
Collapse
|
29
|
Hauck JS, Howard ZM, Lowe J, Rastogi N, Pico MG, Swager SA, Petrosino JM, Gomez-Sanchez CE, Gomez-Sanchez EP, Accornero F, Rafael-Fortney JA. Mineralocorticoid Receptor Signaling Contributes to Normal Muscle Repair After Acute Injury. Front Physiol 2019; 10:1324. [PMID: 31736768 PMCID: PMC6830343 DOI: 10.3389/fphys.2019.01324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/03/2019] [Indexed: 01/11/2023] Open
Abstract
Acute skeletal muscle injury is followed by a temporal response of immune cells, fibroblasts, and muscle progenitor cells within the muscle microenvironment to restore function. These same cell types are repeatedly activated in muscular dystrophy from chronic muscle injury, but eventually, the regenerative portion of the cycle is disrupted and fibrosis replaces degenerated muscle fibers. Mineralocorticoid receptor (MR) antagonist drugs have been demonstrated to increase skeletal muscle function, decrease fibrosis, and directly improve membrane integrity in muscular dystrophy mice, and therefore are being tested clinically. Conditional knockout of MR from muscle fibers in muscular dystrophy mice also improves skeletal muscle function and decreases fibrosis. The mechanism of efficacy likely results from blocking MR signaling by its endogenous agonist aldosterone, being produced at high local levels in regions of muscle damage by infiltrating myeloid cells. Since chronic and acute injuries share the same cellular processes to regenerate muscle, and MR antagonists are clinically used for a wide variety of conditions, it is crucial to define the role of MR signaling in normal muscle repair after injury. In this study, we performed acute injuries using barium chloride injections into tibialis anterior muscles both in myofiber MR conditional knockout mice on a wild-type background (MRcko) and in MR antagonist-treated wild-type mice. Steps of the muscle regeneration response were analyzed at 1, 4, 7, or 14 days after injury. Presence of the aldosterone synthase enzyme was also assessed during the injury repair process. We show for the first time aldosterone synthase localization in infiltrating immune cells of normal skeletal muscle after acute injury. MRcko mice had an increased muscle area infiltrated by aldosterone synthase positive myeloid cells compared to control injured animals. Both MRcko and MR antagonist treatment stabilized damaged myofibers and increased collagen infiltration or compaction at 4 days post-injury. MR antagonist treatment also led to reduced myofiber size at 7 and 14 days post-injury. These data support that MR signaling contributes to the normal muscle repair process following acute injury. MR antagonist treatment delays muscle fiber growth, so temporary discontinuation of these drugs after a severe muscle injury could be considered.
Collapse
Affiliation(s)
- J. Spencer Hauck
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Zachary M. Howard
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Madison G. Pico
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Sarah A. Swager
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jennifer M. Petrosino
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Celso E. Gomez-Sanchez
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, MS, United States
| | - Elise P. Gomez-Sanchez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Federica Accornero
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jill A. Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
30
|
Abstract
Inflammation of the blood vessels that serve the central nervous system has been increasingly identified as an early and possibly initiating event among neurodegenerative conditions such as Alzheimer's disease and related dementias. However, the causal relevance of vascular inflammation to major retinal degenerative diseases is unresolved. Here, we describe how genetics, aging-associated changes, and environmental factors contribute to vascular inflammation in age-related macular degeneration, diabetic retinopathy, and glaucoma. We highlight the importance of mouse models in studying the underlying mechanisms and possible treatments for these diseases. We conclude that data support vascular inflammation playing a central if not primary role in retinal degenerative diseases, and this association should be a focus of future research.
Collapse
Affiliation(s)
- Ileana Soto
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey 08028, USA;
| | - Mark P Krebs
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
| | | | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA; .,Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
31
|
Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res 2019; 114:601-610. [PMID: 29373656 DOI: 10.1093/cvr/cvy021] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.
Collapse
Affiliation(s)
- Kerry Wadey
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joshua Lopes
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle Bendeck
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah George
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
32
|
Allahverdian S, Chaabane C, Boukais K, Francis GA, Bochaton-Piallat ML. Smooth muscle cell fate and plasticity in atherosclerosis. Cardiovasc Res 2019; 114:540-550. [PMID: 29385543 DOI: 10.1093/cvr/cvy022] [Citation(s) in RCA: 320] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Current knowledge suggests that intimal smooth muscle cells (SMCs) in native atherosclerotic plaque derive mainly from the medial arterial layer. During this process, SMCs undergo complex structural and functional changes giving rise to a broad spectrum of phenotypes. Classically, intimal SMCs are described as dedifferentiated/synthetic SMCs, a phenotype characterized by reduced expression of contractile proteins. Intimal SMCs are considered to have a beneficial role by contributing to the fibrous cap and thereby stabilizing atherosclerotic plaque. However, intimal SMCs can lose their properties to such an extent that they become hard to identify, contribute significantly to the foam cell population, and acquire inflammatory-like cell features. This review highlights mechanisms of SMC plasticity in different stages of native atherosclerotic plaque formation, their potential for monoclonal or oligoclonal expansion, as well as recent findings demonstrating the underestimated deleterious role of SMCs in this disease.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Chiraz Chaabane
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| | - Kamel Boukais
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Gordon A Francis
- Department of Medicine, Centre for Heart Lung Innovation, Providence Health Care Research Institute, University of British Columbia, Room 166 Burrard Building, St Paul's Hospital, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada
| | - Marie-Luce Bochaton-Piallat
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel Servet-1, 1211 Geneva 4, Switzerland
| |
Collapse
|
33
|
Brauner S, Jiang X, Thorlacius GE, Lundberg AM, Östberg T, Yan ZQ, Kuchroo VK, Hansson GK, Wahren-Herlenius M. Augmented Th17 differentiation in Trim21 deficiency promotes a stable phenotype of atherosclerotic plaques with high collagen content. Cardiovasc Res 2019; 114:158-167. [PMID: 29016728 DOI: 10.1093/cvr/cvx181] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Aims Patients with hyperlipidemia are at risk of atherosclerosis, but not all develop cardiovascular disease, highlighting the importance of other risk factors such as inflammation. Both the innate and adaptive arms of the immune system have been suggested in the initiation and propagation of plaque formation. Tri-partite motif (TRIM) 21 is a regulator of tissue inflammation and pro-inflammatory cytokine production, and has been implicated in chronic inflammatory disease. Here, we investigate a potential role for TRIM21 in coronary artery disease. Methods and results Trim21-deficient or wild-type bone marrow was transplanted into Ldlr-/- mice fed a hypercholesterolemic diet. The Trim21-/-->Ldlr-/- mice developed larger atherosclerotic plaques, with significantly higher collagen content compared to mice transplanted with wild-type cells. High collagen content of the atheroma is stabilizing, and has recently been linked to IL-17. Interestingly, Trim21-/-->Ldlr-/- mice had elevated CD4 and IL-17 mRNA expression in plaques, and increased numbers of activated CD4+ T cells in the periphery. An increased differentiation of naïve T cells lacking Trim21 into Th17 cells was confirmed in vitro, with transcriptomic analysis revealing upregulation of genes of a non-pathogenic Th17 phenotype. Also, decreased expression of matrix metalloproteinases (MMPs) was noted in aortic plaques. Analysis of human carotid plaques confirmed that TRIM21 expression negatively correlates with the expression of key Th17 genes and collagen, but positively to MMPs also in patients, linking our findings to a clinical setting. Conclusion In this study, we demonstrate that TRIM21 influences atherosclerosis via regulation of Th17 responses, with TRIM21 deficiency promoting IL-17 expression and a more fibrous, stable, phenotype of the plaques.
Collapse
Affiliation(s)
- Susanna Brauner
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Insititutet, Center for Molecular Medicine L8:04, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Xintong Jiang
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudny Ella Thorlacius
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Insititutet, Center for Molecular Medicine L8:04, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anna M Lundberg
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Therese Östberg
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Insititutet, Center for Molecular Medicine L8:04, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Zhong-Qun Yan
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vijay K Kuchroo
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Harvard University, Boston, USA
| | - Göran K Hansson
- Cardiovascular Medicine Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Wahren-Herlenius
- Unit of Experimental Rheumatology, Department of Medicine, Karolinska Insititutet, Center for Molecular Medicine L8:04, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
34
|
Willumsen N, Jorgensen LN, Karsdal MA. Vastatin (the NC1 domain of human type VIII collagen a1 chain) is linked to stromal reactivity and elevated in serum from patients with colorectal cancer. Cancer Biol Ther 2019; 20:692-699. [PMID: 30626261 DOI: 10.1080/15384047.2018.1550571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Vastatin, a fragment derived from type VIII collagen, is one of the least studied collagen-derived matrikines. Vastatin can be detected in serum but little is known regarding the relevance of serum vastatin in colorectal cancer (CRC). In this study, serum vastatin was measured (ELISA) in 67 healthy controls and 48 CRC patients prior to resection and compared to clinicopathological parameters and serum biomarkers of stromal reactivity (C3M, VICM). Impact of resection and chemotherapy were evaluated by comparing baseline values with a 3-month follow-up sample (n = 23). Serum vastatin was detectable in 114 of 115 subjects. At baseline vastatin was elevated in CRC compared to controls (P < 0.001) with a diagnostic accuracy (AUROC) of 0.865, p < 0.0001. Vastatin correlated with age in controls but not in patients with CRC; no association was seen with clinicopathological parameters. Vastatin was independently associated with C3M (stepwise linear regression coefficient 0.25, p = 0.046). Overall, no difference was seen in vastatin levels between baseline and follow-up. In conclusion, vastatin is elevated in serum from patients with CRC and correlate with interstitial matrix degradation (C3M). This indicates that vastatin is linked to stromal reactivity and suggests that vastatin has biomarker potential in CRC. The association with clinicopathological parameters and treatment effect needs further evaluation.
Collapse
Affiliation(s)
- Nicholas Willumsen
- a Biomarkers & Research , Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| | - Lars Nannestad Jorgensen
- b Digestive Disease Center, Bispebjerg Hospital , University of Copenhagen , Copenhagen , Denmark
| | - Morten Asser Karsdal
- a Biomarkers & Research , Nordic Bioscience, Biomarkers and Research , Herlev , Denmark
| |
Collapse
|
35
|
Chang YK, Hwang JS, Chung TY, Shin YJ. SOX2 Activation Using CRISPR/dCas9 Promotes Wound Healing in Corneal Endothelial Cells. Stem Cells 2018; 36:1851-1862. [DOI: 10.1002/stem.2915] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 08/12/2018] [Accepted: 08/18/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Yoon Kyung Chang
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| | - Jin Sun Hwang
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| | - Tae-Young Chung
- Department of Ophthalmology; Samsung Medical Center, Sungkyunkwan University; Seoul Republic of Korea
| | - Young Joo Shin
- Department of Ophthalmology; Hallym University Medical Center, Hallym University College of Medicine; Seoul Republic of Korea
| |
Collapse
|
36
|
Liu Z, Shi S, Zhu H, Chen Y, Zhang Y, Zheng Z, Wang X. Novel ASK1 Inhibitor AGI-1067 Attenuates AGE-Induced Fibrotic Response by Suppressing the MKKs/p38 MAPK Pathway in Human Coronary Arterial Smooth Muscle Cells. Int Heart J 2018; 59:1416-1424. [PMID: 30305582 DOI: 10.1536/ihj.17-625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The phenotype shifting of vascular smooth muscle cells (VSMCs) was indicated to play a role during the initial stage of atherosclerotic plaque formation by facilitating extracellular matrix deposition. This study was aimed at investigating the involvement of the apoptosis signal-regulating kinase 1 (ASK1) /mitogen-activated protein kinase (MAPK) kinases (MKKs) /p38 MAPK pathway in the advanced glycation end product (AGE) -induced fibrotic response of VSMCs. The effect of the novel ASK1 inhibitor AGI-1067 was also studied.Cultured human coronary smooth muscle cells (HCSMCs) were exposed to AGEs. AGI-1067 and siRNAs silencing mkk3, mkk6, and p38 mapk were used to treat the cells. The activation of MKK3, MKK6, and p38 MAPK was assessed by immunoblotting. Fibrotic response was assessed by the fluorescence immunohistochemistry staining of collagen I and collagen VIII. Activation of immunoprecipitation determined the association of ASK1 and its inhibitor thioredoxin. A kinase assay was used to determine ASK1 activity.AGE incubation significantly activated ASK1, MKK3, and MKK6, which led to activation of p38 MAPK, resulting in upregulated fibrotic response in HCSMCs. However, siRNAs knocking down mkk3, mkk6, and p38 mapk impaired this fibrotic response. AGI-1067 administration not only dramatically inhibited the activation of ASK1/MKKs/p38 MAPK but also suppressed the expression of the downstream proteins, including transforming growth factor-β1, connective tissue growth factor, collagen I, and collagen VIII in HCSMCs exposed to AGEs.The ASK1/MKKs/p38 MAPK pathway was activated by AGEs, leading to the fibrotic response in VSMCs. AGI-1067 reversed this process by maintaining the inactive state of ASK1.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital.,Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University.,Affiliated Hospital of Medical Research Institute, Northwestern Polytechnical University
| | - Shuang Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital.,Affiliated Hospital of Medical Research Institute, Northwestern Polytechnical University
| | - Haitao Zhu
- Department of Pediatrics (No. 3 Ward), Northwest Women's and Children's Hospital
| | - Yunfei Chen
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital.,Affiliated Hospital of Medical Research Institute, Northwestern Polytechnical University
| | - Zhenzhong Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University
| |
Collapse
|
37
|
Kim PH, Luu J, Heizer P, Tu Y, Weston TA, Chen N, Lim C, Li RL, Lin PY, Dunn JCY, Hodzic D, Young SG, Fong LG. Disrupting the LINC complex in smooth muscle cells reduces aortic disease in a mouse model of Hutchinson-Gilford progeria syndrome. Sci Transl Med 2018; 10:eaat7163. [PMID: 30257952 PMCID: PMC6166472 DOI: 10.1126/scitranslmed.aat7163] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
Hutchinson-Gilford progeria syndrome is a disorder of premature aging in children caused by de novo mutations in LMNA that lead to the synthesis of an internally truncated form of prelamin A (commonly called progerin). The production of progerin causes multiple disease phenotypes, including an unusual vascular phenotype characterized by the loss of smooth muscle cells in the arterial media and fibrosis of the adventitia. We show that progerin expression, combined with mechanical stress, promotes smooth muscle cell death. Disrupting the linker of the nucleoskeleton and cytoskeleton (LINC) complex in smooth muscle cells ameliorates the toxic effects of progerin on smooth muscle cells and limits the accompanying adventitial fibrosis.
Collapse
Affiliation(s)
- Paul H Kim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jennings Luu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Patrick Heizer
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yiping Tu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas A Weston
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Natalie Chen
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Lim
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert L Li
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Po-Yu Lin
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - James C Y Dunn
- Department of Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Loren G Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
38
|
Watson MG, Byrne HM, Macaskill C, Myerscough MR. A two-phase model of early fibrous cap formation in atherosclerosis. J Theor Biol 2018; 456:123-136. [PMID: 30098319 DOI: 10.1016/j.jtbi.2018.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/01/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
Atherosclerotic plaque growth is characterised by chronic, non-resolving inflammation that promotes the accumulation of cellular debris and extracellular fat in the inner artery wall. This material is highly thrombogenic, and plaque rupture can lead to the formation of blood clots that occlude major arteries and cause myocardial infarction or stroke. In advanced plaques, vascular smooth muscle cells (SMCs) are recruited from deeper in the artery wall to synthesise a cap of fibrous tissue that stabilises the plaque and sequesters the thrombogenic plaque content from the bloodstream. The fibrous cap provides crucial protection against the clinical consequences of atherosclerosis, but the mechanisms of cap formation are poorly understood. In particular, it is unclear why certain plaques become stable and robust while others become fragile and dangerously vulnerable to rupture. We develop a multiphase model with non-standard boundary conditions to investigate early fibrous cap formation in the atherosclerotic plaque. The model is parameterised using data from a range of in vitro and in vivo studies, and includes highly nonlinear mechanisms of SMC proliferation and migration in response to an endothelium-derived chemical signal. We demonstrate that the model SMC population naturally evolves towards a steady-state, and predict a rate of cap formation and a final plaque SMC content consistent with experimental observations in mice. Parameter sensitivity simulations show that SMC proliferation makes a limited contribution to cap formation, and demonstrate that stable cap formation relies primarily on a critical balance between the rates of SMC recruitment to the plaque, chemotactic SMC migration within the plaque and SMC loss by apoptosis or phenotype change. This model represents the first detailed in silico study of fibrous cap formation in atherosclerosis, and establishes a multiphase modelling framework that can be readily extended to investigate many other aspects of plaque development.
Collapse
Affiliation(s)
- Michael G Watson
- School of Mathematics and Statistics, University of Sydney, Australia.
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, United Kingdom
| | - Charlie Macaskill
- School of Mathematics and Statistics, University of Sydney, Australia
| | - Mary R Myerscough
- School of Mathematics and Statistics, University of Sydney, Australia
| |
Collapse
|
39
|
Matrine blocks AGEs- induced HCSMCs phenotypic conversion via suppressing Dll4-Notch pathway. Eur J Pharmacol 2018; 835:126-131. [PMID: 30063915 DOI: 10.1016/j.ejphar.2018.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 11/23/2022]
Abstract
Vascular smooth muscle cells (VSMCs) contractile- synthetic phenotypic conversion takes responsibility in the atherosclerotic plaque formation by abnormal synthesis, secretion and deposition of extracellular matrix (ECM). Matrine exerts therapeutic effects on both cardiovascular diseases and organ fibrosis. In this study, we investigated matrine's inhibitory effect and mechanisms on AGEs- induced VSMC contractile- synthetic phenotypic conversion. Cultured human coronary smooth muscle cells (HCSMCs) were exposed to AGEs. Matrine at serially diluted concentrations were used to treat the cells. HCSMCs phenotype was identified by immunofluorescent staining of contractile phenotypic markers including mooth muscle myosin heavy chain (MYH11) and smooth muscle α-actin (ACTA2). Sircol collagen assay was used to assess the collagen secretion level. Notch signaling activation was determined by luciferase assay. Western blotting was used to evaluate expression levels of collagen I, collagen VIII, Delta-like (Dll)1, Dll3, Dll4, Jagged1, Jagged2, Notch intracellular domain (NICD)1 and Hes family basic helix-loop-helix (bHLH) transcription factor1 (HES1). Matrine pre-treatment recovered the AGEs- induced contractile- synthetic phenotypic conversion by increasing MYH11 and ACTA2 in HCSMCs. Matrine reduced AGEs- mediated activation of Notch signaling, down-regulated expression levels of NICD1, HES1, collagen I and collagen VIII and collagen secretion contents in HCSMCs. Matrine inhibited expression level of Dll4 without affecting other Notch ligands including Dll1, Dll3, Jagged1 and Jagged2 in HCSMCs exposed to AGEs. These results suggested that AGEs exposure facilitated the contractile- synthetic phenotypic conversion of HCSMCs. Matrine blocked this phenotypic conversion by suppressing Dll4- Notch signaling pathway activation.
Collapse
|
40
|
Li X, Wang Z, Tong H, Yan Y, Li S. Effects of COL8A1 on the proliferation of muscle-derived satellite cells. Cell Biol Int 2018; 42:1132-1140. [PMID: 29696735 DOI: 10.1002/cbin.10979] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/21/2018] [Indexed: 11/10/2022]
Abstract
Collagen type VIII alpha 1 chain (COL8A1) is a component of the extracellular matrix. Our previous studies suggested that COL8A1 is associated with the proliferation of muscle-derived satellite cells (MDSCs). Additionally, it has been demonstrated that COL8A1 promotes the proliferation of smooth muscle cells and liver cancer cells. Therefore, we predicted that COL8A1 is associated with the proliferation of bovine MDSCs, which have potential applications in research. In this study, we constructed vectors to activate and repress COL8A1 in bovine MDSCs using the CRISPR/Cas9 technique and determined the effects of COL8A1 modulation by EdU labeling, Western blotting, and dual-luciferase reporter assays. The results showed that activation of COL8A1 increased the number of EdU-positive cells and expression of the proliferation markers cyclin B1 (CCNB1) and P-AKT. The expression of P-Akt was unchanged after addition of LY294002 (a protein kinase inhibitor capable of blocking the signal transduction pathway of the phosphoinositide 3-kinase). In contrast, repression of COL8A1 reduced the number of EdU-positive cells and expression of CCNB1 and P-AKT. We also observed upregulation and downregulation of COL8A1 following the overexpression and repression of EGR1, respectively. The dual-luciferase reporter assay revealed that EGR1 regulates the promoter activity of COL8A1. To our knowledge, this is the first study demonstrating that EGR1 positively regulates the expression of COL8A1, which in turn promotes the proliferation of bovine MDSCs via the PI3 K/AKT signaling pathway.
Collapse
Affiliation(s)
- Xiaofan Li
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Zhao Wang
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Huili Tong
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Yunqin Yan
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| | - Shufeng Li
- Laboratory of Cellular and Developmental Biology, Life Science College, North-east Agricultural University, Harbin, 150030, China
| |
Collapse
|
41
|
Kowara M, Cudnoch-Jedrzejewska A, Opolski G, Wlodarski P. MicroRNA regulation of extracellular matrix components in the process of atherosclerotic plaque destabilization. Clin Exp Pharmacol Physiol 2018; 44:711-718. [PMID: 28440887 DOI: 10.1111/1440-1681.12772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 12/13/2022]
Abstract
The process of atherosclerotic plaque destabilization, leading to myocardial infarction, is still not fully understood. The pathway - composed of structural and regulatory proteins of the extracellular matrix (ECM) such as collagen, elastin, small leucine-rich proteoglycans, metalloproteinases, cathepsins and serine proteases - is one potential way of atherosclerotic plaque destabilization. The expression of these proteins is controlled by different microRNA molecules. The goal of this paper is to summarize the current investigations and knowledge about ECM in the process of atherosclerotic plaque destabilization, giving special attention to epigenetic expression regulation by microRNA.
Collapse
Affiliation(s)
- Michal Kowara
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Grzegorz Opolski
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Pawel Wlodarski
- Department of Histology and Embryology, Center for Biostructure Research, Laboratory of Center for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Sainio A, Järveläinen H. Extracellular Matrix Macromolecules as Potential Targets of Cardiovascular Pharmacotherapy. ADVANCES IN PHARMACOLOGY 2018; 81:209-240. [DOI: 10.1016/bs.apha.2017.09.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Wierer M, Prestel M, Schiller HB, Yan G, Schaab C, Azghandi S, Werner J, Kessler T, Malik R, Murgia M, Aherrahrou Z, Schunkert H, Dichgans M, Mann M. Compartment-resolved Proteomic Analysis of Mouse Aorta during Atherosclerotic Plaque Formation Reveals Osteoclast-specific Protein Expression. Mol Cell Proteomics 2017; 17:321-334. [PMID: 29208753 PMCID: PMC5795394 DOI: 10.1074/mcp.ra117.000315] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/20/2017] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis leads to vascular lesions that involve major rearrangements of the vascular proteome, especially of the extracellular matrix (ECM). Using single aortas from ApoE knock out mice, we quantified formation of plaques by single-run, high-resolution mass spectrometry (MS)-based proteomics. To probe localization on a proteome-wide scale we employed quantitative detergent solubility profiling. This compartment- and time-resolved resource of atherogenesis comprised 5117 proteins, 182 of which changed their expression status in response to vessel maturation and atherosclerotic plaque development. In the insoluble ECM proteome, 65 proteins significantly changed, including relevant collagens, matrix metalloproteinases and macrophage derived proteins. Among novel factors in atherosclerosis, we identified matrilin-2, the collagen IV crosslinking enzyme peroxidasin as well as the poorly characterized MAM-domain containing 2 (Mamdc2) protein as being up-regulated in the ECM during atherogenesis. Intriguingly, three subunits of the osteoclast specific V-ATPase complex were strongly increased in mature plaques with an enrichment in macrophages thus implying an active de-mineralization function.
Collapse
Affiliation(s)
- Michael Wierer
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Prestel
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Herbert B Schiller
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany.,¶Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Guangyao Yan
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Christoph Schaab
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Sepiede Azghandi
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Julia Werner
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Thorsten Kessler
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Rainer Malik
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany
| | - Marta Murgia
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany.,**Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Zouhair Aherrahrou
- ‡‡Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany.,§§Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), e.V., Partner Site Hamburg/Kiel/Lübeck, Lübeck Germany
| | - Heribert Schunkert
- ‖Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany.,¶¶DZHK e.V. (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Martin Dichgans
- §Institute for Stroke and Dementia Research, Klinikum der Universität München, München, Germany;
| | - Matthias Mann
- From the ‡Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany;
| |
Collapse
|
44
|
Lacolley P, Regnault V, Segers P, Laurent S. Vascular Smooth Muscle Cells and Arterial Stiffening: Relevance in Development, Aging, and Disease. Physiol Rev 2017; 97:1555-1617. [DOI: 10.1152/physrev.00003.2017] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/26/2017] [Indexed: 12/18/2022] Open
Abstract
The cushioning function of large arteries encompasses distension during systole and recoil during diastole which transforms pulsatile flow into a steady flow in the microcirculation. Arterial stiffness, the inverse of distensibility, has been implicated in various etiologies of chronic common and monogenic cardiovascular diseases and is a major cause of morbidity and mortality globally. The first components that contribute to arterial stiffening are extracellular matrix (ECM) proteins that support the mechanical load, while the second important components are vascular smooth muscle cells (VSMCs), which not only regulate actomyosin interactions for contraction but mediate also mechanotransduction in cell-ECM homeostasis. Eventually, VSMC plasticity and signaling in both conductance and resistance arteries are highly relevant to the physiology of normal and early vascular aging. This review summarizes current concepts of central pressure and tensile pulsatile circumferential stress as key mechanical determinants of arterial wall remodeling, cell-ECM interactions depending mainly on the architecture of cytoskeletal proteins and focal adhesion, the large/small arteries cross-talk that gives rise to target organ damage, and inflammatory pathways leading to calcification or atherosclerosis. We further speculate on the contribution of cellular stiffness along the arterial tree to vascular wall stiffness. In addition, this review provides the latest advances in the identification of gene variants affecting arterial stiffening. Now that important hemodynamic and molecular mechanisms of arterial stiffness have been elucidated, and the complex interplay between ECM, cells, and sensors identified, further research should study their potential to halt or to reverse the development of arterial stiffness.
Collapse
Affiliation(s)
- Patrick Lacolley
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Véronique Regnault
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Patrick Segers
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| | - Stéphane Laurent
- INSERM, U1116, Vandœuvre-lès-Nancy, France; Université de Lorraine, Nancy, France; IBiTech-bioMMeda, Department of Electronics and Information Systems, Ghent University, Gent, Belgium; Department of Pharmacology, European Georges Pompidou Hospital, Assistance Publique Hôpitaux de Paris, France; PARCC INSERM, UMR 970, Paris, France; and University Paris Descartes, Paris, France
| |
Collapse
|
45
|
Sivasubramaniyam T, Schroer SA, Li A, Luk CT, Shi SY, Besla R, Dodington DW, Metherel AH, Kitson AP, Brunt JJ, Lopes J, Wagner KU, Bazinet RP, Bendeck MP, Robbins CS, Woo M. Hepatic JAK2 protects against atherosclerosis through circulating IGF-1. JCI Insight 2017; 2:93735. [PMID: 28724798 DOI: 10.1172/jci.insight.93735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/06/2017] [Indexed: 01/12/2023] Open
Abstract
Atherosclerosis is considered both a metabolic and inflammatory disease; however, the specific tissue and signaling molecules that instigate and propagate this disease remain unclear. The liver is a central site of inflammation and lipid metabolism that is critical for atherosclerosis, and JAK2 is a key mediator of inflammation and, more recently, of hepatic lipid metabolism. However, precise effects of hepatic Jak2 on atherosclerosis remain unknown. We show here that hepatic Jak2 deficiency in atherosclerosis-prone mouse models exhibited accelerated atherosclerosis with increased plaque macrophages and decreased plaque smooth muscle cell content. JAK2's essential role in growth hormone signalling in liver that resulted in reduced IGF-1 with hepatic Jak2 deficiency played a causal role in exacerbating atherosclerosis. As such, restoring IGF-1 either pharmacologically or genetically attenuated atherosclerotic burden. Together, our data show hepatic Jak2 to play a protective role in atherogenesis through actions mediated by circulating IGF-1 and, to our knowledge, provide a novel liver-centric mechanism in atheroprotection.
Collapse
Affiliation(s)
- Tharini Sivasubramaniyam
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Stephanie A Schroer
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Angela Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology
| | - Cynthia T Luk
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Sally Yu Shi
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Rickvinder Besla
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology
| | - David W Dodington
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Jara J Brunt
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science
| | - Joshua Lopes
- Department of Laboratory Medicine and Pathobiology
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases and the Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Clinton S Robbins
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Immunology.,Department of Laboratory Medicine and Pathobiology
| | - Minna Woo
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science.,Department of Immunology.,Division of Endocrinology and Metabolism, Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Murine recombinant angiotensin-converting enzyme 2 attenuates kidney injury in experimental Alport syndrome. Kidney Int 2017; 91:1347-1361. [DOI: 10.1016/j.kint.2016.12.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 01/11/2023]
|
47
|
Seet LF, Toh LZ, Chu SWL, Finger SN, Chua JLL, Wong TT. Upregulation of distinct collagen transcripts in post-surgery scar tissue: a study of conjunctival fibrosis. Dis Model Mech 2017; 10:751-760. [PMID: 28331057 PMCID: PMC5483006 DOI: 10.1242/dmm.028555] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/09/2017] [Indexed: 01/07/2023] Open
Abstract
Excessive accumulation of collagen is often used to assess the development of fibrosis. This study aims to identify collagen genes that define fibrosis in the conjunctiva following glaucoma filtration surgery (GFS). Using the mouse model of GFS, we have identified collagen transcripts that were upregulated in the fibrotic phase of wound healing via RNA-seq. The collagen transcripts that were increased the most were encoded by Col8a1, Col11a1 and Col8a2. Further analysis of the Col8a1, Col11a1 and Col8a2 transcripts revealed their increase by 67-, 54- and 18-fold, respectively, in the fibrotic phase, compared with 12-fold for Col1a1, the most commonly evaluated collagen gene for fibrosis. However, only type I collagen was significantly upregulated at the protein level in the fibrotic phase. Type VIII and type I collagens colocalized in fibrous structures and in ACTA2-positive pericytes, and appeared to compensate for each other in expression levels. Type XI collagen showed low colocalization with both type VIII and type I collagens but can be found in association with macrophages. Furthermore, we show that both mouse and human conjunctival fibroblasts expressed elevated levels of the most highly expressed collagen genes in response to TGFβ2 treatment. Importantly, conjunctival tissues from individuals whose GF surgeries have failed due to scarring showed 3.60- and 2.78-fold increases in type VIII and I collagen transcripts, respectively, compared with those from individuals with no prior surgeries. These data demonstrate that distinct collagen transcripts are expressed at high levels in the conjunctiva after surgery and their unique expression profiles may imply differential influences on the fibrotic outcome. Summary: As well as providing an objective quantitative measure, distinct collagen genes may further aid in the characterization and definition of the development of fibrosis.
Collapse
Affiliation(s)
- Li-Fong Seet
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856 .,Duke-NUS Medical School, 8 College Road, Singapore 169857.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, National University Hospital, Singapore 119074
| | - Li Zhen Toh
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Stephanie W L Chu
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Sharon N Finger
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856
| | - Jocelyn L L Chua
- Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751
| | - Tina T Wong
- Ocular Therapeutics and Drug Delivery, Singapore Eye Research Institute, 20 College Road, Singapore 169856 .,Duke-NUS Medical School, 8 College Road, Singapore 169857.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Rd, National University Hospital, Singapore 119074.,Glaucoma Service, Singapore National Eye Centre, 11 Third Hospital Avenue, Singapore 168751.,School of Materials Science and Engineering, Nanyang Technological University, 11 Faculty Ave, Singapore 639977
| |
Collapse
|
48
|
Durgin BG, Cherepanova OA, Gomez D, Karaoli T, Alencar GF, Butcher JT, Zhou YQ, Bendeck MP, Isakson BE, Owens GK, Connelly JJ. Smooth muscle cell-specific deletion of Col15a1 unexpectedly leads to impaired development of advanced atherosclerotic lesions. Am J Physiol Heart Circ Physiol 2017; 312:H943-H958. [PMID: 28283548 PMCID: PMC5451587 DOI: 10.1152/ajpheart.00029.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/28/2022]
Abstract
Atherosclerotic plaque rupture with subsequent embolic events is a major cause of sudden death from myocardial infarction or stroke. Although smooth muscle cells (SMCs) produce and respond to collagens in vitro, there is no direct evidence in vivo that SMCs are a crucial source of collagens and that this impacts lesion development or fibrous cap formation. We sought to determine how conditional SMC-specific knockout of collagen type XV (COL15A1) in SMC lineage tracing mice affects advanced lesion formation given that 1) we have previously identified a Col15a1 sequence variant associated with age-related atherosclerosis, 2) COL15A1 is a matrix organizer enhancing tissue structural integrity, and 3) small interfering RNA-mediated Col15a1 knockdown increased migration and decreased proliferation of cultured human SMCs. We hypothesized that SMC-derived COL15A1 is critical in advanced lesions, specifically in fibrous cap formation. Surprisingly, we demonstrated that SMC-specific Col15a1 knockout mice fed a Western diet for 18 wk failed to form advanced lesions. SMC-specific Col15a1 knockout resulted in lesions reduced in size by 78%, with marked reductions in numbers and proliferating SMCs, and lacked a SMC and extracellular matrix-rich lesion or fibrous cap. In vivo RNA-seq analyses on SMC Col15a1 knockout and wild-type lesions suggested that a mechanism for these effects is through global repression of multiple proatherogenic inflammatory pathways involved in lesion development. These results provide the first direct evidence that a SMC-derived collagen, COL15A1, is critical during lesion pathogenesis, but, contrary to expectations, its loss resulted in marked attenuation rather than exacerbation of lesion pathogenesis.NEW & NOTEWORTHY We report the first direct in vivo evidence that a smooth muscle cell (SMC)-produced collagen, collagen type XV (COL15A1), is critical for atherosclerotic lesion development. SMC Col15a1 knockout markedly attenuated advanced lesion formation, likely through reducing SMC proliferation and impairing multiple proatherogenic inflammatory processes.
Collapse
Affiliation(s)
- Brittany G Durgin
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Olga A Cherepanova
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Delphine Gomez
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Themistoclis Karaoli
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Gabriel F Alencar
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Joshua T Butcher
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Michelle P Bendeck
- Department of Laboratory Medicine and Pathobiology, Ted Rogers Centre for Heart Research TBEP, University of Toronto, Toronto, Ontario, Canada; and
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - Jessica J Connelly
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia; .,Department of Psychology, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
49
|
Jiao Y, Li G, Korneva A, Caulk AW, Qin L, Bersi MR, Li Q, Li W, Mecham RP, Humphrey JD, Tellides G. Deficient Circumferential Growth Is the Primary Determinant of Aortic Obstruction Attributable to Partial Elastin Deficiency. Arterioscler Thromb Vasc Biol 2017; 37:930-941. [PMID: 28254817 DOI: 10.1161/atvbaha.117.309079] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Williams syndrome is characterized by obstructive aortopathy attributable to heterozygous loss of ELN, the gene encoding elastin. Lesions are thought to result primarily from excessive smooth muscle cell (SMC) proliferation and consequent medial expansion, although an initially smaller caliber and increased stiffness of the aorta may contribute to luminal narrowing. The relative contributions of such abnormalities to the obstructive phenotype had not been defined. APPROACH AND RESULTS We quantified determinants of luminal stenosis in thoracic aortas of Eln-/- mice incompletely rescued by human ELN. Moderate obstruction was largely because of deficient circumferential growth, most prominently of ascending segments, despite increased axial growth. Medial thickening was evident in these smaller diameter elastin-deficient aortas, with medial area similar to that of larger diameter control aortas. There was no difference in cross-sectional SMC number between mutant and wild-type genotypes at multiple stages of postnatal development. Decreased elastin content was associated with medial fibrosis and reduced aortic distensibility because of increased structural stiffness but preserved material stiffness. Elastin-deficient SMCs exhibited greater contractile-to-proliferative phenotypic modulation in vitro than in vivo. We confirmed increased medial collagen without evidence of increased medial area or SMC number in a small ascending aorta with thickened media of a Williams syndrome subject. CONCLUSIONS Deficient circumferential growth is the predominant mechanism for moderate obstructive aortic disease resulting from partial elastin deficiency. Our findings suggest that diverse aortic manifestations in Williams syndrome result from graded elastin content, and SMC hyperplasia causing medial expansion requires additional elastin loss superimposed on ELN haploinsufficiency.
Collapse
Affiliation(s)
- Yang Jiao
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Guangxin Li
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Arina Korneva
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Alexander W Caulk
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Lingfeng Qin
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Matthew R Bersi
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Qingle Li
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Wei Li
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Robert P Mecham
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - Jay D Humphrey
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.)
| | - George Tellides
- From the Department of Surgery, Yale University School of Medicine, New Haven, CT (Y.J., G.L., L.Q., Q.L., W.L., G.T.); Department of Vascular Surgery, Peking University People's Hospital, Beijing, People's Republic of China (Y.J., Q.L., W.L.); Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, People's Republic of China (G.L.); Department of Biomedical Engineering, Yale University, New Haven, CT (A.K., A.W.C., M.R.B., J.D.H.); Department of Cell Biology, Washington University School of Medicine, St Louis, MO (R.P.M.); Interdepartmental Program in Vascular Biology and Therapeutics, Yale University School of Medicine (J.D.H., G.T.); and Veterans Affairs Connecticut Healthcare System, West Haven (G.T.).
| |
Collapse
|
50
|
Merei B, Badel P, Davis L, Sutton MA, Avril S, Lessner SM. Atherosclerotic plaque delamination: Experiments and 2D finite element model to simulate plaque peeling in two strains of transgenic mice. J Mech Behav Biomed Mater 2017; 67:19-30. [DOI: 10.1016/j.jmbbm.2016.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 01/10/2023]
|