1
|
Chadwick C, Arcinas R, Ham M, Huang R, Hunter S, Mehta M, Sharma P, Varghese PA, Williams K, Troendle DM, Sathe M. The use of DXA for early detection of pediatric cystic fibrosis-related bone disease. Pediatr Pulmonol 2023; 58:1136-1144. [PMID: 36593123 DOI: 10.1002/ppul.26304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND Cystic fibrosis (CF)-related bone disease (CFBD) is seen in adults and can be associated with respiratory illness and malnutrition. There is limited and conflicting data regarding CFBD in pediatric CF. With longer life expectancy and promotion of disease prevention, pediatric CFBD demands further investigation. METHODS Our center initiated a quality improvement (QI) project from April 2016 to December 2018 to improve CFBD screening in patients 8 years or older, per current CF Foundation (CFF) guidelines. Our team formulated a dual-energy X-ray absorptiometry (DXA) scan algorithm based upon degree of bone mineral density (BMD); shared CFBD guideline recommendations in our quarterly newsletter; and ordered scans for eligible patients at weekly review meetings. We reviewed DXA results from 141 patients after institutional review board approval and gathered data including comorbidities, genetics, anthropometric measures, medication exposure, and relevant serum studies. RESULTS Fifty-three percent of our patients had normal BMD (n = 75). Seventeen patients (12%) had a Z score ≤ -2. Patients with lower BMD also had lower mean forced expiratory volume (FEV1 ) percent predicted (FEV1 %) (p < 0.001) as well as lower body mass index % (p = 0.001). Patients with lower BMD were overall older at time of DXA (p = 0.016). During study duration, 13 patients who had abnormal DXA results underwent repeat DXAs after physical therapy; 11 of the 13 showed improvement in DXA results. CONCLUSIONS A DXA scan is a useful screening tool and can be used to identify pediatric patients who could benefit from further therapy and interventions to preserve adequate bone health and avoid further loss. QI initiatives can lead to improved screening and diagnosis and earlier intervention such as physical therapy. Further studies are needed to better understand the utility of physical therapy in children with CF.
Collapse
Affiliation(s)
- Christina Chadwick
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Renallie Arcinas
- Children's Health Rehabilitation and Therapy Services, Physical Rehabilitation, Children's Health, Dallas, Texas, USA
| | - Melissa Ham
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Rong Huang
- Department of Clinical Research, Research Administration, Children's Health, Dallas, Texas, USA
| | - Stacie Hunter
- Department of Pediatric Clinical Nutrition, Clinical Nutrition, Children's Health, Dallas, Texas, USA
| | - Megha Mehta
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Preeti Sharma
- Division of Pediatric Pulmonology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Prigi Anu Varghese
- Division of Pediatric Pulmonology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Kelli Williams
- Division of Pulmonology, Children's Health, Dallas, Texas, USA
| | - David M Troendle
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| | - Meghana Sathe
- Division of Pediatric Gastroenterology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Fonseca Ó, Gomes MS, Amorim MA, Gomes AC. Cystic Fibrosis Bone Disease: The Interplay between CFTR Dysfunction and Chronic Inflammation. Biomolecules 2023; 13:425. [PMID: 36979360 PMCID: PMC10046889 DOI: 10.3390/biom13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Cystic fibrosis is a monogenic disease with a multisystemic phenotype, ranging from predisposition to chronic lung infection and inflammation to reduced bone mass. The exact mechanisms unbalancing the maintenance of an optimal bone mass in cystic fibrosis patients remain unknown. Multiple factors may contribute to severe bone mass reduction that, in turn, have devastating consequences in the patients' quality of life and longevity. Here, we will review the existing evidence linking the CFTR dysfunction and cell-intrinsic bone defects. Additionally, we will also address how the proinflammatory environment due to CFTR dysfunction in immune cells and chronic infection impairs the maintenance of an adequate bone mass in CF patients.
Collapse
Affiliation(s)
- Óscar Fonseca
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria Salomé Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS–Instuto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4030-313 Porto, Portugal
| | | | - Ana Cordeiro Gomes
- i3S–Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC–Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
3
|
Downregulation of the Proton-Activated Cl- Channel TMEM206 Inhibits Malignant Properties of Human Osteosarcoma Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3672112. [PMID: 34777684 PMCID: PMC8589505 DOI: 10.1155/2021/3672112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022]
Abstract
Transmembrane protein 206 (TMEM206), a proton-activated chloride channel, has been implicated in various biochemical processes, including bone metabolism, and has emerged as a novel cancer-related protein in multiple tumor types. However, its role in primary malignant bone tumors, particularly in osteosarcoma (OS), remains unclear. This study is aimed at exploring the effects of TMEM206 gene silencing on the proliferation, migration, invasion, and metastasis of human OS cells in vitro and in vivo using an shRNA-knockdown strategy. We found that TMEM206 is frequently overexpressed and that high levels of TMEM206 correlated with clinical stage and pulmonary metastasis in patients with OS. We provided evidence that TMEM206-silenced OS cancer cells exhibit decreased proliferation, migration, and invasion in vitro. Mechanistically, we identified β-catenin, a key member of Wnt/β-catenin signaling, as a downstream effector of TMEM206. TMEM206 silencing inhibits the Wnt/β-catenin signaling pathway in expression rescue experiments, confirming that TMEM206 silencing attenuates OS cell tumorigenic behavior, at least in part, via the β-catenin mediated downregulation of Wnt/β-catenin signaling. More importantly, TMEM206 knockdown-related phenotype changes were replicated in a xenograft nude mouse model where pulmonary metastases of OS cells were suppressed. Together, our results demonstrate that silencing TMEM206 negatively modulates the Wnt/β-catenin signaling pathway via β-catenin to suppress proliferation, migration, invasion, and metastasis in OS carcinogenesis, suggesting TMEM206 as a potential oncogenic biomarker and a potential target for OS treatment.
Collapse
|
4
|
Putman MS, Greenblatt LB, Bruce M, Joseph T, Lee H, Sawicki G, Uluer A, Sicilian L, Neuringer I, Gordon CM, Bouxsein ML, Finkelstein JS. The Effects of Ivacaftor on Bone Density and Microarchitecture in Children and Adults with Cystic Fibrosis. J Clin Endocrinol Metab 2021; 106:e1248-e1261. [PMID: 33258950 PMCID: PMC7947772 DOI: 10.1210/clinem/dgaa890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Cystic fibrosis (CF) transmembrane conductance (CFTR) dysfunction may play a role in CF-related bone disease (CFBD). Ivacaftor is a CFTR potentiator effective in improving pulmonary and nutritional outcomes in patients with the G551D-CFTR mutation. The effects of ivacaftor on bone health are unknown. OBJECTIVE To determine the impact of ivacaftor on bone density and microarchitecture in children and adults with CF. DESIGN Prospective observational multiple cohort study. SETTING Outpatient clinical research center within a tertiary academic medical center. PATIENTS OR OTHER PARTICIPANTS Three cohorts of age-, race-, and gender-matched subjects were enrolled: 26 subjects (15 adults and 11 children) with CF and the G551D-CFTR mutation who were planning to start or had started treatment with ivacaftor within 3 months (Ivacaftor cohort), 26 subjects with CF were not treated with ivacaftor (CF Control cohort), and 26 healthy volunteers. INTERVENTIONS All treatments, including Ivacaftor, were managed by the subjects' pulmonologists. MAIN OUTCOME MEASURES Bone microarchitecture by high-resolution peripheral quantitative computed tomography (HR-pQCT), areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and bone turnover markers at baseline, 1, and 2 years. RESULTS Cortical volume, area, and porosity at the radius and tibia increased significantly in adults in the Ivacaftor cohort. No significant differences were observed in changes in aBMD, trabecular microarchitecture, or estimated bone strength in adults or in any outcome measures in children. CONCLUSIONS Treatment with ivacaftor was associated with increases in cortical microarchitecture in adults with CF. Further studies are needed to understand the implications of these findings.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Correspondence and Reprint Requests: Melissa S. Putman, Endocrine Unit, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA 02114. E-mail:
| | - Logan B Greenblatt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Michael Bruce
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Taisha Joseph
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Hang Lee
- Massachusetts General Hospital Biostatistics Center, Boston, MA, USA
| | - Gregory Sawicki
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
| | - Ahmet Uluer
- Division of Pulmonology, Boston Children’s Hospital, Boston, MA, USA
- Division of Pulmonology and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leonard Sicilian
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel Neuringer
- Division of Pulmonology and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Catherine M Gordon
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, USA
- Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Cystic fibrosis bone disease treatment: Current knowledge and future directions. J Cyst Fibros 2020; 18 Suppl 2:S56-S65. [PMID: 31679730 DOI: 10.1016/j.jcf.2019.08.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Bone disease is a frequent complication in adolescents and adults with cystic fibrosis (CF). Early detection and monitoring of bone mineral density and multidisciplinary preventive care are necessary from childhood through adolescence to minimize CF-related bone disease (CFBD) in adult CF patients. Approaches to optimizing bone health include ensuring adequate nutrition, particularly intake of calcium and vitamins D and K, addressing other secondary causes of low bone density such as hypogonadism, encouraging weight bearing exercise, and avoiding bone toxic medications. Of the currently available anti-resorptive or anabolic osteoporosis medications, only bisphosphonates have been studied in individuals with CF. Future studies are needed to better understand the optimal approach for managing CFBD.
Collapse
|
6
|
Jourdain ML, Sergheraert J, Braux J, Guillaume C, Gangloff SC, Hubert D, Velard F, Jacquot J. Osteoclastogenesis and sphingosine-1-phosphate secretion from human osteoclast precursor monocytes are modulated by the cystic fibrosis transmembrane conductance regulator. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166010. [PMID: 33188942 DOI: 10.1016/j.bbadis.2020.166010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
Osteopenia and increased fracture rates are well-recognized in patients with cystic fibrosis (CF) disease. In CF pathology, F508del is the most common CFTR mutation, with more than 85% of patients carrying it on at least one allele. The underlying molecular defect in CFTR caused by the F508del-CFTR mutation in osteoclastogenesis, i.e., on the generation and bone-resorption activity of osteoclasts (OCs) from peripheral blood-derived monocytes (PBMCs) remained unexplored. We therefore investigated whether the F508del mutation could affect the osteoclastogenic capacity of PBMCs collected from 15 adult patients bearing the F508del-CFTR mutation, to modulate their bone-resorptive abilities and the level of sphingosine-1-phosphate (S1P) produced by OCs, a key factor in the bone mineral density and formation. In the present study, a severe, defective differentiation of CF-F508del PBMCs to CF-F508del OCs without any significant difference in nuclei number per OC was found compared to non-CF healthy PBMCs from 13 subjects after 7-14-days culture periods. We observed a reduced number of formed non-CF healthy OCs in the presence of a selective inhibitor of CFTR chloride conductance (CFTR-Inh172). Our data regarding OCs resorptive capabilites revealed that a loss of CFTR chloride activity in OCs led to a marked reduction in their trench-resorption mode. A 7-fold increase of the S1P release by CF-F508del OCs was found compared to non-CF healthy OCs after a 21-days culture period. We hypothesize that defective maturation of F508del-OCs precursor monocytes associated with high S1P production in the bone environment might contribute to low bone mineral density observed in the CF population.
Collapse
Affiliation(s)
- Marie-Laure Jourdain
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France; CHU de Reims, Pôle de Médecine Bucco-Dentaire, 51100 Reims, France
| | - Johan Sergheraert
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France; CHU de Reims, Pôle de Médecine Bucco-Dentaire, 51100 Reims, France
| | - Julien Braux
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France; CHU de Reims, Pôle de Médecine Bucco-Dentaire, 51100 Reims, France
| | - Christine Guillaume
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France
| | - Sophie C Gangloff
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France
| | - Dominique Hubert
- Service de Pneumologie, Adult Cystic Fibrosis Centre, Hôpital Cochin, 75012 Paris, France
| | - Frédéric Velard
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France.
| | - Jacky Jacquot
- Université de Reims Champagne Ardenne, BIOS EA 4691 "Biomatériaux et Inflammation en site osseux", 51097 Reims, France.
| |
Collapse
|
7
|
Synthesis and Therapeutic Applications of Iminosugars in Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21093353. [PMID: 32397443 PMCID: PMC7247015 DOI: 10.3390/ijms21093353] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Iminosugars are sugar analogues endowed with a high pharmacological potential. The wide range of biological activities exhibited by these glycomimetics associated with their excellent drug profile make them attractive therapeutic candidates for several medical interventions. The ability of iminosugars to act as inhibitors or enhancers of carbohydrate-processing enzymes suggests their potential use as therapeutics for the treatment of cystic fibrosis (CF). Herein we review the most relevant advances in the field, paying attention to both the chemical synthesis of the iminosugars and their biological evaluations, resulting from in vitro and in vivo assays. Starting from the example of the marketed drug NBDNJ (N-butyl deoxynojirimycin), a variety of iminosugars have exhibited the capacity to rescue the trafficking of F508del-CFTR (deletion of F508 residue in the CF transmembrane conductance regulator), either alone or in combination with other correctors. Interesting results have also been obtained when iminosugars were considered as anti-inflammatory agents in CF lung disease. The data herein reported demonstrate that iminosugars hold considerable potential to be applied for both therapeutic purposes.
Collapse
|
8
|
Orlando V, Morin G, Laffont A, Lénart D, Solórzano Barrera C, Mustafy T, Sankhe S, Villemure I, Mailhot G. CFTR deletion affects mouse osteoblasts in a gender-specific manner. J Cell Physiol 2020; 235:6736-6753. [PMID: 31985038 DOI: 10.1002/jcp.29568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Advancements in research and care have contributed to increase life expectancy of individuals with cystic fibrosis (CF). With increasing age comes a greater likelihood of developing CF bone disease, a comorbidity characterized by a low bone mass and impaired bone quality, which displays gender differences in severity. However, pathophysiological mechanisms underlying this gender difference have never been thoroughly investigated. We used bone marrow-derived osteoblasts and osteoclasts from Cftr+/+ and Cftr-/- mice to examine whether the impact of CF transmembrane conductance regulator (CFTR) deletion on cellular differentiation and functions differed between genders. To determine whether in vitro findings translated into in vivo observations, we used imaging techniques and three-point bending testing. In vitro studies revealed no osteoclast-autonomous defect but impairment of osteoblast differentiation and functions and aberrant responses to various stimuli in cells isolated from Cftr-/- females only. Compared with wild-type controls, knockout mice exhibited a trabecular osteopenic phenotype that was more pronounced in Cftr-/- males than Cftr-/- females. Bone strength was reduced to a similar extent in knockout mice of both genders. In conclusion, we find a trabecular bone phenotype in Cftr-/- mice that was slightly more pronounced in males than females, which is reminiscent of the situation found in patients. However, at the osteoblast level, the pathophysiological mechanisms underlying this phenotype differ between males and females, which may underlie gender differences in the way bone marrow-derived osteoblasts behave in absence of CFTR.
Collapse
Affiliation(s)
- Valérie Orlando
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Alisson Laffont
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Déborah Lénart
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Carolina Solórzano Barrera
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Tanvir Mustafy
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Safiétou Sankhe
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada
| | - Isabelle Villemure
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Mechanical Engineering, École Polytechnique of Montréal, Station Centre-Ville, Montréal, Quebec, Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, Montreal, Montreal, Quebec, Canada.,Department of Nutrition, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Guérin S, Durieu I, Sermet-Gaudelus I. Cystic Fibrosis-Related Bone Disease: Current Knowledge and Future Directions. Respir Med 2020. [DOI: 10.1007/978-3-030-42382-7_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Braux J, Jourdain ML, Guillaume C, Untereiner V, Piot O, Baehr A, Klymiuk N, Winter N, Berri M, Buzoni-Gatel D, Caballero I, Guillon A, Si-Tahar M, Jacquot J, Velard F. CFTR-deficient pigs display alterations of bone microarchitecture and composition at birth. J Cyst Fibros 2019; 19:466-475. [PMID: 31787573 DOI: 10.1016/j.jcf.2019.10.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/07/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The lack of cystic fibrosis transmembrane conductance regulator (CFTR) function causes cystic fibrosis (CF), predisposing to severe lung disease, reduced growth and osteopenia. Both reduced bone content and strength are increasingly recognized in infants with CF before the onset of significant lung disease, suggesting a developmental origin and a possible role in bone disease pathogenesis. The role of CFTR in bone metabolism is unclear and studies on humans are not feasible. Deletion of CFTR in pigs (CFTR -/- pigs) displays at birth severe malformations similar to humans in the intestine, respiratory tract, pancreas, liver, and male reproductive tract. METHODS We compared bone parameters of CFTR -/- male and female pigs with those of their wild-type (WT) littermates at birth. Morphological and microstructural properties of femoral cortical and trabecular bone were evaluated using micro-computed tomography (μCT), and their chemical compositions were examined using Raman microspectroscopy. RESULTS The integrity of the CFTR -/- bone was altered due to changes in its microstructure and chemical composition in both sexes. Low cortical thickness and high cortical porosity were found in CFTR -/- pigs compared to sex-matched WT littermates. Moreover, an increased chemical composition heterogeneity associated with higher carbonate/phosphate ratio and higher mineral crystallinity was found in CFTR -/- trabecular bone, but not in CFTR -/- cortical bone. CONCLUSIONS The loss of CFTR directly alters the bone composition and metabolism of newborn pigs. Based on these findings, we speculate that bone defects in patients with CF could be a primary, rather than a secondary consequence of inflammation and infection.
Collapse
Affiliation(s)
- Julien Braux
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Marie-Laure Jourdain
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Christine Guillaume
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Valérie Untereiner
- Université de Reims Champagne Ardenne (URCA), PICT Platform, Reims, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Olivier Piot
- Université de Reims Champagne-Ardenne, BioSpecT (Translational BioSpectroscopy) EA 7506, 1, Avenue du Maréchal Juin, 51097 Reims, France
| | - Andrea Baehr
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universitat Munchen, Hackerstrasse 27, 85764, Oberschleissheim, Germany
| | - Nathalie Winter
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Mustapha Berri
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | | | - Ignaccio Caballero
- INRA, UMR1282 ISP, Centre de recherches INRA Val de Loire, 37380, Nouzilly, France
| | - Antoine Guillon
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Mustapha Si-Tahar
- Inserm, Centre d'Etude des Pathologies Respiratoires, UMR1100/EA6305, 10 Boulevard Tonnellé, 37032, Tours, France
| | - Jacky Jacquot
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| | - Frédéric Velard
- Université de Reims Champagne Ardenne, BIOS EA 4691, Biomatériaux et Inflammation en site osseux, SFR CAP-Santé (FED 4231), 1, Avenue du Maréchal Juin, 51097 Reims, France.
| |
Collapse
|
11
|
Anabtawi A, Le T, Putman M, Tangpricha V, Bianchi ML. Cystic fibrosis bone disease: Pathophysiology, assessment and prognostic implications. J Cyst Fibros 2019; 18 Suppl 2:S48-S55. [DOI: 10.1016/j.jcf.2019.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022]
|
12
|
Robinson CA, Hofer M, Benden C, Schmid C. Evaluation of bone disease in patients with cystic fibrosis and end-stage lung disease. ACTA ACUST UNITED AC 2019; 45:e20170280. [PMID: 30843951 PMCID: PMC6534402 DOI: 10.1590/1806-3713/e20170280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 04/10/2018] [Indexed: 11/22/2022]
Abstract
Objective: Bone disease is a common comorbidity in patients with cystic fibrosis (CF). We sought to determine risk factors and identify potential biochemical markers for CF-related bone disease (CFBD) in a unique cohort of CF patients with end-stage lung disease undergoing lung transplantation (LTx) evaluation. Methods: All of the CF patients who were evaluated for LTx at our center between November of 1992 and December of 2010 were included in the study. Clinical data and biochemical markers of bone turnover, as well as bone mineral density (BMD) at the lumbar spine and femoral neck, were evaluated. Spearman’s rho and multivariate logistic regression analysis were used. Results: A total of 102 adult CF patients were evaluated. The mean age was 28.1 years (95% CI: 26.7-29.5), and the mean body mass index was 17.5 kg/m2 (95% CI: 17.2-18.2). Mean T-scores were −2.3 and −1.9 at the lumbar spine and femoral neck, respectively, being lower in males than in females (−2.7 vs. −2.0 at the lumbar spine and −2.2 vs. −1.7 at the femoral neck). Overall, 52% had a T-score of < −2.5 at either skeletal site. The homozygous Phe508del genotype was found in 57% of patients without osteoporosis and in 60% of those with low BMD. Mean T-scores were not particularly low in patients with severe CFTR mutations. Although the BMI correlated with T-scores at the femoral neck and lumbar spine, serum 25-hydroxyvitamin D and parathyroid hormone levels did not. Conclusions: CFBD is common in CF patients with end-stage lung disease, particularly in males and patients with a low BMI. It appears that CF mutation status does not correlate with CFBD. In addition, it appears that low BMD does not correlate with other risk factors or biochemical parameters. The prevalence of CFBD appears to have recently decreased, most likely reflecting increased efforts at earlier diagnosis and treatment.
Collapse
Affiliation(s)
- Cécile A Robinson
- . Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Markus Hofer
- . Department of Pulmonology, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Christian Benden
- . Department of Pulmonology, University Hospital of Zurich, Zurich, Switzerland
| | - Christoph Schmid
- . Department of Endocrinology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Stalvey MS, Havasi V, Tuggle KL, Wang D, Birket S, Rowe SM, Sorscher EJ. Reduced bone length, growth plate thickness, bone content, and IGF-I as a model for poor growth in the CFTR-deficient rat. PLoS One 2017; 12:e0188497. [PMID: 29190650 PMCID: PMC5708703 DOI: 10.1371/journal.pone.0188497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 11/08/2017] [Indexed: 11/18/2022] Open
Abstract
Background Reduced growth and osteopenia are common in individuals with cystic fibrosis (CF). Additionally, improved weight and height are associated with better lung function and overall health in the disease. Mechanisms for this reduction in growth are not understood. We utilized a new CFTR knockout rat to evaluate growth in young CF animals, via femur length, microarchitecture of bone and growth plate, as well as serum IGF-I concentrations. Methods Femur length was measured in wild-type (WT) and SD-CFTRtm1sage (Cftr-/-) rats, as a surrogate marker for growth. Quantitative bone parameters in Cftr-/- and WT rats were measured by micro computed tomography (micro-CT). Bone histomorphometry and cartilaginous growth plates were analyzed. Serum IGF-I concentrations were also compared. Results Femur length was reduced in both Cftr-/- male and female rats compared to WT. Multiple parameters of bone microarchitecture (of both trabecular and cortical bone) were adversely affected in Cftr-/- rats. There was a reduction in overall growth plate thichkness in both male and female Cftr-/- rats, as well as hypertrophic zone thickness and mean hypertrophic cell volume in male rats, indicating abnormal growth characteristics at the plate. Serum IGF-I concentrations were severely reduced in Cftr-/- rats compared to WT littermates. Conclusions Despite absence of overt lung or pancreatic disease, reduced growth and bone content were readily detected in young Cftr-/- rats. Reduced size of the growth plate and decreased IGF-I concentrations suggest the mechanistic basis for this phenotype. These findings appear to be intrinsic to the CFTR deficient state and independent of significant clinical confounders, providing substantive evidence for the importance of CFTR on maintinaing normal bone growth.
Collapse
Affiliation(s)
- Michael S. Stalvey
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| | - Viktoria Havasi
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Katherine L. Tuggle
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Cystic Fibrosis Foundation, Bethesda, MD, United States of America
| | - Dezhi Wang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Susan Birket
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Steve M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, United States of America
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Eric J. Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
14
|
Delion M, Braux J, Jourdain ML, Guillaume C, Bour C, Gangloff S, Pimpec-Barthes FL, Sermet-Gaudelus I, Jacquot J, Velard F. Overexpression of RANKL in osteoblasts: a possible mechanism of susceptibility to bone disease in cystic fibrosis. J Pathol 2017; 240:50-60. [PMID: 27235726 DOI: 10.1002/path.4753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/09/2016] [Accepted: 05/18/2016] [Indexed: 12/19/2022]
Abstract
Bone fragility and loss are a significant cause of morbidity in patients with cystic fibrosis (CF), and the lack of effective therapeutic options means that treatment is more often palliative rather than curative. A deeper understanding of the pathogenesis of CF-related bone disease (CFBD) is necessary to develop new therapies. Defective CF transmembrane conductance regulator (CFTR) protein and chronic inflammation in bone are important components of the CFBD development. The receptor activator of nuclear factor kappa-B ligand (RANKL) and osteoprotegerin (OPG) drive the regulation of bone turnover. To investigate their roles in CFBD, we evaluated the involvement of defective CFTR in their production level in CF primary human osteoblasts with and without inflammatory stimulation, in the presence or not of pharmacological correctors of the CFTR. No major difference in cell ultrastructure was noted between cultured CF and non-CF osteoblasts, but a delayed bone matrix mineralization was observed in CF osteoblasts. Strikingly, resting CF osteoblasts exhibited strong production of RANKL protein, which was highly localized at the cell membrane and was enhanced in TNF (TNF-α) or IL-17-stimulated conditions. Under TNF stimulation, a defective response in OPG production was observed in CF osteoblasts in contrast to the elevated OPG production of non-CF osteoblasts, leading to an elevated RANKL-to-OPG protein ratio in CF osteoblasts. Pharmacological inhibition of CFTR chloride channel conductance in non-CF osteoblasts replicated both the decreased OPG production and the enhanced RANKL-to-OPG ratio. Interestingly, using CFTR correctors such as C18, we significantly reduced the production of RANKL by CF osteoblasts, in both resting and TNF-stimulated conditions. In conclusion, the overexpression of RANKL and high membranous RANKL localization in osteoblasts are related to defective CFTR, and may worsen bone resorption, leading to bone loss in patients with CF. Targeting osteoblasts with CFTR correctors may represent an effective strategy to treat CFBD. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Martial Delion
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Julien Braux
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Marie-Laure Jourdain
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Christine Guillaume
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Camille Bour
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Sophie Gangloff
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | | | - Isabelle Sermet-Gaudelus
- Unité de Pneumo-Pédiatrie Allergologie, Hôpital Necker, Inserm U1551, Université Paris Sorbonne, Paris, France
| | - Jacky Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| | - Frédéric Velard
- EA 4691, Biomatériaux et Inflammation en Site Osseux, SFR CAP-Santé (FED 4231), Université Reims Champagne-Ardenne, 1 Avenue du Maréchal Juin, Reims, France
| |
Collapse
|
15
|
Sermet-Gaudelus I, Delion M, Durieu I, Jacquot J, Hubert D. Bone demineralization is improved by ivacaftor in patients with cystic fibrosis carrying the p.Gly551Asp mutation. J Cyst Fibros 2016; 15:e67-e69. [DOI: 10.1016/j.jcf.2016.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/04/2016] [Accepted: 09/14/2016] [Indexed: 10/20/2022]
|
16
|
Gensburger D, Boutroy S, Chapurlat R, Nove-Josserand R, Roche S, Rabilloud M, Durieu I. Reduced bone volumetric density and weak correlation between infection and bone markers in cystic fibrosis adult patients. Osteoporos Int 2016; 27:2803-2813. [PMID: 27165286 DOI: 10.1007/s00198-016-3612-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/20/2016] [Indexed: 02/05/2023]
Abstract
UNLABELLED In our current adult CF population, low BMD prevalence was only 20 %, lower than that historically described. We found a mild increase of serum RANK-L levels, independent from the bone resorption level. The increased fracture risk in CF may be explained by a lower tibial cortical thickness and total vBMD. INTRODUCTION Bone disease is now well described in cystic fibrosis (CF) adult patients. CF bone disease is multifactorial but many studies suggested the crucial role of inflammation. The objectives of this study were, in a current adult CF population, to assess the prevalence of bone disease, to examine its relationship with infections and inflammation, and to characterize the bone microarchitecture using high resolution peripheral scanner (HR-pQCT). METHODS Fifty-six patients (52 % men, 26 ± 7 years) were assessed in clinically stable period, during a respiratory infection, and finally 14 days after the end of antibiotic therapy. At each time points, we performed a clinical evaluation, lung function tests, and biochemical tests. Absorptiometry and dorso-lumbar radiographs were also performed. A subgroup of 40 CF patients (63 % men, 29 ± 6 years) underwent bone microarchitecture assessment and was age- and gender-matched with 80 healthy controls. RESULTS Among the 56 CF patients, the prevalence of low areal BMD (T-score < -2 at any site), was 20 % (95 % CI: [10.2 %; 32.4 %]). After infections, serum RANK-L (+24 %, p = 0.08) and OPG (+13 %, p = 0.04) were increased with a stable ratio. Microarchitectural differences were mostly observed at the distal tibia, with lower total and cortical vBMD and trabecular thickness (respectively -9.9, -3.0, and -5 %, p < 0.05) in CF patients compared to controls, after adjustment for age, gender, weight, and height. CONCLUSIONS In this study, bone disease among adult CF patients was less severe than that previously described with only 20 % of CF patients with low BMD. We found a mild increase of biological marker levels and an impaired volumetric density of the tibia that may explain the increased fracture risk in CF population.
Collapse
Affiliation(s)
- D Gensburger
- INSERM UMR 1033, Université de Lyon, Lyon, France.
- Department of Rheumatology, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France.
| | - S Boutroy
- INSERM UMR 1033, Université de Lyon, Lyon, France
| | - R Chapurlat
- INSERM UMR 1033, Université de Lyon, Lyon, France
- Department of Rheumatology, Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - R Nove-Josserand
- Cystic Fibrosis Adult Reference Centre, Department of Internal Medicine, Université de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| | - S Roche
- Department of Biostatistique, Hospices Civils de Lyon; Université de Lyon. Université Lyon 1, CNRS UMR558, Laboratoire de Biométrie et Biologie évolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - M Rabilloud
- Department of Biostatistique, Hospices Civils de Lyon; Université de Lyon. Université Lyon 1, CNRS UMR558, Laboratoire de Biométrie et Biologie évolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - I Durieu
- Cystic Fibrosis Adult Reference Centre, Department of Internal Medicine, Université de Lyon, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre Bénite, France
| |
Collapse
|
17
|
Putman MS, Greenblatt LB, Sicilian L, Uluer A, Lapey A, Sawicki G, Gordon CM, Bouxsein ML, Finkelstein JS. Young adults with cystic fibrosis have altered trabecular microstructure by ITS-based morphological analysis. Osteoporos Int 2016; 27:2497-505. [PMID: 26952010 PMCID: PMC4947435 DOI: 10.1007/s00198-016-3557-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/01/2016] [Indexed: 01/22/2023]
Abstract
UNLABELLED Young adults with cystic fibrosis have compromised plate-like trabecular microstructure, altered axial alignment of trabeculae, and reduced connectivity between trabeculae that may contribute to the reduced bone strength and increased fracture risk observed in this patient population. INTRODUCTION The risk of fracture is increased in patients with cystic fibrosis (CF). Individual trabecular segmentation (ITS)-based morphological analysis of high-resolution peripheral quantitative computed tomography (HR-pQCT) images segments trabecular bone into individual plates and rods of different alignment and connectivity, which are important determinants of trabecular bone strength. We sought to determine whether alterations in ITS variables are present in patients with CF and may help explain their increased fracture risk. METHODS Thirty patients with CF ages 18-40 years underwent DXA scans of the hip and spine and HR-pQCT scans of the radius and tibia with further assessment of trabecular microstructure by ITS. These CF patients were compared with 60 healthy controls matched for age (±2 years), race, and gender. RESULTS Plate volume fraction, thickness, and density as well as plate-plate and plate-rod connectivity were reduced, and axial alignment of trabeculae was lower in subjects with CF at both the radius and the tibia (p < 0.05 for all). At the radius, adjustment for BMI eliminated most of these differences. At the tibia, however, reductions in plate volume fraction and number, axially aligned trabeculae, and plate-plate connectivity remained significant after adjustment for BMI alone and for BMI and aBMD (p < 0.05 for all). CONCLUSIONS Young adults with CF have compromised plate-like and axially aligned trabecular morphology and reduced connectivity between trabeculae. ITS analysis provides unique information about bone integrity, and these trabecular deficits may help explain the increased fracture risk in adults with CF not accounted for by BMD and/or traditional bone microarchitecture measurements.
Collapse
Affiliation(s)
- M S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA, 02114, USA.
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA.
| | - L B Greenblatt
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA, 02114, USA
| | - L Sicilian
- Pulmonary Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - A Uluer
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - A Lapey
- Pulmonary Division, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
| | - G Sawicki
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, USA
| | - C M Gordon
- Division of Adolescent and Transition Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - M L Bouxsein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA, 02114, USA
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, USA
| | - J S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, 50 Blossom Street, THR-1051, Boston, MA, 02114, USA
| |
Collapse
|
18
|
Abstract
Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages.
Collapse
Affiliation(s)
- Scott M. Blackman
- Division of Pediatric Endocrinology, Department of Pediatrics, Johns Hopkins University and Johns Hopkins Hospital, Baltimore, MD
| | - Vin Tangpricha
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine and the Atlanta VA Medical Center, Atlanta, GA
| |
Collapse
|
19
|
Jacquot J, Delion M, Gangloff S, Braux J, Velard F. Bone disease in cystic fibrosis: new pathogenic insights opening novel therapies. Osteoporos Int 2016; 27:1401-1412. [PMID: 26431978 DOI: 10.1007/s00198-015-3343-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Mutations within the gene encoding for the chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) results in cystic fibrosis (CF), the most common lethal autosomal recessive genetic disease that causes a number of long-term health problems, as the bone disease. Osteoporosis and increased vertebral fracture risk associated with CF disease are becoming more important as the life expectancy of patients continues to improve. The etiology of low bone density is multifactorial, most probably a combination of inadequate peak bone mass during puberty and increased bone losses in adults. Body mass index, male sex, advanced pulmonary disease, malnutrition and chronic therapies are established additional risk factors for CF-related bone disease (CFBD). Consistently, recent evidence has confirmed that CFTR plays a major role in the osteoprotegerin (OPG) and COX-2 metabolite prostaglandin E2 (PGE2) production, two key regulators in the bone formation and regeneration. Several others mechanisms were also recognized from animal and cell models contributing to malfunctions of osteoblast (cell that form bone) and indirectly of bone-resorpting osteoclasts. Understanding such mechanisms is crucial for the development of therapies in CFBD. Innovative therapeutic approaches using CFTR modulators such as C18 have recently shown in vitro capacity to enhance PGE2 production and normalized the RANKL-to-OPG ratio in human osteoblasts bearing the mutation F508del-CFTR and therefore potential clinical utility in CFBD. This review focuses on the recently identified pathogenic mechanisms leading to CFBD and potential future therapies for treating CFBD.
Collapse
Affiliation(s)
- J Jacquot
- EA 4691, Biomatériaux et Inflammation en Site Osseux (BIOS), SFR CAP-Santé (FED 4231), Université Reims Champagne Ardenne, 1, Avenue du Maréchal Juin, 51095, Reims, France.
| | | | | | | | | |
Collapse
|
20
|
Le Henaff C, Faria Da Cunha M, Hatton A, Tondelier D, Marty C, Collet C, Zarka M, Geoffroy V, Zatloukal K, Laplantine E, Edelman A, Sermet-Gaudelus I, Marie PJ. Genetic deletion of keratin 8 corrects the altered bone formation and osteopenia in a mouse model of cystic fibrosis. Hum Mol Genet 2016; 25:1281-93. [PMID: 26769674 DOI: 10.1093/hmg/ddw009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
Patients with cystic fibrosis (CF) display low bone mass and alterations in bone formation. Mice carrying the F508del genetic mutation in the cystic fibrosis conductance regulator (Cftr) gene display reduced bone formation and decreased bone mass. However, the underlying molecular mechanisms leading to these skeletal defects are unknown, which precludes the development of an efficient anti-osteoporotic therapeutic strategy. Here we report a key role for the intermediate filament protein keratin 8 (Krt8), in the osteoblast dysfunctions in F508del-Cftr mice. We found that murine and human osteoblasts express Cftr and Krt8 at low levels. Genetic studies showed that Krt8 deletion (Krt8(-/-)) in F508del-Cftr mice increased the levels of circulating markers of bone formation, corrected the expression of osteoblast phenotypic genes, promoted trabecular bone formation and improved bone mass and microarchitecture. Mechanistically, Krt8 deletion in F508del-Cftr mice corrected overactive NF-κB signaling and decreased Wnt-β-catenin signaling induced by the F508del-Cftr mutation in osteoblasts. In vitro, treatment with compound 407, which specifically disrupts the Krt8-F508del-Cftr interaction in epithelial cells, corrected the abnormal NF-κB and Wnt-β-catenin signaling and the altered phenotypic gene expression in F508del-Cftr osteoblasts. In vivo, short-term treatment with 407 corrected the altered Wnt-β-catenin signaling and bone formation in F508del-Cftr mice. Collectively, the results show that genetic or pharmacologic targeting of Krt8 leads to correction of osteoblast dysfunctions, altered bone formation and osteopenia in F508del-Cftr mice, providing a therapeutic strategy targeting the Krt8-F508del-CFTR interaction to correct the abnormal bone formation and bone loss in cystic fibrosis.
Collapse
Affiliation(s)
- Carole Le Henaff
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Aurélie Hatton
- INSERM U-1151, Team 2, University Paris Descartes, Paris, France
| | | | - Caroline Marty
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Collet
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mylène Zarka
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Geoffroy
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Graz, Austria and
| | - Emmanuel Laplantine
- Laboratoire de Signalisation et Pathogenèse, Institut Pasteur, Paris, France
| | | | | | - Pierre J Marie
- INSERM UMR-1132, Paris, France, University Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
21
|
Putman MS, Baker JF, Uluer A, Herlyn K, Lapey A, Sicilian L, Tillotson AP, Gordon CM, Merkel PA, Finkelstein JS. Trends in bone mineral density in young adults with cystic fibrosis over a 15 year period. J Cyst Fibros 2015; 14:526-32. [PMID: 25698451 PMCID: PMC4485936 DOI: 10.1016/j.jcf.2015.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/11/2014] [Accepted: 01/30/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Improvements in clinical care have led to increased life expectancy in patients with cystic fibrosis (CF) over the past several decades. Whether these improvements have had significant effects on bone health in patients with CF is unclear. METHODS This is a cross-sectional study comparing clinical characteristics and bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) in adults with CF evaluated in 1995-1999 to age-, race-, and gender-matched patients with CF evaluated in 2011-2013 at the same center on calibrated DXA machines. RESULTS The cohorts were similar in terms of age, BMI, pancreatic insufficiency, presence of F508del mutation, and reproductive history. In the most recent cohort, pulmonary function was superior, and fewer patients had vitamin D deficiency or secondary hyperparathyroidism. Areal BMD measures of the PA spine, lateral spine, and distal radius were similarly low in the two cohorts. CONCLUSIONS Although pulmonary function and vitamin D status were better in patients in the present-day cohort, areal BMD of the spine was reduced in a significant number of patients and was no different in patients with CF today than in the late 1990s. Further attention to optimizing bone health may be necessary to prevent CF-related bone disease.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States; Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States.
| | - Joshua F Baker
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ahmet Uluer
- Division of Respiratory Diseases, Boston Children's Hospital, Boston, MA, United States
| | - Karen Herlyn
- Poliklinik fuer Rheumatologie, University Hospital Schleswig-Holstein, Campus Luebeck, Germany
| | - Allen Lapey
- Pulmonary Division, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | - Leonard Sicilian
- Pulmonary Division, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | | | - Catherine M Gordon
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, United States; Divisions of Adolescent Medicine and Endocrinology, Hasbro Children's Hospital, Providence, RI, United States
| | - Peter A Merkel
- Division of Rheumatology, University of Pennsylvania, Philadelphia, PA, United States
| | - Joel S Finkelstein
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Le Henaff C, Mansouri R, Modrowski D, Zarka M, Geoffroy V, Marty C, Tarantino N, Laplantine E, Marie PJ. Increased NF-κB Activity and Decreased Wnt/β-Catenin Signaling Mediate Reduced Osteoblast Differentiation and Function in ΔF508 Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mice. J Biol Chem 2015; 290:18009-18017. [PMID: 26060255 DOI: 10.1074/jbc.m115.646208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
The prevalent human ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is associated with reduced bone formation and bone loss in mice. The molecular mechanisms by which the ΔF508-CFTR mutation causes alterations in bone formation are poorly known. In this study, we analyzed the osteoblast phenotype in ΔF508-CFTR mice and characterized the signaling mechanisms underlying this phenotype. Ex vivo studies showed that the ΔF508-CFTR mutation negatively impacted the differentiation of bone marrow stromal cells into osteoblasts and the activity of osteoblasts, demonstrating that the ΔF508-CFTR mutation alters both osteoblast differentiation and function. Treatment with a CFTR corrector rescued the abnormal collagen gene expression in ΔF508-CFTR osteoblasts. Mechanistic analysis revealed that NF-κB signaling and transcriptional activity were increased in mutant osteoblasts. Functional studies showed that the activation of NF-κB transcriptional activity in mutant osteoblasts resulted in increased β-catenin phosphorylation, reduced osteoblast β-catenin expression, and altered expression of Wnt/β-catenin target genes. Pharmacological inhibition of NF-κB activity or activation of canonical Wnt signaling rescued Wnt target gene expression and corrected osteoblast differentiation and function in bone marrow stromal cells and osteoblasts from ΔF508-CFTR mice. Overall, the results show that the ΔF508-CFTR mutation impairs osteoblast differentiation and function as a result of overactive NF-κB and reduced Wnt/β-catenin signaling. Moreover, the data indicate that pharmacological inhibition of NF-κB or activation of Wnt/β-catenin signaling can rescue the abnormal osteoblast differentiation and function induced by the prevalent ΔF508-CFTR mutation, suggesting novel therapeutic strategies to correct the osteoblast dysfunctions in cystic fibrosis.
Collapse
Affiliation(s)
- Carole Le Henaff
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Rafik Mansouri
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Dominique Modrowski
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Mylène Zarka
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Valérie Geoffroy
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Caroline Marty
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris
| | - Nadine Tarantino
- Laboratoire de Signalisation et Pathogenèse, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Laplantine
- Laboratoire de Signalisation et Pathogenèse, Institut Pasteur, 75015 Paris, France
| | - Pierre J Marie
- UMR-1132 INSERM, 75475 Paris; Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris.
| |
Collapse
|
23
|
Marie PJ. Osteoblast dysfunctions in bone diseases: from cellular and molecular mechanisms to therapeutic strategies. Cell Mol Life Sci 2015; 72:1347-61. [PMID: 25487608 PMCID: PMC11113967 DOI: 10.1007/s00018-014-1801-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/27/2022]
Abstract
Several metabolic, genetic and oncogenic bone diseases are characterized by defective or excessive bone formation. These abnormalities are caused by dysfunctions in the commitment, differentiation or survival of cells of the osteoblast lineage. During the recent years, significant advances have been made in our understanding of the cellular and molecular mechanisms underlying the osteoblast dysfunctions in osteoporosis, skeletal dysplasias and primary bone tumors. This led to suggest novel therapeutic approaches to correct these abnormalities such as the modulation of WNT signaling, the pharmacological modulation of proteasome-mediated protein degradation, the induction of osteoprogenitor cell differentiation, the repression of cancer cell proliferation and the manipulation of epigenetic mechanisms. This article reviews our current understanding of the major cellular and molecular mechanisms inducing osteoblastic cell abnormalities in age-related bone loss, genetic skeletal dysplasias and primary bone tumors, and discusses emerging therapeutic strategies to counteract the osteoblast abnormalities in these disorders of bone formation.
Collapse
Affiliation(s)
- Pierre J Marie
- INSERM UMR-1132, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475, Paris Cedex 10, France,
| |
Collapse
|
24
|
Velard F, Delion M, Lemaire F, Tabary O, Guillaume C, Le Pimpec Barthès F, Touqui L, Gangloff S, Sermet-Gaudelus I, Jacquot J. Cystic fibrosis bone disease: is the CFTR corrector C18 an option for therapy? Eur Respir J 2014; 45:845-8. [DOI: 10.1183/09031936.00174014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|