1
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
2
|
Huang J, Lai Y, Li J, Zhao L. Loss of miR-204 and miR-211 shifts osteochondral balance and causes temporomandibular joint osteoarthritis. J Cell Physiol 2023; 238:2668-2678. [PMID: 37697972 PMCID: PMC10841301 DOI: 10.1002/jcp.31120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Temporomandibular joint (TMJ) osteoarthritis (OA) is a common type of TMJ disorders causing pain and dysfunction in the jaw and surrounding tissues. The causes for TMJ OA are unknown and the underlying mechanism remains to be identified. In this study, we generated genetically-modified mice deficient of two homologous microRNAs, miR-204 and miR-211, both of which were confirmed by in situ hybridization to be expressed in multiple TMJ tissues, including condylar cartilage, articular eminence, and TMJ disc. Importantly, the loss-of-function of miR-204 and miR-211 caused an age-dependent progressive OA-like phenotype, including cartilage degradation and abnormal subchondral bone remodeling. Mechanistically, the TMJ joint deficient of the two microRNAs demonstrated a significant accumulation of RUNX2, a protein directly targeted by miR-204/-211, and upregulations of β-catenin, suggesting a disrupted balance between osteogenesis and chondrogenesis in the TMJ, which may underlie TMJ OA. Moreover, the TMJ with miR-204/-211 loss-of-function displayed an aberrant alteration in both collagen component and cartilage-degrading enzymes and exhibited exacerbated orofacial allodynia, corroborating the degenerative and painful nature of TMJ OA. Together, our results establish a key role of miR-204/-211 in maintaining the osteochondral homeostasis of the TMJ and counteracting OA pathogenesis through repressing the pro-osteogenic factors including RUNX2 and β-catenin.
Collapse
Affiliation(s)
- Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Yumei Lai
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Jun Li
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Juan Z, Xing-tong M, Xu Z, Chang-yi L. Potential pathological and molecular mechanisms of temporomandibular joint osteoarthritis. J Dent Sci 2023; 18:959-971. [PMID: 37404608 PMCID: PMC10316511 DOI: 10.1016/j.jds.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 07/06/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a progressive degenerative disease of the temporomandibular joint (TMJ). The unclear etiology and mechanisms of TMJ OA bring great difficulties to early diagnosis and effective treatment, causing enormous burdens to patients' life and social economics. In this narrative review, we summarized the main pathological changes of TMJ OA, including inflammatory responses, degeneration of extracellular matrix (ECM), abnormal cell biological behaviors (apoptosis, autophagy, and differentiation) in TMJ tissue, and aberrant angiogenesis. All pathological features are closely linked to each other, forming a vicious cycle in the process of TMJ OA, which results in prolonged disease duration and makes it difficult to cure. Various molecules and signaling pathways are involved in TMJ OA pathogenesis, including nuclear factor kappa-B (NF-κB), mitogen-activated protein kinases (MAPKs), extracellular regulated protein kinases (ERKs) and transforming growth factor (TGF)-β signaling pathways et al. One molecule or pathway can contribute to several pathological changes, and the crosstalk between different molecules and pathways can further lead to a complicated condition TMJ OA. TMJ OA has miscellaneous etiology, complex clinical status, depressed treatment results, and poor prognosis. Therefore, novel in-vivo and in-vitro models, novel medicine, materials, and approaches for therapeutic procedures might be helpful for further investigation of TMJ OA. Furthermore, the role of genetic factors in TMJ OA needs to be elucidated to establish more reasonable and effective clinical strategies for diagnosing and treating TMJ OA.
Collapse
Affiliation(s)
- Zhang Juan
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Mu Xing-tong
- Department of Prosthodontics, Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Zhang Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
- Institute of Stomatology, Tianjin Medical University, Tianjin, PR China
| | - Li Chang-yi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
4
|
Zhao Y, An Y, Zhou L, Wu F, Wu G, Wang J, Chen L. Animal Models of Temporomandibular Joint Osteoarthritis: Classification and Selection. Front Physiol 2022; 13:859517. [PMID: 35574432 PMCID: PMC9095932 DOI: 10.3389/fphys.2022.859517] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/11/2023] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative joint disease that can cause severe pain and dysfunction. It has a serious impact on the quality of lives of patients. Since mechanism underlying the pathogenesis of TMJOA is not fully understood, the development of effective tools for early diagnosis and disease-modifying therapies has been hindered. Animal models play a key role in understanding the pathological process of diseases and evaluating new therapeutic interventions. Although some similarities in disease processes between animals and humans are known, no one animal model is sufficient for studying all characteristics of TMJOA, as each model has different translatability to human clinical conditions. For the past 4 decades, TMJOA animal models have been studied by numerous researchers and can be broadly divided into induced, naturally occurring, and genetically modified models. The induced models can be divided into invasive models (intra-articular injection and surgical induction) or non-invasive models (mechanical loading, high-fat diet, and sleep deprivation). Different types of animal models simulate different pathological expressions of TMJOA and have their unique characteristics. Currently, mice, rats, and rabbits are commonly used in the study of TMJOA. This review sought to provide a general description of current experimental models of TMJOA and assist researchers in selecting the most appropriate models for different kinds of research.
Collapse
Affiliation(s)
- Yuqing Zhao
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Libo Zhou
- School of Basic Medicine, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Fan Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application & Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, China
| | - Jing Wang
- Department of Oral Implants, School of Stomatology, National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Stomatology, The Fourth Military Medical University, Xi’an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
5
|
Lu K, Ma F, Yi D, Yu H, Tong L, Chen D. Molecular signaling in temporomandibular joint osteoarthritis. J Orthop Translat 2022; 32:21-27. [PMID: 35591935 PMCID: PMC9072795 DOI: 10.1016/j.jot.2021.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Objective Temporomandibular joint (TMJ) osteoarthritis (OA) is a type of TMJ disorders with clinical symptoms of pain, movement limitation, cartilage degeneration and joint dysfunction. This review article is aiming to summarize recent findings on signaling pathways involved in TMJ OA development and progression. Methods Most recent findings in TMJ OA studies have been reviewed and cited. Results TMJ OA is caused by inflammation, abnormal mechanical loading and genetic abnormalities. The molecular mechanisms related to TMJ OA have been determined using different genetic mouse models. Recent studies demonstrated that several signaling pathways are involved in TMJ OA pathology, including Wnt/β-catenin, TGF-β and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, which are summarized in this review article. Alterations of these signaling pathways lead to the pathological changes in TMJ tissues, affecting cartilage matrix degradation, catabolic metabolism and chondrocyte apoptosis. Conclusion Multiple signaling pathways were involved in the pathological process of TMJ OA. New therapeutic strategies, such as stem cell application, gene editing and other techniques may be utilized for TMJ OA treatment. The translational potential of this article TMJ OA is a most important subtype of TMJ disorders and may lead to substantial joint pain, dysfunction, dental malocclusion, and reduced health-related quality of life. This review article summarized current findings of signaling pathways involved in TMJ OA, including Wnt/β-catenin, TGF-β and BMP, Indian Hedgehog, FGF, NF-κB, and Notch pathways, to better understand the pathological mechanisms of TMJ OA and define the molecular targets for TMJ OA treatment.
Collapse
Affiliation(s)
- Ke Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Feng Ma
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- National Institute for Health and Medical Research (INSERM) UMR_S 1166, Faculty of Medicine Pitié-Salpétrière, Sorbonne University, 91, bd de l’Hôpital, 75013, Paris, France
| | - Dan Yi
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Tong
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Di Chen
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Corresponding author. Faculty of Pharmaceutical Sciences, China.
| |
Collapse
|
6
|
Hutami IR, Izawa T, Khurel-Ochir T, Sakamaki T, Iwasa A, Tanaka E. Macrophage Motility in Wound Healing Is Regulated by HIF-1α via S1P Signaling. Int J Mol Sci 2021; 22:ijms22168992. [PMID: 34445695 PMCID: PMC8396560 DOI: 10.3390/ijms22168992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence indicates that the molecular pathways mediating wound healing induce cell migration and localization of cytokines to sites of injury. Macrophages are immune cells that sense and actively respond to disturbances in tissue homeostasis by initiating, and subsequently resolving, inflammation. Hypoxic conditions generated at a wound site also strongly recruit macrophages and affect their function. Hypoxia inducible factor (HIF)-1α is a transcription factor that contributes to both glycolysis and the induction of inflammatory genes, while also being critical for macrophage activation. For the latter, HIF-1α regulates sphingosine 1-phosphate (S1P) to affect the migration, activation, differentiation, and polarization of macrophages. Recently, S1P and HIF-1α have received much attention, and various studies have been performed to investigate their roles in initiating and resolving inflammation via macrophages. It is hypothesized that the HIF-1α/S1P/S1P receptor axis is an important determinant of macrophage function under inflammatory conditions and during disease pathogenesis. Therefore, in this review, biological regulation of monocytes/macrophages in response to circulating HIF-1α is summarized, including signaling by S1P/S1P receptors, which have essential roles in wound healing.
Collapse
Affiliation(s)
- Islamy Rahma Hutami
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
- Department of Orthodontics, Faculty of Dentistry, Sultan Agung Islamic University, Semarang 50112, Indonesia
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: ; Tel.: +81-86-235-6691; Fax: +81-88-235-6694
| | - Tsendsuren Khurel-Ochir
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
| | - Takuma Sakamaki
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
| | - Akihiko Iwasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan; (I.R.H.); (T.K.-O.); (T.S.); (A.I.); (E.T.)
| |
Collapse
|
7
|
Yoshikawa Y, Izawa T, Hamada Y, Takenaga H, Wang Z, Ishimaru N, Kamioka H. Roles for B[a]P and FICZ in subchondral bone metabolism and experimental temporomandibular joint osteoarthritis via the AhR/Cyp1a1 signaling axis. Sci Rep 2021; 11:14927. [PMID: 34290363 PMCID: PMC8295293 DOI: 10.1038/s41598-021-94470-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bone loss due to smoking represents a major risk factor for fractures and bone osteoporosis. Signaling through the aryl hydrocarbon receptor (AhR) and its ligands contributes to both bone homeostasis and inflammatory diseases. It remains unclear whether the same AhR signaling axis affects the temporomandibular joint (TMJ). The aim of this study was to investigate possible mechanisms which mediate bone loss in the TMJ due to smoking. In particular, whether benzo[a]pyrene (B[a]P), a carcinogen of tobacco smoke, induces expression of the AhR target gene, Cyp1a1, in mandibular condyles. Possible functions of an endogenous ligand of FICZ, were also investigated in a TMJ-osteoarthritis (OA) mouse model. B[a]P was administered orally to wild-type and AhR-/- mice and bone metabolism was subsequently examined. TMJ-OA was induced in wild-type mice with forceful opening of the mouth. Therapeutic functions of FICZ were detected with μCT and histology. Exposure to B[a]P accelerated bone loss in the mandibular subchondral bone. This bone loss manifested with osteoclastic bone resorption and upregulated expression of Cyp1a1 in an AhR-dependent manner. In a mouse model of TMJ-OA, FICZ exhibited a dose-dependent rescue of mandibular subchondral bone loss by repressing osteoclast activity. Meanwhile, in vitro, pre-treatment with FICZ reduced RANKL-mediated osteoclastogenesis. B[a]P regulates mandibular subchondral bone metabolism via the Cyp1a1. The AhR ligand, FICZ, can prevent TMJ-OA by regulating osteoclast differentiation.
Collapse
Affiliation(s)
- Yuri Yoshikawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| | - Yusaku Hamada
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroko Takenaga
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| |
Collapse
|
8
|
Li B, Guan G, Mei L, Jiao K, Li H. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25:4902-4911. [PMID: 33949768 PMCID: PMC8178251 DOI: 10.1111/jcmm.16514] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
Temporomandibular joint (TMJ) osteoarthritis is a common chronic degenerative disease of the TMJ. In order to explore its aetiology and pathological mechanism, many animal models and cell models have been constructed to simulate the pathological process of TMJ osteoarthritis. The main pathological features of TMJ osteoarthritis include chondrocyte death, extracellular matrix (ECM) degradation and subchondral bone remodelling. Chondrocyte apoptosis accelerates the destruction of cartilage. However, autophagy has a protective effect on condylar chondrocytes. Degradation of ECM not only changes the properties of cartilage but also affects the phenotype of chondrocytes. The loss of subchondral bone in the early stages of TMJ osteoarthritis plays an aetiological role in the onset of osteoarthritis. In recent years, increasing evidence has suggested that chondrocyte hypertrophy and endochondral angiogenesis promote TMJ osteoarthritis. Hypertrophic chondrocytes secrete many factors that promote cartilage degeneration. These chondrocytes can further differentiate into osteoblasts and osteocytes and accelerate cartilage ossification. Intrachondral angiogenesis and neoneurogenesis are considered to be important triggers of arthralgia in TMJ osteoarthritis. Many molecular signalling pathways in endochondral osteogenesis are responsible for TMJ osteoarthritis. These latest discoveries in TMJ osteoarthritis have further enhanced the understanding of this disease and contributed to the development of molecular therapies. This paper summarizes recent cognition on the pathogenesis of TMJ osteoarthritis, focusing on the role of chondrocyte hypertrophy degeneration and cartilage angiogenesis.
Collapse
Affiliation(s)
- Baochao Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangzhao Guan
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Li Mei
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Khurel-Ochir T, Izawa T, Iwasa A, Kano F, Yamamoto A, Tanaka E. The immunoregulatory role of p21 in the development of the temporomandibular joint-osteoarthritis. Clin Exp Dent Res 2021; 7:313-322. [PMID: 33567474 PMCID: PMC8204032 DOI: 10.1002/cre2.404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/16/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Objective We aimed to identify the immunoregulatory role of the cyclin‐dependent kinase inhibitor p21 in the homeostasis of mandibular condylar cartilage affected by mechanical stress. Materials and methods Ten C57BL/6 wild‐type (WT) and ten p21−/− mice aged 8 weeks were divided into the untreated and treated groups. In the treated groups, mechanical stress was applied to the temporomandibular joint (TMJ) through forced mouth opening for 3 hr/day for 7 days. The dissected TMJs were assessed using micro‐CT, histology, and immunohistochemistry. Results Treated p21−/− condyles with mechanical stress revealed more severe subchondral bone destruction, with thinner cartilage layers and smaller proteoglycan area relative to treated WT condyles; untreated WT and p21−/− condyles had smoother surfaces. Immunohistochemistry revealed significant increases in the numbers of caspase‐3, interleukin‐1β, matrix metalloprotease (MMP)‐9, and MMP‐13 positive cells, and few aggrecan positive cells, in treated p21−/− than in treated WT samples. Moreover, the number of TUNEL positive cells markedly increased in p21−/− condyles affected by mechanical stress. Conclusions Our findings indicate that p21 in chondrocytes contributes to regulate matrix synthesis via the control ofm aggrecan and MMP‐13 expression under mechanical stress. Thus, p21 might regulate the pathogenesis of osteoarthritis in the TMJ.
Collapse
Affiliation(s)
- Tsendsuren Khurel-Ochir
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Oral Sciences, Tokushima, Japan
| | - Takashi Izawa
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiko Iwasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Fumiya Kano
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Akihito Yamamoto
- Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
10
|
Intraarticular injection of liposomal adenosine reduces cartilage damage in established murine and rat models of osteoarthritis. Sci Rep 2020; 10:13477. [PMID: 32778777 PMCID: PMC7418027 DOI: 10.1038/s41598-020-68302-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/12/2020] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) affects nearly 10% of the population of the United States and other industrialized countries and, at present, short of surgical joint replacement, there is no therapy available that can reverse the progression of the disease. Adenosine, acting at its A2A receptor (A2AR), is a critical autocrine factor for maintenance of cartilage homeostasis and here we report that injection of liposomal suspensions of either adenosine or a selective A2AR agonist, CGS21680, significantly reduced OA cartilage damage in a murine model of obesity-induced OA. The same treatment also improved swelling and preserved cartilage in the affected knees in a rat model of established post-traumatic OA (PTOA). Differential expression analysis of mRNA from chondrocytes harvested from knees of rats with PTOA treated with liposomal A2AR agonist revealed downregulation of genes associated with matrix degradation and upregulation of genes associated with cell proliferation as compared to liposomes alone. Studies in vitro and in affected joints demonstrated that A2AR ligation increased the nuclear P-SMAD2/3/P-SMAD1/5/8 ratio, a change associated with repression of terminal chondrocyte differentiation. These results strongly suggest that targeting the A2AR is an effective approach to treat OA.
Collapse
|
11
|
Fan X, Liu L, Shi Y, Guo F, He X, Zhao X, Zhong D, Li G. Recent advances of the function of sphingosine 1-phosphate (S1P) receptor S1P3. J Cell Physiol 2020; 236:1564-1578. [PMID: 33410533 DOI: 10.1002/jcp.29958] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Known as a variety of sphingolipid metabolites capable of performing various biological activities, sphingosine 1-phosphate (S1P) is commonly found in platelets, red blood cells, neutrophils, lymph fluid, and blood, as well as other cells and body fluids. S1P comprises five receptors, namely, S1P1-S1P5, with the distribution of S1P receptors exhibiting tissue selectivity to some degree. S1P1, S1P2, and S1P3 are extensively expressed in a wide variety of different tissues. The expression of S1P4 is restricted to lymphoid and hematopoietic tissues, while S1P5 is primarily expressed in the nervous system. S1P3 plays an essential role in the pathophysiological processes related to inflammation, cell proliferation, cell migration, tumor invasion and metastasis, ischemia-reperfusion, tissue fibrosis, and vascular tone. In this paper, the relevant mechanism in the role of S1P3 is summarized.
Collapse
Affiliation(s)
- Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lili Liu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Shi
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanghan Guo
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiao He
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiuli Zhao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
El Jamal A, Bougault C, Mebarek S, Magne D, Cuvillier O, Brizuela L. The role of sphingosine 1-phosphate metabolism in bone and joint pathologies and ectopic calcification. Bone 2020; 130:115087. [PMID: 31648078 DOI: 10.1016/j.bone.2019.115087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/30/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023]
Abstract
Sphingolipids display important functions in various pathologies such as cancer, obesity, diabetes, cardiovascular or neurodegenerative diseases. Sphingosine, sphingosine 1-phosphate (S1P), and ceramide are the central molecules of sphingolipid metabolism. Sphingosine kinases 1 and 2 (SK1 and SK2) catalyze the conversion of the sphingolipid metabolite sphingosine into S1P. The balance between the levels of S1P and its metabolic precursors ceramide and sphingosine has been considered as a switch that could determine whether a cell proliferates or dies. This balance, also called « sphingolipid rheostat », is mainly under the control of SKs. Several studies have recently pointed out the contribution of SK/S1P metabolic pathway in skeletal development, mineralization and bone homeostasis. Indeed, SK/S1P metabolism participates in different diseases including rheumatoid arthritis, spondyloarthritis, osteoarthritis, osteoporosis, cancer-derived bone metastasis or calcification disorders as vascular calcification. In this review, we will summarize the most important data regarding the implication of SK/S1P axis in bone and joint diseases and ectopic calcification, and discuss the therapeutic potential of targeting SK/S1P metabolism for the treatment of these pathologies.
Collapse
Affiliation(s)
- Alaeddine El Jamal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Carole Bougault
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Saida Mebarek
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - David Magne
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France
| | - Olivier Cuvillier
- Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS UMR 5089, F-31077, Toulouse, France
| | - Leyre Brizuela
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622, Lyon, France.
| |
Collapse
|
13
|
Hutami IR, Tanaka E, Izawa T. Crosstalk between Fas and S1P 1 signaling via NF-kB in osteoclasts controls bone destruction in the TMJ due to rheumatoid arthritis. JAPANESE DENTAL SCIENCE REVIEW 2019; 55:12-19. [PMID: 30733840 PMCID: PMC6354287 DOI: 10.1016/j.jdsr.2018.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA) mainly affects various joints of the body, including the temporomandibular joint (TMJ), and it involves an infiltration of autoantibodies and inflammatory leukocytes into articular tissues and the synovium. Initially, the synovial lining tissue becomes engaged with several kinds of infiltrating cells, including osteoclasts, macrophages, lymphocytes, and plasma cells. Eventually, bone degradation occurs. In order to elucidate the best therapy for RA, a comprehensive study of RA pathogenesis needs to be completed. In this article, we discuss a Fas-deficient condition which develops into RA, with an emphasis on the role of sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling which induces the migration of osteoclast precursor cells. We describe that Fas/S1P1 signaling via NF-κB activation in osteoclasts is a key factor in TMJ-RA severity and we discuss a strategy for blocking nuclear translocation of the p50 NF-κB subunit as a potential therapy for attenuating osteoclastogenesis.
Collapse
Affiliation(s)
| | | | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University, Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|
14
|
Dobsak T, Heimel P, Tangl S, Schwarze UY, Schett G, Gruber R. Impaired periodontium and temporomandibular joints in tumour necrosis factor-α transgenic mice. J Clin Periodontol 2017; 44:1226-1235. [DOI: 10.1111/jcpe.12799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Toni Dobsak
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Patrick Heimel
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology; Vienna Austria
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research; Karl Donath Laboratory; School of Dentistry; Medical University of Vienna; Vienna Austria
- Austrian Cluster for Tissue Regeneration; Vienna Austria
| | - Uwe Y. Schwarze
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology; School of Dentistry; Medical University of Vienna; Vienna Austria
| | - Georg Schett
- Department of Internal Medicine 3; Friedrich Alexander University of Erlangen- Nuremberg; Erlangen Germany
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration; Vienna Austria
- Department of Oral Biology; School of Dentistry; Medical University of Vienna; Vienna Austria
- Department of Periodontology; School of Dental Medicine; University of Bern; Bern Switzerland
| |
Collapse
|
15
|
Hutami IR, Izawa T, Mino-Oka A, Shinohara T, Mori H, Iwasa A, Tanaka E. Fas/S1P 1 crosstalk via NF-κB activation in osteoclasts controls subchondral bone remodeling in murine TMJ arthritis. Biochem Biophys Res Commun 2017; 490:1274-1281. [PMID: 28687489 DOI: 10.1016/j.bbrc.2017.07.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Enhanced turnover of subchondral trabecular bone is a hallmark of rheumatoid arthritis (RA) and it results from an imbalance between bone resorption and bone formation activities. To investigate the formation and activation of osteoclasts which mediate bone resorption, a Fas-deficient MRL/lpr mouse model which spontaneously develops autoimmune arthritis and exhibits decreased bone mass was studied. Various assays were performed on subchondral trabecular bone of the temporomandibular joint (TMJ) from MRL/lpr mice and MRL+/+ mice. Initially, greater osteoclast production was observed in vitro from bone marrow macrophages obtained from MRL/lpr mice due to enhanced phosphorylation of NF-κB, as well as Akt and MAPK, to receptor activator of nuclear factor-κB ligand (RANKL). Expression of sphingosine 1-phosphate receptor 1 (S1P1) was also significantly upregulated in the condylar cartilage. S1P1 was found to be required for S1P-induced migration of osteoclast precursor cells and downstream signaling via Rac1. When SN50, a synthetic NF-κB-inhibitory peptide, was applied to the MRL/lpr mice, subchondral trabecular bone loss was reduced and both production of osteoclastogenesis markers and sphingosine kinase (Sphk) 1/S1P1 signaling were reduced. Thus, the present results suggest that Fas/S1P1 signaling via activation of NF-κB in osteoclast precursor cells is a key factor in the pathogenesis of RA in the TMJ.
Collapse
Affiliation(s)
- Islamy Rahma Hutami
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Takashi Izawa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan.
| | - Akiko Mino-Oka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Takehiro Shinohara
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Hiroki Mori
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Akihiko Iwasa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 7708504, Japan
| |
Collapse
|
16
|
Blaney Davidson EN, van Caam APM, van der Kraan PM. Osteoarthritis year in review 2016: biology. Osteoarthritis Cartilage 2017; 25:175-180. [PMID: 28100421 DOI: 10.1016/j.joca.2016.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 02/02/2023]
Abstract
This review highlights a selection of literature in the area of osteoarthritis biology published between the 2015 and 2016 Osteoarthritis Research Society International (OARSI) World Congress. Highlights were selected from a pubmed search covering cartilage, bone, inflammation and pain. A personal selection was made based, amongst other things, on topics presented during the 2015 conference. This covers circadian rhythm, TGF-β signaling, autophagy, SIRT6, exercise, lubricin, TLR's, pain and NGF. Furthermore, in this review we have made an effort to connect these seemingly distant topics into one scheme of connections between them, revealing a theoretical big picture underneath.
Collapse
|