1
|
Dynamic expression of Mage-D1 in rat dental germs and potential role in mineralization of ectomesenchymal stem cells. Sci Rep 2022; 12:22615. [PMID: 36585447 PMCID: PMC9803661 DOI: 10.1038/s41598-022-27197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
Mage-D1 (MAGE family member D1) is involved in a variety of cell biological effects. Recent studies have shown that Mage-D1 is closely related to tooth development, but its specific regulatory mechanism is unclear. The purpose of this study was to investigate the expression pattern of Mage-D1 in rat dental germ development and its differential mineralization ability to ectomesenchymal stem cells (EMSCs), and to explore its potential mechanism. Results showed that the expression of Mage-D1 during rat dental germ development was temporally and spatially specific. Mage-D1 promotes the proliferation ability of EMSCs but inhibits their migration ability. Under induction by mineralized culture medium, Mage-D1 promotes osteogenesis and tooth-forming ability. Furthermore, the expression pattern of Mage-D1 at E19.5 d rat dental germ is similar to p75 neurotrophin receptor (p75NTR), distal-less homeobox 1 (Dlx1) and msh homeobox 1 (Msx1). In addition, Mage-D1 is binding to p75NTR, Dlx1, and Msx1 in vitro. These findings indicate that Mage-D1 is play an important regulatory role in normal mineralization of teeth. p75NTR, Dlx1, and Msx1 seem to be closely related to the underlying mechanism of Mage-D1 action.
Collapse
|
2
|
Park S, Kwon W, Kim HY, Ji YR, Kim D, Kim W, Han JE, Cho GJ, Yun S, Kim MO, Ryoo ZY, Han SH, Park JK, Choi SK. Knockdown of Maged1 inhibits cell cycle progression and causes cell death in mouse embryonic stem cells. Differentiation 2022; 125:18-26. [DOI: 10.1016/j.diff.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
|
3
|
Liu X, Diao L, Zhang Y, Yang X, Zhou J, Mao Y, Shi X, Zhao F, Liu M. Piperlongumine Inhibits Titanium Particles-Induced Osteolysis, Osteoclast Formation, and RANKL-Induced Signaling Pathways. Int J Mol Sci 2022; 23:2868. [PMID: 35270008 PMCID: PMC8911227 DOI: 10.3390/ijms23052868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/26/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022] Open
Abstract
Wear particle-induced aseptic loosening is the most common complication of total joint arthroplasty (TJA). Excessive osteoclast formation and bone resorptive activation have been considered to be responsible for extensive bone destruction and prosthesis failure. Therefore, identification of anti-osteoclastogenesis agents is a potential therapy strategy for the treatment of aseptic loosening and other osteoclast-related osteolysis diseases. In the present study, we reported, for the first time, that piperlongumine (PL), a key alkaloid compound from Piper longum fruits, could significantly suppress the formation and activation of osteoclasts. Furthermore, PL effectively decreased the mRNA expressions of osteoclastic marker genes such as tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), and cathepsin K (CTSK). In addition, PL suppressed the receptor activator of nuclear factor-κB ligand (RANKL)-induced activations of MAPKs (ERK, JNK and p38) and NF-κB, which down-regulated the protein expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Using a titanium (Ti) particle-induced calvarial osteolysis model, we demonstrated that PL could ameliorate Ti particle-induced bone loss in vivo. These data provide strong evidence that PL has the potential to treat osteoclast-related diseases including periprosthetic osteolysis (PPO) and aseptic loosening.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; (X.L.); (L.D.); (Y.Z.); (X.Y.); (J.Z.); (Y.M.); (X.S.); (F.Z.)
| |
Collapse
|
4
|
Leppek K, Byeon GW, Fujii K, Barna M. VELCRO-IP RNA-seq reveals ribosome expansion segment function in translation genome-wide. Cell Rep 2021; 34:108629. [PMID: 33472078 PMCID: PMC8270675 DOI: 10.1016/j.celrep.2020.108629] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 01/22/2023] Open
Abstract
Roles for ribosomal RNA (rRNA) in gene regulation remain largely unexplored. With hundreds of rDNA units positioned across multiple loci, it is not possible to genetically modify rRNA in mammalian cells, hindering understanding of ribosome function. It remains elusive whether expansion segments (ESs), tentacle-like rRNA extensions that vary in sequence and size across eukaryotic evolution, may have functional roles in translation control. Here, we develop variable expansion segment-ligand chimeric ribosome immunoprecipitation RNA sequencing (VELCRO-IP RNA-seq), a versatile methodology to generate species-adapted ESs and to map specific mRNA regions across the transcriptome that preferentially associate with ESs. Application of VELCRO-IP RNA-seq to a mammalian ES, ES9S, identified a large array of transcripts that are selectively recruited to ribosomes via an ES. We further characterize a set of 5′ UTRs that facilitate cap-independent translation through ES9S-mediated ribosome binding. Thus, we present a technology for studying the enigmatic ESs of the ribosome, revealing their function in gene-specific translation. Leppek et al. develop a pulldown technology employing chimeric yeast ribosomes, VELCRO-IP RNA-seq, to map interactions between ribosomal RNA (rRNA) and mRNAs genome-wide with positional precision. They find that expansion segments (ESs), the extended rRNA tentacles of the ribosome, specifically bind 5′ UTR elements to enable cap-independent translation of select mRNAs.
Collapse
Affiliation(s)
- Kathrin Leppek
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gun Woo Byeon
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Kotaro Fujii
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
5
|
Liu H, Zhang X, Yang Q, Zhu X, Chen F, Yue J, Zhou R, Xu Y, Qi S. Knockout of NRAGE promotes autophagy-related gene expression and the periodontitis process in mice. Oral Dis 2020; 27:589-599. [PMID: 32750749 DOI: 10.1111/odi.13575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/07/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Neurotrophin receptor-interacting MAGE homologue (NRAGE) plays a crucial role in the regulation of bone metabolism. The present study investigated the regulation role of NRAGE on autophagy activation and periodontitis process during experimental periodontitis. MATERIALS AND METHODS Six-week-old wild-type (WT) and NRAGE-/- mice were randomly divided into three time points in the periodontitis groups (0, 2, and 4 weeks). Histopathological changes were determined using the tooth mobility, hematoxylin and eosin (H&E) staining, and micro-computed tomography (micro-CT). Osteoclasts activation and number were investigated using tartrate-resistant acid phosphatase (TRAP) staining, immunohistochemistry, and real-time quantitative PCR (RT-PCR). The level of autophagy-related gene expression was measured using immunohistochemistry, immunofluorescence, and RT-PCR. RESULTS H&E staining and Micro-CT showed that the destruction of the alveolar bone was considerably more severe in the NRAGE-/- group than the WT group after ligation. Tooth mobility in the NRAGE-/- group was obviously higher than that in the WT group. The activation and number of osteoclasts and the level of autophagy-related gene expression in NRAGE-/- group were significantly higher than that in WT group. CONCLUSIONS The present study showed that knockout of NRAGE induced autophagy-related gene expression and accelerated the process of periodontitis disease via increasing the activity and differentiation of osteoclast.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xu Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qixiang Yang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xueqin Zhu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fubo Chen
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Yue
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Rong Zhou
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengcai Qi
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Valiño-Rivas L, Cuarental L, Agustin M, Husi H, Cannata-Ortiz P, Sanz AB, Mischak H, Ortiz A, Sanchez-Niño MD. MAGE genes in the kidney: identification of MAGED2 as upregulated during kidney injury and in stressed tubular cells. Nephrol Dial Transplant 2020; 34:1498-1507. [PMID: 30541139 DOI: 10.1093/ndt/gfy367] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mutations in Melanoma Antigen-encoding Gene D2 (MAGED2) promote tubular dysfunction, suggesting that MAGE proteins may play a role in kidney pathophysiology. We have characterized the expression and regulation of MAGE genes in normal kidneys and during kidney disease. METHODS The expression of MAGE genes and their encoded proteins was explored by systems biology multi-omics (kidney transcriptomics and proteomics) in healthy adult murine kidneys and following induction of experimental acute kidney injury (AKI) by a folic acid overdose. Changes in kidney expression during nephrotoxic AKI were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry. Factors regulating gene expression were studied in cultured tubular cells. RESULTS Five MAGE genes (MAGED1, MAGED2, MAGED3, MAGEH1, MAGEE1) were expressed at the mRNA level in healthy adult mouse kidneys, as assessed by RNA-Seq. Additionally, MAGED2 was significantly upregulated during experimental AKI as assessed by array transcriptomics. Kidney proteomics also identified MAGED2 as upregulated during AKI. The increased kidney expression of MAGED2 mRNA and protein was confirmed by qRT-PCR and western blot, respectively, in murine folic acid- and cisplatin-induced AKI. Immunohistochemistry located MAGED2 to tubular cells in experimental and human kidney injury. Tubular cell stressors [serum deprivation and the inflammatory cytokine tumour necrosis factor-like weak inducer of apoptosis (TWEAK)] upregulated MAGED2 in cultured tubular cells. CONCLUSIONS MAGED2 is upregulated in tubular cells in experimental and human kidney injury and is increased by stressors in cultured tubular cells. This points to a role of MAGED2 in tubular cell injury during kidney disease that should be dissected by carefully designed functional approaches.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Leticia Cuarental
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Mateo Agustin
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Holger Husi
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Department of Diabetes and Cardiovascular Science, University of the Highlands and Islands, Inverness, UK
| | - Pablo Cannata-Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Ana B Sanz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.,Mosaiques diagnostics GmbH, Hannover, Germany
| | - Alberto Ortiz
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Nephrology, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology, REDINREN, Madrid, Spain
| |
Collapse
|
7
|
Wang J, Chen G, Zhang Q, Zhao F, Yu X, Ma X, Liu M. Phillyrin Attenuates Osteoclast Formation and Function and Prevents LPS-Induced Osteolysis in Mice. Front Pharmacol 2019; 10:1188. [PMID: 31680965 PMCID: PMC6811733 DOI: 10.3389/fphar.2019.01188] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/17/2019] [Indexed: 01/08/2023] Open
Abstract
As the sole cell type responsible for bone resorption, osteoclasts play a pivotal role in a variety of lytic bone diseases. Suppression of osteoclast formation and activation has been proposed as an effective protective therapy for new bone. In this study, we reported for the first time that phillyrin (Phil), an active ingredient extracted from forsythia, significantly inhibited RANKL-induced osteoclastogenesis and bone resorption in vitro and protected against lipopolysaccharide-induced osteolysis in vivo. Further molecular investigations demonstrated that Phil effectively blocked RANKL-induced activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase, which suppressed the expression of c-Fos and nuclear factor of activated T-cells cytoplasmic 1. Taken together, these data suggested that Phil might be a potential antiosteoclastogenesis agent for treating osteoclast-related bone lytic diseases.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Gang Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fuli Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Wu Q, Li J, Song P, Chen J, Xu Y, Qi S, Ma J, Pan Q. Knockdown of NRAGE induces odontogenic differentiation by activating NF-κB signaling in mouse odontoblast-like cells. Connect Tissue Res 2019; 60:71-84. [PMID: 29448842 DOI: 10.1080/03008207.2018.1439484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Neurotrophin receptor-interacting MAGE homologue (Nrage) plays an important role in bone development and the metabolism of normal skeletal structures. Our previous study showed that Nrage inhibited the odontogenic differentiation of mouse dental pulp cells. However, the potential roles and mechanism of Nrage in regulating odontogenic differentiation are unknown. The aim of this study was to investigate the molecular mechanism of Nrage in odontogenic differentiation of mouse odontoblast-like cells. MATERIALS AND METHODS Endogenous expression of Nrage was stably downregulated by lentivirus-mediated shRNA. Mineralized nodules formation was detected by alizarin red S staining. Dmp-1, Dspp, and ALP mRNA and protein levels were detected by qRT-PCR and western blotting, respectively. In addition, ALPase activity was detected. Confocal microscopy and co-immunoprecipitation (co-IP) were used to analyze the interactions between NRAGE and NF-κB signaling molecules. An IKK inhibitor was also used in the study. RESULTS NRAGE expression in odontoblasts was downregulated during mouse first maxillary molar development. Moreover, NRAGE expression was downregulated during odontogenic differentiation of odontoblast-like cells. NRAGE knockdown significantly upregulated DMP1 and DSP expression, increased ALPase activity, and promoted mineralized nodule formation. In addition, NRAGE knockdown increased the translocation of NF-κB1 to the nucleus and phosphorylation levels of p65. Co-IP results showed that NRAGE bound to IKKβ. Most importantly, the promoting effect of Nrage knockdown on odontoblastic differentiation was reduced after treatment with an IKK inhibitor. CONCLUSIONS Our data confirmed that NRAGE is an important regulator of odontogenic differentiation of odontoblasts by inhibiting the NF-κB signaling pathway through binding to IKKβ. ABBREVIATIONS Nrage: neurotrophin receptor-interacting MAGE homologue; DSP: dentin sialophospho protein; DMP-1: dentin matrix protein-1; BMP: bone morphogenetic protein; Wnt: wingless; NF-κB: nuclear factor of activated B cells; DAPI: 4',6-diamidino-2-phenylindole; KO: knockout; DPCs: dental pulp cells; AA: ascorbic acid; β-Gly: β-glycerophosphate; Dex: dexamethasone; co-IP: co-immunoprecipitation; IκB: inhibitor of NF-κB; IKK: IκB kinase.
Collapse
Affiliation(s)
- Qi Wu
- a Department of Clinical Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China.,b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Jing Li
- c Department of Clinical Laboratory , Maternal and Child Health Care of Zaozhuang , Shandong , P. R. China
| | - Pingping Song
- d Department of Clinical Laboratory , Liaocheng People's Hospital , Liaocheng , China
| | - Jing Chen
- e Department of Clinical Laboratory , Luoyang Orthopedic Hospital , Luoyang , Henan , P. R. China
| | - Yuanzhi Xu
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Shengcai Qi
- f Department of Stomatology , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Ji Ma
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China.,g Central Laboratory , Shanghai 10th People's Hospital of Tongji University , Shanghai , P. R. China
| | - Qiuhui Pan
- b Department of Laboratory Medicine, Shanghai Children's Medical Center , Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
9
|
Jatrorrhizine Hydrochloride Suppresses RANKL-Induced Osteoclastogenesis and Protects against Wear Particle-Induced Osteolysis. Int J Mol Sci 2018; 19:ijms19113698. [PMID: 30469456 PMCID: PMC6275021 DOI: 10.3390/ijms19113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 01/22/2023] Open
Abstract
Wear particle-induced aseptic prosthetic loosening is a major complication associated with total joint arthroplasty (TJA). A growing body of evidence suggests that receptor activator of nuclear factor κ-B ligand (RANKL)-stimulated osteoclastogenesis and bone resorption are responsible for peri-implant loosening. Thus, agents which attenuate excessive osteoclast differentiation and function have been considered to offer therapeutic potential for prolonging the life of TJA implants. Jatrorrhizine hydrochloride (JH), a major protoberberine alkaloid isolated from the traditional Chinese herb Coptis chinensis, has been reported to have antimicrobial, antitumor, and antihypercholesterolemic and neuroprotective activities. However, its effects on osteoclast biology remain unknown. Here, we found that JH inhibited RANKL-induced osteoclast formation and bone resorption in vitro and exerted protection against titanium (Ti) particle-induced osteolysis in vivo. Biochemical analysis demonstrated that JH suppressed RANKL-induced activation of MAPKs (p38 and ERK) which down-regulated the production of NFATc1 and NFATc1-regulated osteoclastic marker genes, such as TRAP, CTR and CTSK. Collectively, our findings suggest that JH may be a promising anti-osteoclastogenesis agent for treating periprosthetic osteolysis or other osteoclast-related osteolytic diseases.
Collapse
|
10
|
Wang Q, Tang J, Jiang S, Huang Z, Song A, Hou S, Gao X, Ruan HB. Inhibition of PPARγ, adipogenesis and insulin sensitivity by MAGED1. J Endocrinol 2018; 239:167-180. [PMID: 30121577 DOI: 10.1530/joe-18-0349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/28/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipogenesis and a target of the thiazolidinedione (TZD) class of antidiabetic drugs; therefore, identifying novel regulators of PPARγ action in adipocytes is essential for the future development of therapeutics for diabetes. MAGE family member D1 (MAGED1), by acting as an adaptor for ubiquitin-dependent degradation pathways and a co-factor for transcription, plays an important role in neural development, cell differentiation and circadian rhythm. Here, we showed that MAGED1 expression was downregulated during adipogenesis and loss of MAGED1 promoted preadipocyte proliferation and differentiation in vitro. MAGED1 bound to PPARγ and suppressed the stability and transcriptional activity of PPARγ. Compared to WT littermates, MAGED1-deficient mice showed increased levels of PPARγ protein and its target genes, more CD29+CD34+Sca-1+ adipocyte precursors and hyperplasia of white adipose tissues (WATs). Moreover, MAGED1-deficient mice developed late-onset obesity as a result of decreased energy expenditure and physical activity. However, these mice were metabolically healthy as shown by improved glucose clearance and insulin sensitivity, normal levels of serum lipids and enhanced secretion of adipokines such as leptin and adiponectin. Taken together, our data identify MAGED1 as a novel negative regulator of PPARγ activity, adipogenesis and insulin sensitivity in mice. MAGED1 might therefore serve as a novel pharmaceutical target to treat obesity-associated insulin resistance.
Collapse
Affiliation(s)
- Qinghua Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory Animal Center, Nantong University, Nantong, Jiangsu, China
| | - Jing Tang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Shujun Jiang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Zan Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Anying Song
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Siyuan Hou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Liu Z, Zhou L, Ma X, Sun S, Qiu H, Li H, Xu J, Liu M. Inhibitory effects of tubeimoside I on synoviocytes and collagen‐induced arthritis in rats. J Cell Physiol 2018; 233:8740-8753. [DOI: 10.1002/jcp.26754] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 04/18/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Zhenzhou Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lin Zhou
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
| | - Xuemei Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Shengnan Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Haiwen Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Hui Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Jiake Xu
- School of Biomedical SciencesUniversity of Western AustraliaPerthAustralia
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
12
|
Differential time-dependent transcriptional changes in the osteoblast lineage in cortical bone associated with sclerostin antibody treatment in ovariectomized rats. Bone Rep 2018; 8:95-103. [PMID: 29955627 PMCID: PMC6020117 DOI: 10.1016/j.bonr.2018.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition of sclerostin with sclerostin antibody (Scl-Ab) results in stimulation of bone formation on cancellous (Cn), endocortical (Ec), and periosteal (Ps) surfaces in rodents and non-human primates. With long-term dosing of Scl-Ab, the increase in bone formation is not sustained, attenuating first on Cn surfaces and later on Ec and Ps surfaces. In Cn bone, the attenuation in bone formation (self-regulation) is associated with transcriptional changes in the osteocyte (OCy) that would limit mitogenesis and are sustained with continued dosing. The expression changes in Cn OCy occur coincident with a decrease in osteoprogenitor (OP) numbers that may directly or indirectly be a consequence of the transcriptional changes in the OCy to limit OP proliferation. To characterize the Scl-Ab–mediated changes in cortical (Ct) bone and compare these changes to Cn bone, densitometric, histomorphometric, and transcriptional analyses were performed on femur diaphyses from aged ovariectomized rats. Animals were administered 50 mg/kg/wk of Scl-Ab or vehicle for up to 6 months (183 days), followed by a treatment-free period (up to 126 days). Scl-Ab increased Ct mass and area through day 183, which declined slightly when treatment was discontinued. Ps and Ec bone formation was sustained through the dosing on both Ct surfaces, with evidence of a decline in bone formation only at day 183 on the Ec surface. This is in contrast to Cn bone, where reduced bone formation was observed after day 29. TaqMan analysis of 60 genes with functional roles in the bone using mRNA isolated from laser capture micro-dissection samples enriched for Ec osteoblasts and Ct OCy suggest a pattern of gene expression in Ct bone that differed from Cn, especially in the OCy, and that corresponded to observed differences in the timing of phenotypic changes. Notable with Scl-Ab treatment was a “transcriptional switch” in Ct OCy at day 183, coincident with the initial decline in bone formation on the endocortex. A consistent sustained increase of expression for most genes in response to Scl-Ab was observed from day 8 through day 85 at the times of maximal bone formation on both Ct surfaces; however, at day 183, this increase was reversed, with expression of these genes generally returning to control values or decreasing compared to vehicle. Genes exhibiting this pattern included Wnt inhibitors Sost and Dkk1, though both had been up-regulated until the end of dosing in Cn OCy. Changes in cell cycle genes such as Cdkn1a and Ndrg1 in Ct OCy suggested up-regulation of p53 signaling, as observed in Cn OCy; however, unlike in Cn bone, p53 signaling was not associated with decreased bone formation and was absent at day 183, when bone formation began to decline on the Ec surface. These data demonstrate involvement of similar molecular pathways in Ct and Cn bone in response to Scl-Ab but with a different temporal relationship to bone formation and suggest that the specific mechanism underlying self-regulation of Scl-Ab–induced bone formation may be different between Cn and Ct bone. Sclerostin antibody stimulates bone formation that attenuates over time. Attenuation (self-regulation) is delayed in cortical versus cancellous bone. Self-regulation coincides with transcriptional changes in cortical osteocytes. Response of Wnt inhibitors differs between cortical and cancellous bone. Results suggest a distinct mechanism for self-regulation in cortical bone.
Collapse
Key Words
- ANOVA, analysis of variance
- Anabolics
- BMC, bone mineral content
- BMP, bone morphogenetic protein
- BS, bone surface
- Bone
- Cn, cancellous
- Ct, cortical
- Ec, endocortical
- Ec.Pm, endocortical perimeter
- LC, lining cells
- LCM, laser capture micro-dissection
- MS/BS, mineralizing surface
- OB, osteoblast(s)
- OCy, osteocyte(s)
- OP, osteoprogenitor(s)
- OPG, osteoprotegerin
- OVX, ovariectomized
- Osteoporosis
- Ps, periosteal
- Ps.Pm, periosteal perimeter
- RANKL, receptor activator of nuclear factor kappa-B ligand
- Scl-Ab, sclerostin antibody
- Scl-AbVI, 50 mg/kg of a Scl-Ab
- TFP, treatment-free period
- TGF, transforming growth factor
- TP, treatment period
- Therapeutics
- VEH, vehicle
- Wnt signaling
- pQCT, peripheral quantitative computed tomography
- s.c., subcutaneous
Collapse
|
13
|
Liu M, Zhou X, Zhou L, Liu Z, Yuan J, Cheng J, Zhao J, Wu L, Li H, Qiu H, Xu J. Carnosic acid inhibits inflammation response and joint destruction on osteoclasts, fibroblast-like synoviocytes, and collagen-induced arthritis rats. J Cell Physiol 2018. [PMID: 29521424 DOI: 10.1002/jcp.26517] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The discovery of new therapeutic drugs with the ability of preventing inflammation and joint destruction with less adverse effects is urgently needed for rheumatoid arthritis (RA). Carnosic acid (CA), a major phenolic compound isolated from the leaves of Rosemary (Rosmarinus officinalis L.), has been reported to have antioxidative and antimicrobial properties. However, its effects on RA have not been elucidated. Here, we investigated the effects of CA on osteoclasts and fibroblast-like synoviocytes in vitro and on collagen-induced arthritis (CIA) in Wistar rats in vivo. Our in vitro and in vivo studies showed that CA suppressed the expression of pro-inflammatory cytokines including TNFɑ, IL-1β, IL-6, IL-8, IL-17 and MMP-3, and downregulated the production of RANKL. More importantly, we observed that CA inhibited osteoclastogenesis and bone resorption in vitro and exerted therapeutic protection against joint destruction in vivo. Further biochemical analysis demonstrated that CA suppressed RANKL-induced activations of NF-κB and MAPKs (JNK and p38) leading to the downregulation of NFATc1. Taken together, our findings provide the convincing evidence that rosemary derived CA is a promising natural compound for the treatment of RA.
Collapse
Affiliation(s)
- Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Xiaotian Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Lin Zhou
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Zhenzhou Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Jinbo Yuan
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jianwen Cheng
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Longfei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China
| | - Hui Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Haiwen Qiu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing, China
| | - Jiake Xu
- School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, Australia.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
14
|
Yang K, Wang Y, Ju Y, Li G, Liu C, Liu J, Liu Q, Wen X, Liu LC. p75 neurotrophin receptor regulates differential mineralization of rat ectomesenchymal stem cells. Cell Prolif 2016; 50. [PMID: 27672006 DOI: 10.1111/cpr.12290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 07/30/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether p75NTR (p75 neurotrophin receptor) regulates differential mineralization capacity of rEMSCs (rat ectomesenchymal stem cells) and underlying mechanisms associated with Mage-D1 (melanoma-associated antigens-D1). MATERIALS AND METHODS Immunohistochemical staining of p75NTR in developing tooth germs was performed on E12.5d (embryonic 12.5 days) and E19.5d (embryonic 19.5 days). E12.5d EMSCs and E19.5d EMSCs were isolated in the same pregnant Sprague-Dawley rats from embryonic maxillofacial processes and tooth germs. p75NTR small-interfering RNA, p75NTR overexpression plasmid, Mage-D1 small-interfering RNA and recombined rat NGF were used to transfect cells. RESULTS p75NTR was expressed in epithelial-mesenchymal interaction areas at E12.5d and E19.5d tooth germ development stages. E19.5d EMSCs had higher p75NTR expression levels and differential mineralization capacity but lower levels of cell proliferation. Under induction by mineralized culture medium, the potential of differential mineralization had identical trends in regulation of p75NTR in EMSCs; Mage-D1 did not fluctuate and TrkA was not expressed. Binding of p75NTR and Mage-D1 were detected. Mage-D1 knockdown significantly down-regulated expression of related genes, which NGF could not rescue. CONCLUSION p75NTR participated in tooth germ development stages and mediated differential mineralization of EMSCs. p75NTR played a critical role in regulating the potential of differential mineralization of EMSCs. Mage-D1 seemed to act as a bridge in the underlying mechanism of effects of p75NTR.
Collapse
Affiliation(s)
- Kun Yang
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Yingying Wang
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Yingxin Ju
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Gang Li
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Chang Liu
- Department of Stomatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junyu Liu
- Department of Stomatology, Xinqiao Hospital of the Third Military Medical University, Chongqing, China
| | - Qi Liu
- Department of Stomatology, The Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xiujie Wen
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| | - Lu Chuan Liu
- Department of Stomatology, Daping Hospital of the Third Military Medical University, Chongqing, China
| |
Collapse
|