1
|
Truong LD, Trostel J, Roncal C, Cara-Fuentes G, Miyazaki M, Miyazaki-Anzai S, Andres-Hernando A, Sasai F, Lanaspa M, Johnson RJ, Garcia GE. Production of Acetylcholine by Podocytes and its Protection from Kidney Injury in GN. J Am Soc Nephrol 2025; 36:205-218. [PMID: 39302734 PMCID: PMC11801748 DOI: 10.1681/asn.0000000000000492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Key Points Our study demonstrated the sole enzyme responsible for acetylcholine production, choline acetyltransferase, was expressed in podocytes. Acetylcholine decreased glomerular injury in GN by reducing inflammation and protecting endothelium. Choline acetyltransferase/acetylcholine production was induced in podocytes with drugs already available. Background One of the most important factors modulating endothelial health is acetylcholine; and while it is associated as a cholinergic neurotransmitter, it is also expressed by non-neuronal cells. However, its role in the kidney, which does not receive cholinergic innervation, remains unknown. Methods To determine whether acetylcholine is produced in the kidney, we used choline acetyltransferase (ChAT) (BAC)–enhanced green fluorescent protein (ChAT mice) transgenic mice in which enhanced green fluorescent protein is expressed under the control of the endogenous ChAT transcriptional regulatory elements. We then investigated the role of acetylcholine in kidney disease by inducing antiglomerular basement membrane GN (anti-GBM GN) in ChAT transgenic mice. Results We demonstrate ChAT, the sole enzyme responsible for acetylcholine production, was expressed in glomerular podocytes and produced acetylcholine. We also show during anti-GBM GN in ChAT transgenic mice, ChAT expression was induced in the glomeruli, mainly in podocytes, and protects mice from kidney injury with marked reduction of glomerular proliferation/fibrinoid necrosis (by 71%), crescent formation (by 98%), and tubular injury (by 78%). By contrast, specific knockout of podocyte ChAT worsened the severity of the disease. The mechanism of protection included reduction of inflammation, attenuation of angiogenic factors reduction, and increase of endothelial nitric oxide synthase expression. In vitro and in vivo studies demonstrated available drugs such as cholinesterase inhibitors and ChAT inducers increased the expression of podocyte-ChAT and acetylcholine production. Conclusions These findings suggest de novo synthesis of acetylcholine by podocytes protected against inflammation and glomerular endothelium damage in anti-GBM GN. Podcast This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/JASN/2024_12_05_ASN0000000000000492.mp3
Collapse
Affiliation(s)
- Luan D. Truong
- Department of Pathology, Baylor College of Medicine, The Houston Methodist Hospital, Houston, Texas
| | - Jessica Trostel
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carlos Roncal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Makoto Miyazaki
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ana Andres-Hernando
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fumihiko Sasai
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Miguel Lanaspa
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard J. Johnson
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabriela E. Garcia
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
2
|
Nachiappa Ganesh R, Garcia G, Truong L. Monocytes and Macrophages in Kidney Disease and Homeostasis. Int J Mol Sci 2024; 25:3763. [PMID: 38612574 PMCID: PMC11012230 DOI: 10.3390/ijms25073763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The monocyte-macrophage lineage of inflammatory cells is characterized by significant morphologic and functional plasticity. Macrophages have broad M1 and M2 phenotype subgroups with distinctive functions and dual reno-toxic and reno-protective effects. Macrophages are a major contributor to injury in immune-complex-mediated, as well as pauci-immune, glomerulonephritis. Macrophages are also implicated in tubulointerstitial and vascular disease, though there have not been many human studies. Patrolling monocytes in the intravascular compartment have been reported in auto-immune injury in the renal parenchyma, manifesting as acute kidney injury. Insights into the pathogenetic roles of macrophages in renal disease suggest potentially novel therapeutic and prognostic biomarkers and targeted therapy. This review provides a concise overview of the macrophage-induced pathogenetic mechanism as a background for the latest findings about macrophages' roles in different renal compartments and common renal diseases.
Collapse
Affiliation(s)
- Rajesh Nachiappa Ganesh
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry 605006, India
| | - Gabriela Garcia
- Department of Medicine, Renal Division, University of Colorado, Anschutz Medical Campus, Aurora, CO 605006, USA;
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| |
Collapse
|
3
|
O'Brien BJ, Faraoni EY, Strickland LN, Ma Z, Mota V, Mota S, Chen X, Mills T, Eltzschig HK, DelGiorno KE, Bailey‐Lundberg JM. CD73-generated extracellular adenosine promotes resolution of neutrophil-mediated tissue injury and restrains metaplasia in pancreatitis. FASEB J 2023; 37:e22684. [PMID: 36468677 PMCID: PMC9753971 DOI: 10.1096/fj.202201537r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
Pancreatitis is currently the leading cause of gastrointestinal hospitalizations in the US. This condition occurs in response to abdominal injury, gallstones, chronic alcohol consumption or, less frequently, the cause remains idiopathic. CD73 is a cell surface ecto-5'-nucleotidase that generates extracellular adenosine, which can contribute to resolution of inflammation by binding adenosine receptors on infiltrating immune cells. We hypothesized genetic deletion of CD73 would result in more severe pancreatitis due to decreased generation of extracellular adenosine. CD73 knockout (CD73-/- ) and C57BL/6 (wild type, WT) mice were used to evaluate the progression and response of caerulein-induced acute and chronic pancreatitis. In response to caerulein-mediated chronic or acute pancreatitis, WT mice display resolution of pancreatitis at earlier timepoints than CD73-/- mice. Using immunohistochemistry and analysis of single-cell RNA-seq (scRNA-seq) data, we determined CD73 localization in chronic pancreatitis is primarily observed in mucin/ductal cell populations and immune cells. In murine pancreata challenged with caerulein to induce acute pancreatitis, we compared CD73-/- to WT mice and observed a significant infiltration of Ly6G+, MPO+, and Granzyme B+ cells in CD73-/- compared to WT pancreata and we quantified a significant increase in acinar-to-ductal metaplasia demonstrating sustained metaplasia and inflammation in CD73-/- mice. Using neutrophil depletion in CD73-/- mice, we show neutrophil depletion significantly reduces metaplasia defined by CK19+ cells per field and significantly reduces acute pancreatitis. These data identify CD73 enhancers as a potential therapeutic strategy for patients with acute and chronic pancreatitis as adenosine generation and activation of adenosine receptors is critical to resolve persistent inflammation in the pancreas.
Collapse
Affiliation(s)
- Baylee J. O'Brien
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Erika Y. Faraoni
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Lincoln N. Strickland
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Zhibo Ma
- Gene Expression LaboratoryThe Salk Institute for Biological SciencesSan DiegoCaliforniaUSA
| | - Victoria Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Samantha Mota
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Xuebo Chen
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Holger K. Eltzschig
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Kathleen E. DelGiorno
- Department of Cell and Developmental BiologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Jennifer M. Bailey‐Lundberg
- Center for Perioperative Medicine, Department of Anesthesiology, McGovern Medical SchoolThe University of Texas Health Science Center at HoustonHoustonTexasUSA
- The Graduate School of Biomedical SciencesThe University of Texas MD Anderson Cancer Center and The University of Texas Health Science Center at HoustonHoustonTexasUSA
| |
Collapse
|
4
|
Tian Y, Xia J, Yang G, Li C, Qi Y, Dai K, Wu C, Guo Y, Yao W, Hao C. A2aR inhibits fibrosis and the EMT process in silicosis by regulating Wnt/β-catenin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114410. [PMID: 36516619 DOI: 10.1016/j.ecoenv.2022.114410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Silicosis, a disease characterized by diffuse fibrosis of the lung tissue, is caused by long-term inhalation of free silica (SiO2) dust in the occupational environment and is currently the most serious occupational diseases of pneumoconiosis. Several studies have suggested that alveolar type Ⅱ epithelial cells (AEC Ⅱ) undergo epithelial-mesenchymal transition (EMT) as one of the crucial components of silicosis in lung fibroblasts. A2aR can play a critical regulatory role in fibrosis-related diseases by modulating the Wnt/β-catenin pathway, but its function in the EMT process of silicosis has not been explained. In this study, an EMT model of A549 cells was established. The results revealed that A2aR expression is reduced in the EMT model. Furthermore, activation of A2aR or suppression of the Wnt/β-catenin pathway reversed the EMT process, while the opposite result was obtained by inhibiting A2aR. In addition, activation of A2aR in a mouse silicosis model inhibited the Wnt/β-catenin pathway and ameliorated the extent of silica-induced lung fibrosis in mice. To sum up, we uncovered that A2aR inhibits fibrosis and the EMT process in silicosis by regulating the Wnt/β-catenin pathway. Our study can provide an experimental basis for elucidating the role of A2aR in the development of silicosis and offer new ideas for further exploration of interventions for silicosis.
Collapse
Affiliation(s)
- Yangyang Tian
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Jiarui Xia
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Guo Yang
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Chao Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Yuanmeng Qi
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Kai Dai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Chenchen Wu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Yonghua Guo
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China.
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue5, Zhengzhou 450001, Henan Province, PR China.
| |
Collapse
|
5
|
Skopál A, Kéki T, Tóth PÁ, Csóka B, Koscsó B, Németh ZH, Antonioli L, Ivessa A, Ciruela F, Virág L, Haskó G, Kókai E. Cathepsin D interacts with adenosine A 2A receptors in mouse macrophages to modulate cell surface localization and inflammatory signaling. J Biol Chem 2022; 298:101888. [PMID: 35367412 PMCID: PMC9065627 DOI: 10.1016/j.jbc.2022.101888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine A2A receptor (A2AR)–dependent signaling in macrophages plays a key role in the regulation of inflammation. However, the processes regulating A2AR targeting to the cell surface and degradation in macrophages are incompletely understood. For example, the C-terminal domain of the A2AR and proteins interacting with it are known to regulate receptor recycling, although it is unclear what role potential A2AR-interacting partners have in macrophages. Here, we aimed to identify A2AR-interacting partners in macrophages that may effect receptor trafficking and activity. To this end, we performed a yeast two-hybrid screen using the C-terminal tail of A2AR as the “bait” and a macrophage expression library as the “prey.” We found that the lysosomal protease cathepsin D (CtsD) was a robust hit. The A2AR–CtsD interaction was validated in vitro and in cellular models, including RAW 264.7 and mouse peritoneal macrophage (IPMΦ) cells. We also demonstrated that the A2AR is a substrate of CtsD and that the blockade of CtsD activity increases the density and cell surface targeting of A2AR in macrophages. Conversely, we demonstrate that A2AR activation prompts the maturation and enzymatic activity of CtsD in macrophages. In summary, we conclude that CtsD is a novel A2AR-interacting partner and thus describe molecular and functional interplay that may be crucial for adenosine-mediated macrophage regulation in inflammatory processes.
Collapse
Affiliation(s)
- Adrienn Skopál
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kéki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Á Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Csóka
- Department of Anesthesiology, Columbia University, New York, New York, USA
| | - Balázs Koscsó
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zoltán H Németh
- Department of Anesthesiology, Columbia University, New York, New York, USA; Department of Surgery, Morristown Medical Center, Morristown, New Jersey, USA
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andreas Ivessa
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain; Neuropharmacology and Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Barcelona, Spain
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, University of Debrecen, Debrecen, Hungary
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, New York, USA.
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
"Adenosine an old player with new possibilities in kidney diseases": Preclinical evidences and clinical perspectives. Life Sci 2020; 265:118834. [PMID: 33249096 DOI: 10.1016/j.lfs.2020.118834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/02/2020] [Accepted: 11/21/2020] [Indexed: 12/21/2022]
Abstract
Renal injury might originate from multiple factors like ischemia reperfusion (I/R), drug toxicity, cystic fibrosis, radio contrast agent etc. The four adenosine receptor subtypes have been identified and found to show diverse physiological and pathological roles in kidney diseases. The activation of A1 adenosine receptor (A1) protects against acute kidney injury by improving renal hemodynamic alterations, decreasing tubular necrosis and its inhibition might facilitate removal of toxin or drug metabolite in chronic kidney disease models. Furthermore, recent findings revealed that A2A receptor subtype activation regulates macrophage phenotype in experimental models of nephritis. Interestingly the emerging role of adenosine kinase inhibitors in kidney diseases has been discussed which act by increasing adenosine availability at target sites and thereby promote A2A receptor stimulation. In addition, the least explored adenosine receptor subtype A3 inhibition was observed to exert anti- oxidant, immunosuppressive and anti-fibrotic effects, but more studies are required to confirm its benefits in other renal injury models. The clinical studies targeting A1 receptor in patients with pre-existing kidney disease have yielded disappointing results, perhaps owing to the origin of unexpected neurological complications during the course of trial. Importantly, conducting well designed clinical trials and testing adenosine modulators with lesser brain penetrability could clear the way for clinical approval of these agents for patients with renal functional impairments.
Collapse
|
7
|
Patinha D, Abreu C, Carvalho C, Cunha OM, Mota M, Afonso J, Sousa T, Albino-Teixeira A, Diniz C, Morato M. Adenosine A 2A and A 3 Receptors as Targets for the Treatment of Hypertensive-Diabetic Nephropathy. Biomedicines 2020; 8:biomedicines8110529. [PMID: 33238361 PMCID: PMC7700226 DOI: 10.3390/biomedicines8110529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetic nephropathy (DN) and hypertension are prime causes for end-stage renal disease (ESRD) that often coexist in patients, but are seldom studied in combination. Kidney adenosine levels are markedly increased in diabetes, and the expression and function of renal adenosine receptors are altered in experimental diabetes. The aim of this work is to explore the impact of endogenous and exogenous adenosine on the expression/distribution profile of its receptors along the nephron of hypertensive rats with experimentally-induced diabetes. Using spontaneously hypertensive (SHR) rats rendered diabetic with streptozotocin (STZ), we show that treatment of SHR-STZ rats with an agonist of adenosine receptors increases A2A immunoreactivity in superficial glomeruli (SG), proximal tubule (PCT), and distal tubule (DCT). Differently, treatment of SHR-STZ rats with a xanthinic antagonist of adenosine receptors decreases adenosine A3 immunoreactivity in SG, PCT, DCT, and collecting duct. There is no difference in the immunoreactivity against the adenosine A1 and A2B receptors between the experimental groups. The agonist of adenosine receptors ameliorates renal fibrosis, probably via A2A receptors, while the antagonist exacerbates it, most likely due to tonic activation of A3 receptors. The reduction in adenosine A3 immunoreactivity might be due to receptor downregulation in response to prolonged activation. Altogether, these results suggest an opposite regulation exerted by endogenous and exogenous adenosine upon the expression of its A2A and A3 receptors along the nephron of hypertensive diabetic rats, which has a functional impact and should be taken into account when considering novel therapeutic targets for hypertensive-diabetic nephropathy.
Collapse
Affiliation(s)
- Daniela Patinha
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- The Institute of Biomedical and Clinical Science, Medical School, University of Exeter, EX4 4QJ Exeter, UK
| | - Carla Abreu
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Carla Carvalho
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Olga Mariana Cunha
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Mariana Mota
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| | - Joana Afonso
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Teresa Sousa
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - António Albino-Teixeira
- Department of Biomedicine—Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal; (D.P.); (J.A.); (T.S.); (A.A.-T.)
- MedInUP—Center for Drug Discovery and Innovative Medicines, University of Porto, 4200-319 Porto, Portugal
| | - Carmen Diniz
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
- Correspondence:
| | - Manuela Morato
- LAQV@REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (C.A.); (C.C.); (O.M.C.); (M.M.); (M.M.)
| |
Collapse
|
8
|
Lu J, Bai Z, Kuang X, Li L. [High-salt exposure induces macrophage polarization to promote proliferation and phenotypic transformation of co-cultured renal fibroblasts]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1472-1479. [PMID: 33118503 DOI: 10.12122/j.issn.1673-4254.2020.10.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate high-salt exposure-induced polarization of mononuclear macrophages and the changes in proliferation and phenotypic transformation of renal fibroblasts in a co-culture system. METHODS Cultured mononuclear macrophages were exposed to high salt (161 mmol/L Na +) for 2 h and the surface markers of M0, M1 and M2-type macrophages were detected with RT-qPCR. The culture medium of the macrophages in normal and high-salt groups was collected for detection of the mRNA and protein levels of IL-6 and TGF-β1 using RT-qPCR and ELISA. A co-culture system of high salt-exposed macrophages and renal fibroblasts (NRK-49F) was established using a Transwell chamber, and the changes in proliferation and migration of NRK-49F cells were examined using EdU assay and Transwell assay, respectively. Western blotting was performed to detect the expressions of collagen I, collagen III and collagen α-SMA in NRK-49F cells. RESULTS The high salt-exposed macrophages showed significantly increased mRNA levels of M2-type macrophage surface markers mannose receptor and arginase (P < 0.05). The results of EdU and Transwell assays showed that NRK-49F cells co-cultured with high salt-exposed macrophages exhibited significantly increased proliferation and migration ability (P < 0.05). Co-culture with high salt-exposed macrophages resulted in significantly enhanced protein expressions of collagen I, collagen III and α-SMA in NRK-49F cells (P < 0.05) and significantly increased levels of IL-6 and TGF-β1 in the culture medium (P < 0.05). CONCLUSIONS High-salt exposure induces polarization of mononuclear macrophages into M2-type macrophages and promotes secretion of IL-6 and TGF-β1 by the macrophages to induce the proliferation and phenotypic transformation of NRK-49F cells.
Collapse
Affiliation(s)
- Jing Lu
- Department of Pathology, Zunyi Medical and Pharmaceutical College, Zunyi 563000, China
| | - Zhixun Bai
- Department of Nephrology, Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaoyan Kuang
- Department of Pathology, Zunyi Medical and Pharmaceutical College, Zunyi 563000, China
| | - Ling Li
- Department of Pathology, Zunyi Medical and Pharmaceutical College, Zunyi 563000, China
| |
Collapse
|
9
|
Cekic C. Modulation of myeloid cells by adenosine signaling. Curr Opin Pharmacol 2020; 53:134-145. [PMID: 33022543 DOI: 10.1016/j.coph.2020.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Hypoxia, metabolic activity, cell death and immune responses influence the adenosine concentrations in the extracellular space. Cellular responses to hypoxia and inflammation in myeloid cells promote activation of adenosine sensing circuit, which involves increased expression of ectoenzymes that converts phospho-nucleotides such as ATP to adenosine and increased expression of G protein-coupled adenosine receptors. Adenosine sensing circuitry also involves feedforward signaling, which leads to increased expression of hypoxia-inducible factor 1-alpha (HIF1 and feedback signaling, which leads to the suppression of inflammatory transcription factor, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. In this review we will discuss how different subsets of myeloid cells sense adenosine accumulation and how adenosine sensing by myeloid cells influence progression of different immune-related conditions including cancer.
Collapse
Affiliation(s)
- Caglar Cekic
- Bilkent University, Department of Molecular Biology and Genetics, Ankara, Turkey; UNAM-National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
10
|
Sellmayr M, Hernandez Petzsche MR, Ma Q, Krüger N, Liapis H, Brink A, Lenz B, Angelotti ML, Gnemmi V, Kuppe C, Kim H, Bindels EMJ, Tajti F, Saez-Rodriguez J, Lech M, Kramann R, Romagnani P, Anders HJ, Steiger S. Only Hyperuricemia with Crystalluria, but not Asymptomatic Hyperuricemia, Drives Progression of Chronic Kidney Disease. J Am Soc Nephrol 2020; 31:2773-2792. [PMID: 32938648 DOI: 10.1681/asn.2020040523] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression. METHODS MALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD. RESULTS Asymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective. CONCLUSIONS Asymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis.
Collapse
Affiliation(s)
- Markus Sellmayr
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| | | | - Qiuyue Ma
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| | - Nils Krüger
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| | - Helen Liapis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri (retired) and Arkana Laboratories, Little Rock, Arkansas
| | - Andreas Brink
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Barbara Lenz
- Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Maria Lucia Angelotti
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy
| | - Viviane Gnemmi
- Department of Pathology, University Hospital, Centre Hospitalier Régional Universitaire, Lille, France
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| | - Hyojin Kim
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule, Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | | | - Ferenc Tajti
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule, Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany
| | - Julio Saez-Rodriguez
- Faculty of Medicine, Rheinisch-Westfälische Technische Hochschule, Aachen University, Joint Research Centre for Computational Biomedicine (JRC-COMBINE), Aachen, Germany.,Faculty of Medicine, Institute for Computational Biomedicine, Heidelberg University, and Heidelberg University Hospital, Heidelberg, Germany
| | - Maciej Lech
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| | - Rafael Kramann
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Paola Romagnani
- Excellence Centre for Research, Transfer and High Education for the Development of DE NOVO Therapies (DENOTHE), University of Florence, Florence, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig-Maximilian's-University Hospital, Munich, Germany
| |
Collapse
|
11
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
12
|
Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular Nucleotides and P2 Receptors in Renal Function. Physiol Rev 2019; 100:211-269. [PMID: 31437091 DOI: 10.1152/physrev.00038.2018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The understanding of the nucleotide/P2 receptor system in the regulation of renal hemodynamics and transport function has grown exponentially over the last 20 yr. This review attempts to integrate the available data while also identifying areas of missing information. First, the determinants of nucleotide concentrations in the interstitial and tubular fluids of the kidney are described, including mechanisms of cellular release of nucleotides and their extracellular breakdown. Then the renal cell membrane expression of P2X and P2Y receptors is discussed in the context of their effects on renal vascular and tubular functions. Attention is paid to effects on the cortical vasculature and intraglomerular structures, autoregulation of renal blood flow, tubuloglomerular feedback, and the control of medullary blood flow. The role of the nucleotide/P2 receptor system in the autocrine/paracrine regulation of sodium and fluid transport in the tubular and collecting duct system is outlined together with its role in integrative sodium and fluid homeostasis and blood pressure control. The final section summarizes the rapidly growing evidence indicating a prominent role of the extracellular nucleotide/P2 receptor system in the pathophysiology of the kidney and aims to identify potential therapeutic opportunities, including hypertension, lithium-induced nephropathy, polycystic kidney disease, and kidney inflammation. We are only beginning to unravel the distinct physiological and pathophysiological influences of the extracellular nucleotide/P2 receptor system and the associated therapeutic perspectives.
Collapse
Affiliation(s)
- Volker Vallon
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Robert Unwin
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Edward W Inscho
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Jens Leipziger
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| | - Bellamkonda K Kishore
- Departments of Medicine and Pharmacology, University of California San Diego & VA San Diego Healthcare System, San Diego, California; Centre for Nephrology, Division of Medicine, University College London, London, United Kingdom; IMED ECD CVRM R&D, AstraZeneca, Gothenburg, Sweden; Department of Medicine, Division of Nephrology, The University of Alabama at Birmingham, Birmingham, Alabama; Department of Biomedicine/Physiology, Aarhus University, Aarhus, Denmark; Departments of Internal Medicine and Nutrition and Integrative Physiology, and Center on Aging, University of Utah Health & Nephrology Research, VA Salt Lake City Healthcare System, Salt Lake City, Utah
| |
Collapse
|
13
|
Antonioli L, Blandizzi C, Pacher P, Haskó G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol Rev 2019; 71:345-382. [PMID: 31235653 PMCID: PMC6592405 DOI: 10.1124/pr.117.014878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) encompass a wide range of seemingly unrelated conditions, such as multiple sclerosis, rheumatoid arthritis, psoriasis, inflammatory bowel diseases, asthma, chronic obstructive pulmonary disease, and systemic lupus erythematosus. Despite differing etiologies, these diseases share common inflammatory pathways, which lead to damage in primary target organs and frequently to a plethora of systemic effects as well. The purinergic signaling complex comprising extracellular nucleotides and nucleosides and their receptors, the P2 and P1 purinergic receptors, respectively, as well as catabolic enzymes and nucleoside transporters is a major regulatory system in the body. The purinergic signaling complex can regulate the development and course of IMIDs. Here we provide a comprehensive review on the role of purinergic signaling in controlling immunity, inflammation, and organ function in IMIDs. In addition, we discuss the possible therapeutic applications of drugs acting on purinergic pathways, which have been entering clinical development, to manage patients suffering from IMIDs.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - Pál Pacher
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| | - György Haskó
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy (L.A., C.B.); Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland (P.P.); and Department of Anesthesiology, Columbia University, New York, New York (G.H.)
| |
Collapse
|
14
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 513] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
15
|
Rennert L, Zschiedrich S, Sandner L, Hartleben B, Cicko S, Ayata CK, Meyer C, Zech A, Zeiser R, Huber TB, Idzko M, Grahammer F. P2Y2R Signaling Is Involved in the Onset of Glomerulonephritis. Front Immunol 2018; 9:1589. [PMID: 30061884 PMCID: PMC6054981 DOI: 10.3389/fimmu.2018.01589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Endogenously released adenosine-5’-triphosphate (ATP) is a key regulator of physiological function and inflammatory responses in the kidney. Genetic or pharmacological inhibition of purinergic receptors has been linked to attenuation of inflammatory disorders and hence constitutes promising new avenues for halting and reverting inflammatory renal diseases. However, the involvement of purinergic receptors in glomerulonephritis (GN) has only been incompletely mapped. Here, we demonstrate that induction of GN in an experimental antibody-mediated GN model results in a significant increase of urinary ATP-levels and an upregulation of P2Y2R expression in resident kidney cells as well as infiltrating leukocytes pointing toward a possible role of the ATP/P2Y2R-axis in glomerular disease initiation. In agreement, decreasing extracellular ATP-levels or inhibition of P2R during induction of antibody-mediated GN leads to a reduction in all cardinal features of GN such as proteinuria, glomerulosclerosis, and renal failure. The specific involvement of P2Y2R could be further substantiated by demonstrating the protective effect of the lack of P2Y2R in antibody-mediated GN. To systematically differentiate between the function of P2Y2R on resident renal cells versus infiltrating leukocytes, we performed bone marrow-chimera experiments revealing that P2Y2R on hematopoietic cells is the main driver of the ATP/P2Y2R-mediated disease progression in antibody-mediated GN. Thus, these data unravel an important pro-inflammatory role for P2Y2R in the pathogenesis of GN.
Collapse
Affiliation(s)
- Laura Rennert
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefan Zschiedrich
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Sandner
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Björn Hartleben
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sanja Cicko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Cemil Korcan Ayata
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Meyer
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | - Tobias B Huber
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,BIOSS Center for Biological Signalling Studies, Albert-Ludwigs-University, Freiburg, Germany
| | - Marco Idzko
- Department of Pneumology, University Medical Center Freiburg, Freiburg, Germany.,Division of Pulmonology, Department of Medicine II, Medical University Vienna, Vienna, Austria
| | - Florian Grahammer
- Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Targeting the tumor promoting effects of adenosine in chronic lymphocytic leukemia. Crit Rev Oncol Hematol 2018; 126:24-31. [DOI: 10.1016/j.critrevonc.2018.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 02/27/2018] [Accepted: 03/25/2018] [Indexed: 12/14/2022] Open
|
17
|
Trostel J, Truong LD, Roncal-Jimenez C, Miyazaki M, Miyazaki-Anzai S, Kuwabara M, McMahan R, Andres-Hernando A, Sato Y, Jensen T, Lanaspa MA, Johnson RJ, Garcia GE. Different effects of global osteopontin and macrophage osteopontin in glomerular injury. Am J Physiol Renal Physiol 2018; 315:F759-F768. [PMID: 29717936 DOI: 10.1152/ajprenal.00458.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Osteopontin (OPN) is a pro-and anti-inflammatory molecule that simultaneously attenuates oxidative stress. Both inflammation and oxidative stress play a role in the pathogenesis of glomerulonephritis and in the progression of kidney injury. Importantly, OPN is highly induced in nephritic kidneys. To characterize further the role of OPN in kidney injury we used OPN-/- mice in antiglomerular basement membrane reactive serum-induced immune (NTS) nephritis, an inflammatory and progressive model of kidney disease. Normal wild-type (WT) and OPN-/- mice did not show histological differences. However, nephritic kidneys from OPN-/- mice showed severe damage compared with WT mice. Glomerular proliferation, necrotizing lesions, crescent formation, and tubulointerstitial injury were significantly higher in OPN-/- mice. Macrophage infiltration was increased in the glomeruli and interstitium in OPN-/- mice, with higher expression of IL-6, CCL2, and chemokine CXCL1. In addition, collagen (Col) I, Col III, and Col IV deposition were increased in kidneys from OPN-/- mice. Elevated expression of the reactive oxygen species-generating enzyme Nox4 and blunted expression of Nrf2, a molecule that inhibits reactive oxygen species and inflammatory pathways, was observed in nephritic kidneys from OPN-/- mice. Notably, CD11b diphteria toxin receptor mice with NTS nephritis selectively depleted of macrophages and reconstituted with OPN-/- macrophages showed less kidney injury compared with mice receiving WT macrophages. These findings suggest that in global OPN-/- mice there is increased inflammation and redox imbalance that mediate kidney damage. However, absence of macrophage OPN is protective, indicating that macrophage OPN plays a role in the induction and progression of kidney injury in NTS nephritis.
Collapse
Affiliation(s)
- Jessica Trostel
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Luan D Truong
- Department of Pathology, Baylor College of Medicine, and Department of Pathology, The Methodist Hospital , Houston, Texas
| | | | - Makoto Miyazaki
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | | - Rachel McMahan
- Division of Gastroenterology University of Colorado Denver, Aurora, Colorado
| | | | - Yuka Sato
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Thomas Jensen
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Miguel A Lanaspa
- Department of Medicine, Division of Renal Diseases and Hypertension
| | | | | |
Collapse
|
18
|
Abstract
Macrophages are a heterogeneous population of innate immune cells and are distributed in most adult tissues. Certain tissue-resident macrophages with a prenatal origin, together with postnatal monocyte-derived macrophages, serve as the host scavenger system to eliminate invading pathogens, malignant cells, senescent cells, dead cells, cellular debris, and other foreign substances. As a key member of the mononuclear phagocyte system, macrophages play essential roles in regulation of prenatal development, tissue homeostasis, and disease progression. Over the past two decades, considerable efforts have been made to generate genetic models of macrophage ablation in mice. These models support investigations of the precise functions of tissue-specific macrophages under physiological and pathological conditions. Herein, we overview the currently available mouse strains for in vivo genetic ablation of macrophages and discuss their respective advantages and limitations.
Collapse
Affiliation(s)
- Li Hua
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | |
Collapse
|
19
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|