1
|
Chen C, Tang Y, Zhu X, Yang J, Liu Z, Chen Y, Wang J, Shang R, Zheng W, Zhang X, Hu X, Tan J, Zhou J, Peng S, Lu Q, Ju Z, Luo G, He W. P311 Promotes IL-4 Receptor‒Mediated M2 Polarization of Macrophages to Enhance Angiogenesis for Efficient Skin Wound Healing. J Invest Dermatol 2023; 143:648-660.e6. [PMID: 36309321 DOI: 10.1016/j.jid.2022.09.659] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 11/05/2022]
Abstract
The transition from the proinflammatory phase to the prohealing phase in wound healing is essential for effective skin wound repair, which involves the balance of M1 and M2 polarization of wound-infiltrating macrophages. P311 plays an essential role in promoting wound closure by enhancing the biological function of epidermal stem cells, endothelial cells, and fibroblasts. Nevertheless, whether and how P311 regulates macrophage polarization remains unclear. In this study, we showed that P311 deficiency reduced the M2 polarization of macrophages, thereby attenuating the secretion of M2-like cytokines. The P311 deficiency prolonged the transition from the proinflammatory phase to the prohealing phase, accompanied by weakened angiogenesis and retarded granulation tissue formation, both of which coordinately hinder the healing of skin wounds. Mechanistically, P311 deficiency downregulated the expression of IL-4 receptor on macrophages, followed by less activation of the IL-4 receptor‒signal transducer and activator of transcription 6 signaling pathway, resulting in impaired M2 macrophage polarization. We further revealed that the mTOR signaling pathway was associated with the regulation of P311 on the expression of IL-4 receptor in macrophages. Thus, our study has highlighted the pivotal role of P311 in promoting the M2 polarization of macrophages for effective skin wound healing.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Xudong Zhu
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, School of Basic Medicine, Hangzhou Normal University, Hangzhou, China
| | - Jiacai Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jue Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenxia Zheng
- Department of Technical Support, Chengdu Zhijing Technologies, Chengdu, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jianglin Tan
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Junyi Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Shiya Peng
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Dermatology, Xinqiao Hospital, Army Military Medical University, Chongqing, China
| | - Qudong Lu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
2
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
3
|
Serum collected from rats with myocardial infarction increases extracellular matrix accumulation by myofibroblasts isolated from myocardial infarction scar. EUROBIOTECH JOURNAL 2022. [DOI: 10.2478/ebtj-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effect on extracellular matrix content is believed to be an average of several serum derived compounds acting in opposition. The aim of the study is to determine whether whole serum of rats with myocardial infarction may modify the accumulation of extracellular matrix in cultures of myofibroblasts isolated from the myocardial infarction scar. A second aim is to determine whether the tested serum can also degranulate the mast cells. Serum was collected from rats with sham myocardial infarction, rats with myocardial infarction induced by coronary artery ligation and control animals. The experiments were carried out on myocardial infarction scar myofibroblasts or mast cells from the peritoneal cavity. The cultures were divided into three groups containing eight cultures each: one treated with serum from control rats, from animals after sham operation or from those after myocardial infarction. In all groups, the serum was used at concentrations of 10%, 20% or 30%. The total collagen content (Woesner method) glycosaminoglycan level (Farandale method), cell proliferation (BrdU), histamine secretion from mast cells (spectrofluorymetry), β1 integrin and α-smooth muscle actin expression (flow cytometry) were evaluated. Isolated cells were α-smooth muscle actin positive and identified as myofibroblasts. Serum derived from rats with myocardial infarction increased collagen and glycosaminoglycan content in the cultures and modified myofibroblast proliferation in a concentration-dependent manner. The serum also results in an imbalance between collagen and glycosaminoglycan levels. The content of β1 integrin was not influenced by myocardial infarction serum. The serum of rats with myocardial infarction is involved in regulation of collagen and glycosaminoglycan content in myofibroblast cultures, as well as the modification of their proliferation. These changes were not accompanied with integrin β1 density variations. The serum of the myocardial infarction rats did not influence the mast cell degranulation.
Collapse
|
4
|
Zhou D, Liu T, Wang S, He W, Qian W, Luo G. Effects of IL-1β and TNF-α on the Expression of P311 in Vascular Endothelial Cells and Wound Healing in Mice. Front Physiol 2020; 11:545008. [PMID: 33329015 PMCID: PMC7729022 DOI: 10.3389/fphys.2020.545008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/21/2020] [Indexed: 02/01/2023] Open
Abstract
Objective This study aimed to define the role of interleukine-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the expression of P311 in vascular endothelial cells (VECs) and in wound healing. Methods DAPI staining, a CCK-8 assay, cell migration assay, and an angiogenesis assay were used to assess the effects exerted by TNF-α and IL-1β at various concentrations on morphology, proliferation, migration, and angiogenesis of VECs. Western blot (WB) and reverse transcription-polymerase chain reaction (RT-PCR) models were employed to observe the effects exerted by proteins related to the nuclear factor-kappa B (NF-κB) signaling pathway and P311 mRNA expression. Bioinformatics analysis was performed on the binding sites of P311 and NF-κB. Finally, to investigate the effects of IL-1β and TNF-α on wound healing and the length of new epithelium in mice, we established a full-thickness wound defect model in mice. Immunohistochemistry was used to measure changes in P311, proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), CD31 (platelet endothelial cell adhesion molecule-1, PECAM-1/CD31), as well as other related proteins. Results When levels of TNF-α and IL-1β were both 20 ng/ml, their effects on cell proliferation, cytoskeleton protein expression, cell migration, and angiogenesis were the greatest (P < 0.05). IL-1β and TNF-α at moderate concentrations effectively promoted P311 mRNA and p-NF-κB protein expression (P < 0.05), while p-NF-K b protein expression was decreased (P < 0.05). Luciferase assays showed that P311 expression was also relatively greater when stimulated at moderate concentrations (P < 0.05), while relative expression was significantly lower when the p-NF-K b inhibitor CAPE was added (P < 0.05). On 7-day wound healing rate comparison, the control, IL-1β, IL-1βab, TNF-α, and TNF-αab groups were 18, 37, 35, 39, and 36%, respectively, while control group + P311 siRNA was 31% (P < 0.05). New epithelial length, granulation tissue thickness, and number of blood vessels trends were also the same. In the control group, P311 showed lower relative expression levels than the others (P < 0.05). P311 relative expression levels trended as follows: control group > IL-1βab > IL-1β > TNF-αab > TNF-α (P < 0.05). Conclusion When IL-1β and TNF-α concentrations are moderate, they effectively promote the proliferation, expression, migration, and angiogenesis of VECs, possibly by promoting the expression of the NF-K b pathway and thereby promoting the expression of P311. In vitro experiments on mice suggest that P311 effectively promotes wound healing, and its mechanism may be closely related to PCNA, CD31, and VEGF.
Collapse
Affiliation(s)
- Daijun Zhou
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China.,Department of Oncology, General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Tengfei Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China
| | - Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China
| | - Wei Qian
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Nogueira BCF, Campos AK, Alves RS, Sarandy MM, Novaes RD, Esposito D, Gonçalves RV. What Is the Impact of Depletion of Immunoregulatory Genes on Wound Healing? A Systematic Review of Preclinical Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8862953. [PMID: 33488938 PMCID: PMC7787779 DOI: 10.1155/2020/8862953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/09/2022]
Abstract
Cytokines and growth factors are known to play an important role in the skin wound closure process; however, in knockout organisms, the levels of these molecules can undergo changes that result in the delay or acceleration of this process. Therefore, we systematically reviewed evidence from preclinical studies about the main immunoregulatory molecules involved in skin repair through the analysis of the main mechanisms involved in the depletion of immunoregulatory genes, and we carried out a critical analysis of the methodological quality of these studies. We searched biomedical databases, and only original studies were analyzed according to the PRISMA guidelines. The included studies were limited to those which used knockout animals and excision or incision wound models without intervention. A total of 27 studies were selected; data for animal models, gene depletion, wound characteristics, and immunoregulatory molecules were evaluated and compared whenever possible. Methodological quality assessments were examined using the ARRIVE and SYRCLE's bias of risk tool. In our review, the extracellular molecules act more negatively in the wound healing process when silenced and the metabolic pathway most affected involved in these processes was TGF-β/Smad, and emphasis was given to the importance of the participation of macrophages in TGF-β signaling. Besides that, proinflammatory molecules were more evaluated than anti-inflammatory ones, and the main molecules evaluated were, respectively, TGF-β1, followed by VEGF, IL-6, TNF-α, and IL-1β. Overall, most gene depletions delayed wound healing, negatively influenced the concentrations of proinflammatory cytokines, and consequently promoted a decrease of inflammatory cell infiltration, angiogenesis, and collagen deposition, compromising the formation of granulation tissue. The studies presented heterogeneous data and exhibited methodological limitations; therefore, mechanistic and highly controlled studies are required to improve the quality of the evidence.
Collapse
Affiliation(s)
| | - Artur Kanadani Campos
- Department of Veterinary Medicine, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Raul Santos Alves
- Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Debora Esposito
- Department of Animal Science, North Carolina State University, USA
| | | |
Collapse
|
6
|
Du Y, Yang YT, Tang G, Jia JS, Zhu N, Yuan WJ. Butyrate alleviates diabetic kidney disease by mediating the miR-7a-5p/P311/TGF-β1 pathway. FASEB J 2020; 34:10462-10475. [PMID: 32539181 DOI: 10.1096/fj.202000431r] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 05/25/2020] [Indexed: 12/11/2022]
Abstract
It has been reported that butyrate played an protect role in diabetic kidney disease (DKD) while the mechanism was still not clear. Transforming growth factor-β1 (TGF-β1) is the initial factor which triggers the profibrotic signaling cascades. P311 is an RNA-binding protein, which could stimulate TGF-β1 translation in several cell types. In our study, we found that supplementary of butyrate alleviated fibrosis and suppressed the expression of TGF-β1 and P311 in the kidney of db/db mice as well as high glucose (HG)-induced SV40-MES-13 cells. Overexpression of P311 offset the inhibition of butyrate on TGF-β1 in SV40-MES-13 cells. To make clear the mechanism of butyrate in regulating P311, microRNAs (miRNAs) of the SV40-MES-13 cells were sequenced. We found that miR-7a-5p was significantly decreased in the HG-induced SV40-MES-13 cells and the kidney of db/db mice, while giving butyrate reversed this change. Besides, miR-7a-5p could specifically target the 3' UTR of P311's mRNA and suppressed the expression of P311 in the SV40-MES-13 cells. Giving miR-7a-5p inhibitor blocked the inhibition of butyrate on P311 and TGF-β1. Introducing the miR-7a-5p agomir into db/db mice alleviated renal fibrosis and inhibit the expression of P311 and TGF-β1. In conclusion, butyrate alleviated DKD by mediating the miR-7a-5p/P311/TGF-β1 pathway.
Collapse
Affiliation(s)
- Yi Du
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Tong Yang
- Department of Nephrology, Qingdao Municipal Hospital, Qingdao, China
| | - Gang Tang
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Shuang Jia
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Jie Yuan
- Department of Nephrology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Tiruvayipati S, Wolfgeher D, Yue M, Duan F, Andrade J, Jiang H, Schuger L. Variability in protein cargo detection in technical and biological replicates of exosome-enriched extracellular vesicles. PLoS One 2020; 15:e0228871. [PMID: 32119684 PMCID: PMC7051218 DOI: 10.1371/journal.pone.0228871] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles (EVs) of ~20-200 nm diameter that shuttle DNAs, RNAs, proteins and other biomolecules between cells. The large number of biomolecules present in exosomes demands the frequent use of high-throughput analysis. This, in turn, requires technical replicates (TRs), and biological replicates (BRs) to produce accurate results. As the number and abundance of identified biomolecules varies between replicates (Rs), establishing the replicate variability predicted for the event under study is essential in determining the number of Rs required. Although there have been few reports of replicate variability in high throughput biological data, none of them focused on exosomes. Herein, we determined the replicate variability in protein profiles found in exosomes released from 3 lung adenocarcinoma cell lines, H1993, A549 and H1975. Since exosome isolates are invariably contaminated by a small percentage of ~200-300 nm microvesicles, we refer to our samples as exosome-enriched EVs (EE-EVs). We generated BRs of EE-EVs from each cell line, and divided each group into 3 TRs. All Rs were analyzed by liquid chromatography/mass spectrometry (LC/MS/MS) and customized bioinformatics and biostatistical workflows (raw data available via ProteomeXchange: PXD012798). We found that the variability among TRs as well as BRs, was largely qualitative (protein present or absent) and higher among BRs. By contrast, the quantitative (protein abundance) variability was low, save for the H1975 cell line where the quantitative variability was significant. Importantly, our replicate strategy identified 90% of the most abundant proteins, thereby establishing the utility of our approach.
Collapse
Affiliation(s)
- Suma Tiruvayipati
- Biological Sciences Division, Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Don Wolfgeher
- Proteomics Core Laboratory, Cummings Life Science Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Ming Yue
- Biological Sciences Division, Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - FangFang Duan
- Biological Sciences Division, Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| | - Jorge Andrade
- The Center for Research Informatics, The University of Chicago, Chicago, Illinois, United States of America
| | - Hui Jiang
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Lucia Schuger
- Biological Sciences Division, Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
8
|
Duan FF, Barron G, Meliton A, Mutlu GM, Dulin NO, Schuger L. P311 Promotes Lung Fibrosis via Stimulation of Transforming Growth Factor-β1, -β2, and -β3 Translation. Am J Respir Cell Mol Biol 2019; 60:221-231. [PMID: 30230348 DOI: 10.1165/rcmb.2018-0028oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Interstitial lung fibrosis, a frequently idiopathic and fatal disease, has been linked to the increased expression of profibrotic transforming growth factor (TGF)-βs. P311 is an RNA-binding protein that stimulates TGF-β1, -β2, and -β3 translation in several cell types through its interaction with the eukaryotic translation initiation factor 3b. We report that P311 is switched on in the lungs of patients with idiopathic pulmonary fibrosis (IPF) and in the mouse model of bleomycin (BLM)-induced pulmonary fibrosis. To assess the in vivo role of P311 in lung fibrosis, BLM was instilled into the lungs of P311-knockout mice, in which fibrotic changes were significantly decreased in tandem with a reduction in TGF-β1, -β2, and -β3 concentration/activity compared with BLM-treated wild-type mice. Complementing these findings, forced P311 expression increased TGF-β concentration/activity in mouse and human lung fibroblasts, thereby leading to an activated phenotype with increased collagen production, as seen in IPF. Consistent with a specific effect of P311 on TGF-β translation, TGF-β1-, -β2-, and -β3-neutralizing antibodies downregulated P311-induced collagen production by lung fibroblasts. Furthermore, treatment of BLM-exposed P311 knockouts with recombinant TGF-β1, -β2, and -β3 induced pulmonary fibrosis to a degree similar to that found in BLM-treated wild-type mice. These studies demonstrate the essential function of P311 in TGF-β-mediated lung fibrosis. Targeting P311 could prove efficacious in ameliorating the severity of IPF while circumventing the development of autoimmune complications and toxicities associated with the use of global TGF-β inhibitors.
Collapse
Affiliation(s)
| | | | - Angelo Meliton
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | - Gokhan M Mutlu
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | - Nickolai O Dulin
- 2 Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago Medical School, Chicago, Illinois
| | | |
Collapse
|
9
|
Lagares D. P311 in Scar Wars: Myofibroblasts Lost without Transforming Growth Factor β Translation. Am J Respir Cell Mol Biol 2019; 60:139-140. [PMID: 30277809 DOI: 10.1165/rcmb.2018-0255ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David Lagares
- 1 Division of Pulmonary and Critical Care Medicine.,2 Center for Immunology and Inflammatory Diseases.,3 Andy Tager Fibrosis Research Center Massachusetts General Hospital Boston, Massachusetts and.,4 Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
White SJW, Ranson WA, Cho B, Cheung ZB, Ye I, Carrillo O, Kim JS, Cho SK. The Effects of Preoperative Steroid Therapy on Perioperative Morbidity and Mortality After Adult Spinal Deformity Surgery. Spine Deform 2019; 7:779-787. [PMID: 31495479 DOI: 10.1016/j.jspd.2018.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 12/09/2018] [Accepted: 12/26/2018] [Indexed: 12/28/2022]
Abstract
STUDY DESIGN Retrospective cohort analysis. OBJECTIVES To identify the effects of preoperative steroid therapy on 30-day perioperative complications after adult spinal deformity (ASD) surgery. SUMMARY OF BACKGROUND DATA Chronic steroid therapy has demonstrated therapeutic effects in the treatment of various medical conditions but is also known to be associated with surgical complications. There remains a gap in the literature regarding the impact of chronic steroid therapy in predisposing patients to perioperative complications after elective surgery for ASD. METHODS We performed a retrospective analysis of data from the 2008-2015 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. Patients were divided into two groups based on preoperative steroid therapy. Differences in baseline patient characteristics, comorbidities, and operative variables were assessed. Univariate analysis was performed to compare the incidence of perioperative complications. Multivariate stepwise logistic regression models were then used to adjust for baseline patient and operative variables in order to identify perioperative complications that were associated with preoperative steroid therapy. RESULTS We identified 7,936 patients who underwent surgery for ASD, of which 418 (5.3%) were on preoperative steroid therapy. Preoperative steroid therapy was an independent risk factor for four perioperative complications, including mortality (odds ratio [OR] 2.42, 95% confidence interval [CI] 1.30, 4.51; p = .005), wound dehiscence (OR 3.12, 95% CI 1.45, 6.70; p = .004), deep vein thrombosis (DVT) (OR 2.10, 95% CI 1.24, 3.55; p = .006), and blood transfusion (OR 1.34, 95% CI 1.08, 1.66; p < .007). CONCLUSIONS Patients on preoperative steroid therapy are at increased risk of 30-day mortality, wound dehiscence, DVT, and blood transfusion after surgery for ASD. An interdisciplinary approach to the perioperative management of steroid regimens is critical. LEVEL OF EVIDENCE Level III.
Collapse
Affiliation(s)
- Samuel J W White
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William A Ranson
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Brian Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zoe B Cheung
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ivan Ye
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Oscar Carrillo
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun S Kim
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Samuel K Cho
- Department of Orthopaedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Wang S, Zhang X, Hao F, Li Y, Sun C, Zhan R, Wang Y, He W, Li H, Luo G. Reconstruction and Functional Annotation of P311 Protein-Protein Interaction Network Reveals Its New Functions. Front Genet 2019; 10:109. [PMID: 30838032 PMCID: PMC6390203 DOI: 10.3389/fgene.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
P311 is a highly conserved multifunctional protein. However, it does not belong to any established family of proteins, and its biological function has not been entirely determined. This study aims to reveal the unknown molecular and cellular function of P311. OCG (Overlapping Cluster Generator) is a clustering method used to partition a protein-protein network into overlapping clusters. Multifunctional proteins are at the intersection of relevant clusters. DAVID is an analytic tool used to extract biological meaning from a large protein list. Here we presented OD2 (OCG + DAVID + 2 human PPI datasets), a novel strategy to increase the likelihood to identify biological functions most pertinent to the multifunctional proteins. The principle of OD2 is that OCG prepares the protein lists from multifunctional protein relevant overlapping clusters, for a functional enrichment analysis by DAVID, and the similar functional enrichments, which occurs simultaneously when analyzing two human PPI datasets, are supposed to be the predicted functions. By applying OD2 to two reconstructed human PPI datasets, we supposed the function of the P311 in inflammatory responses, cell proliferation and coagulation, which were confirmed by the following biological experiments. Collectively, our study preliminarily found that P311 could play a role in inflammatory responses, cell proliferation and coagulation. Further studies are required to validate and elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Song Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fen Hao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Yan Li
- Laboratory Center of Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chao Sun
- The Sixth Resignation Cadre Sanatorium of Shandong Province Military Region, Qingdao, China
| | - Rixing Zhan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Haisheng Li
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China.,The 324th Hospital of Chinese People's Liberation Army, Chongqing, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
12
|
Chen J, Wang N. Tissue cell differentiation and multicellular evolution via cytoskeletal stiffening in mechanically stressed microenvironments. ACTA MECHANICA SINICA = LI XUE XUE BAO 2019; 35:270-274. [PMID: 31736534 PMCID: PMC6857630 DOI: 10.1007/s10409-018-0814-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Evolution of eukaryotes from simple cells to complex multicellular organisms remains a mystery. Our postulate is that cytoskeletal stiffening is a necessary condition for evolution of complex multicellular organisms from early simple eukaryotes. Recent findings show that embryonic stem cells are as soft as primitive eukaryotes-amoebae and that differentiated tissue cells can be two orders of magnitude stiffer than embryonic stem cells. Soft embryonic stem cells become stiff as they differentiate into tissue cells of the complex multicellular organisms to match their microenvironment stiffness. We perhaps see in differentiation of embryonic stem cells (derived from inner cell mass cells) the echo of those early evolutionary events. Early soft unicellular organisms might have evolved to stiffen their cytoskeleton to protect their structural integrity from external mechanical stresses while being able to maintain form, to change shape, and to move.
Collapse
Affiliation(s)
- Junwei Chen
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 China
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Ning Wang
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 China
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Corresponding author.
| |
Collapse
|
13
|
Ranson WA, White SJW, Cheung ZB, Mikhail C, Ye I, Kim JS, Cho SK. The Effects of Chronic Preoperative Steroid Therapy on Perioperative Complications Following Elective Posterior Lumbar Fusion. Global Spine J 2018; 8:834-841. [PMID: 30560036 PMCID: PMC6293428 DOI: 10.1177/2192568218775960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY DESIGN Retrospective cohort study. OBJECTIVES Chronic steroid therapy is used in the treatment of various inflammatory and autoimmune conditions, but it is known to be associated with adverse effects. There remains a gap in the literature regarding the role of chronic steroid therapy in predisposing patients to perioperative complications following elective posterior lumbar fusion (PLF). We aimed to identify the effects of chronic preoperative steroid therapy on 30-day perioperative complications in patients undergoing PLF. METHODS A retrospective analysis was performed using the 2011-2014 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database. We identified 22 903 patients who underwent elective PLF. There were 849 patients (3.7%) who received chronic preoperative steroid therapy. Univariate and multivariate analyses were performed to examine steroid therapy as an independent risk factor for 30-day perioperative complications. A subgroup analysis of patients on chronic steroid therapy was then performed to identify additional patient characteristics that further increased the risk for perioperative complications. RESULTS Chronic preoperative steroid therapy was an independent risk factor for 7 perioperative complications, including superficial surgical site infection (SSI), deep SSI, wound dehiscence, urinary tract infection, pulmonary embolism, nonhome discharge, and readmission. Subgroup analysis demonstrated that morbid obesity further predisposed patients on chronic steroid therapy to an increased risk of superficial SSI and wound dehiscence. CONCLUSIONS Patients on chronic preoperative steroid therapy are at increased risk of multiple perioperative complications following elective PLF, particularly surgical site complications and venous thromboembolic events. This risk is further elevated in patients who are morbidly obese.
Collapse
Affiliation(s)
| | | | - Zoe B. Cheung
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Ivan Ye
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun S. Kim
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel K. Cho
- Icahn School of Medicine at Mount Sinai, New York, NY, USA,Samuel K. Cho, Department of Orthopaedic Surgery,
Icahn School of Medicine at Mount Sinai, 5 East 98th Street, 4th Floor, New York, NY
10029, USA.
| |
Collapse
|
14
|
Stradiot L, Mannaerts I, van Grunsven LA. P311, Friend, or Foe of Tissue Fibrosis? Front Pharmacol 2018; 9:1151. [PMID: 30369881 PMCID: PMC6194156 DOI: 10.3389/fphar.2018.01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023] Open
Abstract
P311 was first identified by the group of Studler et al. (1993) in the developing brain. In healthy, but mainly in pathological tissues, P311 is implicated in cell migration and proliferation. Furthermore, evidence in models of tissue fibrosis points to the colocalization with and the stimulation of transforming growth factor β1 by P311. This review provides a comprehensive overview on P311 and discusses its potential as an anti-fibrotic target.
Collapse
Affiliation(s)
- Leslie Stradiot
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
15
|
Wang S, Zhang X, Qian W, Zhou D, Yu X, Zhan R, Wang Y, Wu J, He W, Luo G. P311 Deficiency Leads to Attenuated Angiogenesis in Cutaneous Wound Healing. Front Physiol 2017; 8:1004. [PMID: 29270129 PMCID: PMC5723677 DOI: 10.3389/fphys.2017.01004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/21/2017] [Indexed: 02/03/2023] Open
Abstract
P311 was identified to markedly promote cutaneous wound healing by our group. Angiogenesis plays a key role in wound healing. In this study, we sought to define the role of P311 in skin wound angiogenesis. It was noted that P311 was expressed in endothelial cells in the dermis of murine and human skin wounds. The expression of P311 was confirmed in cultured murine dermal microvascular endothelial cells (mDMECs). Moreover, it was found that knockout of P311 could attenuate the formation of tubes and motility of mDMECs significantly in vitro. In the subcutaneous Matrigel implant model, the angiogenesis was reduced significantly in P311 knockout mice. In addition, wound healing was delayed in P311 knockout mice compared with that in the wild type. Granulation tissue formation during the defective wound healing showed thinner and blood vessel numbers in wound areas in P311 knockout mice were decreased significantly. A reduction in VEGF and TGFβ1 was also found in P311 KO mice wounds, which implied that P311 may modulate the exprssion of VEGF and TGFβ1 in wound healing. Together, our findings suggest that P311 plays an important role in angiogenesis in wound healing.
Collapse
Affiliation(s)
- Song Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiaorong Zhang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wei Qian
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Daijun Zhou
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xunzhou Yu
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Rixing Zhan
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Ying Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Wu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weifeng He
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Gaoxing Luo
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|