1
|
Abdulrehman T, Qadri S, Haik Y, Sultan A, Skariah S, Kumar S, Mendoza Z, Yadav KK, Titus A, Khader S. Advances in the targeted theragnostics of osteomyelitis caused by Staphylococcus aureus. Arch Microbiol 2024; 206:288. [PMID: 38834761 DOI: 10.1007/s00203-024-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
Bone infections caused by Staphylococcus aureus may lead to an inflammatory condition called osteomyelitis, which results in progressive bone loss. Biofilm formation, intracellular survival, and the ability of S. aureus to evade the immune response result in recurrent and persistent infections that present significant challenges in treating osteomyelitis. Moreover, people with diabetes are prone to osteomyelitis due to their compromised immune system, and in life-threatening cases, this may lead to amputation of the affected limbs. In most cases, bone infections are localized; thus, early detection and targeted therapy may prove fruitful in treating S. aureus-related bone infections and preventing the spread of the infection. Specific S. aureus components or overexpressed tissue biomarkers in bone infections could be targeted to deliver active therapeutics, thereby reducing drug dosage and systemic toxicity. Compounds like peptides and antibodies can specifically bind to S. aureus or overexpressed disease markers and combining these with therapeutics or imaging agents can facilitate targeted delivery to the site of infection. The effectiveness of photodynamic therapy and hyperthermia therapy can be increased by the addition of targeting molecules to these therapies enabling site-specific therapy delivery. Strategies like host-directed therapy focus on modulating the host immune mechanisms or signaling pathways utilized by S. aureus for therapeutic efficacy. Targeted therapeutic strategies in conjunction with standard surgical care could be potential treatment strategies for S. aureus-associated osteomyelitis to overcome antibiotic resistance and disease recurrence. This review paper presents information about the targeting strategies and agents for the therapy and diagnostic imaging of S. aureus bone infections.
Collapse
Affiliation(s)
- Tahir Abdulrehman
- eHealth Program, DeGroote School of Business, McMaster University, Hamilton, ON, Canada
- Health Policy, Management and Informatics, Allied Health, Credit Valley Hospital, Mississauga, ON, Canada
| | - Shahnaz Qadri
- School of Pharmacy, Texas A&M University, Kingsville, USA.
| | - Yousef Haik
- Department of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah, UAE.
| | - Ali Sultan
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Sini Skariah
- Department of Immunology & Microbiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Shourya Kumar
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Zachary Mendoza
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Kamlesh K Yadav
- School of Engineering Medicine, Texas A&M University, Houston, TX, USA
| | - Anoop Titus
- Department of Preventive Cardiology, Houston Methodist, Houston, TX, USA
| | - Shameer Khader
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
2
|
Yang Z, Xu J, Kang T, Chen X, Zhou C. The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review. J Inflamm Res 2024; 17:2639-2653. [PMID: 38707958 PMCID: PMC11067939 DOI: 10.2147/jir.s457927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoblasts (OBs), which are a crucial type of bone cells, derive from bone marrow mesenchymal stem cells (MSCs). Accumulating evidence suggests inflammatory cytokines can inhibit the differentiation and proliferation of OBs, as well as interfere with their ability to synthesize bone matrix, under inflammatory conditions. NLRP3 inflammasome is closely associated with cellular pyroptosis, which can lead to excessive release of pro-inflammatory cytokines, causing tissue damage and inflammatory responses, however, the comprehensive roles of NLRP3 inflammasome in OBs and their differentiation have not been fully elucidated, making targeting NLRP3 inflammasome approaches to treat diseases related to OBs uncertain. In this review, we provide a summary of NLRP3 inflammasome activation and its impact on OBs. We highlight the significant roles of NLRP3 inflammasome in regulating OBs differentiation and function. Furthermore, current available strategies to affect OBs function and osteogenic differentiation targeting NLRP3 inflammasome are listed and analyzed. Finally, through the prospective discussion, we seek to provide novel insights into the crucial role of NLRP3 inflammasome in diseases related to OBs and offer valuable information for devising treatment strategies.
Collapse
Affiliation(s)
- Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Chengcong Zhou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
3
|
Dong Z, Yang B, Jia M, Yang C, Wang S, Mu H, Wang J. DDIT3/CHOP promotes LPS/ATP-induced pyroptosis in osteoblasts via mitophagy inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119712. [PMID: 38521466 DOI: 10.1016/j.bbamcr.2024.119712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Inflammatory environments can trigger endoplasmic reticulum (ER) stress and lead to pyroptosis in various tissues and cells, including liver, brain, and immune cells. As a key factor of ER stress, DNA damage-inducible transcript 3 (DDIT3)/CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP) is upregulated in osteoblasts during inflammatory stimulation. DDIT3/CHOP may therefore regulate osteoblast pyroptosis in inflammatory conditions. During this investigation, we found that lipopolysaccharides (LPS)/adenosine 5'-triphosphate (ATP) stimulation in vitro induced osteoblasts to undergo pyroptosis, and the expression of DDIT3/CHOP was increased during this process. The overexpression of DDIT3/CHOP further promoted osteoblast pyroptosis as evidenced by the increased expression of the inflammasome NLR family pyrin domain containing 3 (NLRP3) and ratios of caspase-1 p20/caspase-1 and cleaved gasdermin D (GSDMD)/GSDMD. To explore the specific mechanism of this effect, we found through fluorescence imaging and Western blot analysis that LPS/ATP stimulation promoted PTEN-induced kinase 1 (PINK1)/E3 ubiquitin-protein ligase parkin (Parkin)-mediated mitophagy in osteoblasts, and this alteration was suppressed by the DDIT3/CHOP overexpression, resulting in increased ratio of pyroptosis compared with the control groups. The impact of DDIT3/CHOP on pyroptosis in osteoblasts was reversed by the application of carbonyl cyanide 3-chlorophenylhydrazone (CCCP), a specific mitophagy agonist. Therefore, our data demonstrated that DDIT3/CHOP promotes osteoblast pyroptosis by inhibiting PINK1/Parkin-mediated mitophagy in an inflammatory environment.
Collapse
Affiliation(s)
- Zhipeng Dong
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Beining Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Meie Jia
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Chang Yang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Shuo Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Hailin Mu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China
| | - Jiawei Wang
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, China.
| |
Collapse
|
4
|
Hussain MS, Shaikh NK, Agrawal M, Tufail M, Bisht AS, Khurana N, Kumar R. Osteomyelitis and non-coding RNAS: A new dimension in disease understanding. Pathol Res Pract 2024; 255:155186. [PMID: 38350169 DOI: 10.1016/j.prp.2024.155186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Osteomyelitis, a debilitating bone infection, presents considerable clinical challenges due to its intricate etiology and limited treatment options. Despite strides in surgical and chemotherapeutic interventions, the treatment landscape for osteomyelitis remains unsatisfactory. Recent attention has focused on the role of non-coding RNAs (ncRNAs) in the pathogenesis and progression of osteomyelitis. This review consolidates current knowledge on the involvement of distinct classes of ncRNAs, including microRNAs, long ncRNAs, and circular RNAs, in the context of osteomyelitis. Emerging evidence from various studies underscores the potential of ncRNAs in orchestrating gene expression and influencing the differentiation of osteoblasts and osteoclasts, pivotal processes in bone formation. The review initiates by elucidating the regulatory functions of ncRNAs in fundamental cellular processes such as inflammation, immune response, and bone remodeling, pivotal in osteomyelitis pathology. It delves into the intricate network of interactions between ncRNAs and their target genes, illuminating how dysregulation contributes to the establishment and persistence of osteomyelitic infections. Understanding their regulatory roles may pave the way for targeted diagnostic tools and innovative therapeutic interventions, promising a paradigm shift in the clinical approach to this challenging condition. Additionally, we delve into the promising therapeutic applications of these molecules, envisioning novel diagnostic and treatment approaches to enhance the management of this challenging bone infection.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Department of Pharmacology, School of Pharmaceutical Sciences, Jaipur National University, Jaipur, Rajasthan 302017, India
| | - Nusrat K Shaikh
- Department of Quality Assurance, Smt. N. M. Padalia Pharmacy College, Ahmedabad, 382210 Gujarat, India
| | - Mohit Agrawal
- Department of Pharmacology, School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram 122103, India
| | - Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Navneet Khurana
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Choppa VSR, Liu G, Tompkins YH, Kim WK. Altered Osteogenic Differentiation in Mesenchymal Stem Cells Isolated from Compact Bone of Chicken Treated with Varying Doses of Lipopolysaccharides. Biomolecules 2023; 13:1626. [PMID: 38002308 PMCID: PMC10669906 DOI: 10.3390/biom13111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Persistent inflammation biologically alters signaling molecules and ultimately affects osteogenic differentiation, including in modern-day broilers with unique physiology. Lipopolysaccharides (LPS) are Gram-negative bacterial components that activate cells via transmembrane receptor activation and other molecules. Previous studies have shown several pathways associated with osteogenic inductive ability, but the pathway has yet to be deciphered, and data related to its dose-dependent effect are limited. Primary mesenchymal stem cells (MSCs) were isolated from the bones of day-old broiler chickens, and the current study focused on the dose-dependent variation (3.125 micrograms/mL to 50 micrograms/mL) in osteogenic differentiation and the associated biomarkers in primary MSCs. The doses in this study were determined using a cell viability (MTT) assay. The study revealed that osteogenic differentiation varied with dose, and the cells exposed to higher doses of LPS were viable but lacked differentiating ability. However, this effect became transient with lower doses, and this phenotypic character was observed with differential staining methods like Alizarin Red, Von Kossa, and alkaline phosphatase. The data from this study revealed that LPS at varying doses had a varying effect on osteogenic differentiation via several pathways acting simultaneously during bone development.
Collapse
Affiliation(s)
| | | | | | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30605, USA; (V.S.R.C.); (G.L.); (Y.H.T.)
| |
Collapse
|
6
|
Mariano LC, Grenho L, Fernandes MH, de Sousa Gomes P. Integrative tissue, cellular and molecular responsiveness of an innovative ex vivo model of the Staphylococcus aureus-mediated bone infection. FASEB J 2023; 37:e23166. [PMID: 37650876 DOI: 10.1096/fj.202300287rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/01/2023]
Abstract
Osteomyelitis is a pathological condition of the bone, frequently associated with the presence of infectious agents - namely Staphylococcus aureus - that induce inflammation and tissue destruction. Recent advances in the understanding of its pathophysiology and the identification of innovative therapeutic approaches were gathered from experimental in vitro and in vivo systems. However, cell culture models offer limited representativeness of the cellular functionality and the cell-cell and cell-matrix interactions, further failing to mimic the three-dimensional tissue organization; and animal models allow for limited mechanistic assessment given the complex nature of systemic and paracrine regulatory systems and are endorsed with ethical constraints. Accordingly, this study aims at the establishment and assessment of a new ex vivo bone infection model, upon the organotypic culture of embryonic chicken femurs colonized with S. aureus, highlighting the model responsiveness at the molecular, cellular, and tissue levels. Upon infection with distinct bacterial inoculums, data reported an initial exponential bacterial growth, followed by diminished metabolic activity. At the tissue level, evidence of S. aureus-mediated tissue destruction was attained and demonstrated through distinct methodologies, conjoined with decreased osteoblastic/osteogenic and increased osteoclastic/osteoclastogenic functionalities-representative of the osteomyelitis clinical course. Overall, the establishment and characterization of an innovative bone tissue infection model that is simple, reproducible, easily manipulated, cost-effective, and simulates many features of human osteomyelitis, further allowing the maintenance of the bone tissue's three-dimensional morphology and cellular arrangement, was achieved. Model responsiveness was further demonstrated, showcasing the capability to improve the research pipeline in bone tissue infection-related research.
Collapse
Affiliation(s)
- Lorena Castro Mariano
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Liliana Grenho
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Porto, Portugal
- LAQV/REQUIMTE, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Rhoads DD, Pummil J, Ekesi NS, Alrubaye AAK. Horizontal transfer of probable chicken-pathogenicity chromosomal islands between Staphylococcus aureus and Staphylococcus agnetis. PLoS One 2023; 18:e0283914. [PMID: 37406030 DOI: 10.1371/journal.pone.0283914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Staphylococcus agnetis is an emerging pathogen in chickens but has been most commonly isolated from sub-clinical mastitis in bovines. Previous whole-genome analyses for known virulence genes failed to identify determinants for the switch from mild ductal infections in cattle to severe infections in poultry. We now report identification of a family of 15 kbp, 17-19 gene mobile genetic elements (MGEs) specific to chicken osteomyelitis and dermatitis isolates of S. agnetis. These MGEs can be present in multiple copies per genome. The MGE has been vectored on a Staphylococcus phage that separately lysogenized two S. agnetis osteomyelitis strains. The S. agnetis genome from a broiler breeder case of ulcerative dermatitis contains 2 orthologs of this MGE, not associated with a prophage. BLASTn and phylogenetic analyses show that there are closely related intact MGEs found in genomes of S. aureus. The genome from a 1980s isolate from chickens in Ireland contains 3 copies of this MGE. More recent chicken isolates descended from that genome (Poland 2009, Oklahoma 2010, and Arkansas 2018) contain 2 to 4 related copies. Many of the genes of this MGE can be identified in disparate regions of the genomes of other chicken isolates of S. aureus. BLAST searches of the NCBI databases detect no similar MGEs outside of S. aureus and S. agnetis. These MGEs encode no proteins related to those produced by Staphylococcus aureus Pathogenicity Islands, which have been associated with the transition of S. aureus from human to chicken hosts. Other than mobilization functions, most of the genes in these new MGEs annotate as hypothetical proteins. The MGEs we describe appear to represent a new family of Chromosomal Islands (CIs) shared amongst S. agnetis and S. aureus. Further work is needed to understand the role of these CIs/MGEs in pathogenesis. Analysis of horizontal transfer of genetic elements between isolates and species of Staphylococci provides clues to evolution of host-pathogen interactions as well as revealing critical determinants for animal welfare and human diseases.
Collapse
Affiliation(s)
- Douglas D Rhoads
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
| | - Jeff Pummil
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR, United States of America
| | - Nnamdi S Ekesi
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, United States of America
| | - Adnan A K Alrubaye
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
8
|
Choppa VSR, Kim WK. A Review on Pathophysiology, and Molecular Mechanisms of Bacterial Chondronecrosis and Osteomyelitis in Commercial Broilers. Biomolecules 2023; 13:1032. [PMID: 37509068 PMCID: PMC10377700 DOI: 10.3390/biom13071032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Modern day broilers have a great genetic potential to gain heavy bodyweights with a huge metabolic demand prior to their fully mature ages. Moreover, this made the broilers prone to opportunistic pathogens which may enter the locomotory organs under stress causing bacterial chondronecrosis and osteomyelitis (BCO). Such pathogenic colonization is further accelerated by microfractures and clefts that are formed in the bones due to rapid growth rate of the broilers along with ischemia of blood vessels. Furthermore, there are several pathways which alter bone homeostasis like acute phase response, and intrinsic and extrinsic cell death pathways. In contrast, all the affected birds may not exhibit clinical lameness even with the presence of lameness associated factors causing infection. Although Staphylococcus, E. coli, and Enterococcus are considered as common bacterial pathogens involved in BCO, but there exist several other non-culturable bacteria. Any deviation from maintaining a homeostatic environment in the gut might lead to bacterial translocation through blood followed by proliferation of pathogenic bacteria in respective organs including bones. It is important to alleviate dysbiosis of the blood which is analogous to dysbiosis in the gut. This can be achieved by supplementing pro, pre, and synbiotics which helps in providing a eubiotic environment abating the bacterial translocation that was studied to the incidence of BCO. This review focused on potential and novel biomarkers, pathophysiological mechanism, the economic significance of BCO, immune mechanisms, and miscellaneous factors causing BCO. In addition, the role of gut microbiomes along with their diversity and cell culture models from compact bones of chicken in better understanding of BCO were explored.
Collapse
Affiliation(s)
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Cook J, Greene ES, Ramser A, Mullenix G, Dridi JS, Liyanage R, Wideman R, Dridi S. Comparative- and network-based proteomic analysis of bacterial chondronecrosis with osteomyelitis lesions in broiler's proximal tibiae identifies new molecular signatures of lameness. Sci Rep 2023; 13:5947. [PMID: 37045932 PMCID: PMC10097873 DOI: 10.1038/s41598-023-33060-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Bacterial Chondronecrosis with Osteomyelitis (BCO) is a specific cause of lameness in commercial fast-growing broiler (meat-type) chickens and represents significant economic, health, and wellbeing burdens. However, the molecular mechanisms underlying the pathogenesis remain poorly understood. This study represents the first comprehensive characterization of the proximal tibia proteome from healthy and BCO chickens. Among a total of 547 proteins identified, 222 were differentially expressed (DE) with 158 up- and 64 down-regulated proteins in tibia of BCO vs. normal chickens. Biological function analysis using Ingenuity Pathways showed that the DE proteins were associated with a variety of diseases including cell death, organismal injury, skeletal and muscular disorder, immunological and inflammatory diseases. Canonical pathway and protein-protein interaction network analysis indicated that these DE proteins were involved in stress response, unfolded protein response, ribosomal protein dysfunction, and actin cytoskeleton signaling. Further, we identified proteins involved in bone resorption (osteoclast-stimulating factor 1, OSFT1) and bone structural integrity (collagen alpha-2 (I) chain, COL2A1), as potential key proteins involved in bone attrition. These results provide new insights by identifying key protein candidates involved in BCO and will have significant impact in understanding BCO pathogenesis.
Collapse
Affiliation(s)
- Jennifer Cook
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Elizabeth S Greene
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Alison Ramser
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Garrett Mullenix
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Jalila S Dridi
- École Universitaire de Kinésithérapie, Université d'Orléans, Rue de Chartres, 45100, Orléans, France
| | - Rohana Liyanage
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Robert Wideman
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - Sami Dridi
- Department of Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Li X, Ji L, Men X, Chen X, Zhi M, He S, Chen S. Pyroptosis in bone loss. Apoptosis 2023; 28:293-312. [PMID: 36645574 PMCID: PMC9842222 DOI: 10.1007/s10495-022-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2022] [Indexed: 01/17/2023]
Abstract
Pyroptosis could be responsible for the bone loss from bone metabolic diseases, leading to the negative impact on people's health and life. It has been shown that osteoclasts, osteoblasts, macrophages, chondrocytes, periodontal and gingival cells may be involved in bone loss linked with pyroptosis. So far, the involved mechanisms have not been fully elucidated. In this review, we introduced the related cells involved in the pyroptosis associated with bone loss and summarized the role of these cells in the bone metabolism during the process of pyroptosis. We also discuss the clinical potential of targeting mechanisms in the osteoclasts, osteoblasts, macrophages, chondrocytes, periodontal and gingival cells touched upon pyroptosis to treat bone loss from bone metabolic diseases as well as the challenges of avoiding potential side effects and producing efficient treatment methods.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Xinrui Men
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Xinyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Maohui Zhi
- Functional Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
11
|
Ramser A, Greene E, Rath N, Dridi S. Primary growth plate chondrocyte isolation, culture, and characterization from the modern broiler. Poult Sci 2022; 102:102254. [PMID: 36370660 PMCID: PMC9660625 DOI: 10.1016/j.psj.2022.102254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Lameness is a leading cause of animal welfare and production concerns for the poultry industry as fast-growing, high-yielding broilers seem more susceptible to bone disease and infections. A major limitation to the study of these disorders is the lack of a chicken immortalized chondrocyte cell. Primary cell isolation is a valid and complex method for establishing a relevant in vitro model for diseases. In this study, isolation and high-density culturing of primary chondrocytes form 1-d old chicks was followed by confirmation of cell type, identification of optimal phenotypic expression, and evaluation of cells functionality. mRNA expression, as well as protein production and secretion, of COLI, COLII, Sox9, ACAN, and COLXA1 on day 3 (d3), d7, d11, d14, d18, and d21 in culture showed that avian growth plate chondrocytes under these conditions exhibit optimal phenotypes from d3 to d7. This is evident by a shift from COLII dominant expression in early-culture to COLI dominant expression by late-culture in conjunction with a loss of other chondrocyte markers Sox9, ACAN, and COLXA1. Additionally, morphological changes seen through live cell imaging coincide with the shift of phenotype in mid- to late-culture periods indicating a dedifferentiated phenotype. The functionality of the cultured cells was confirmed using Brefeldin-A treatment which significantly reduced secretion of COLII by d7 chondrocytes. These results provide a foundation for future research utilizing avian primary chondrocytes with optimal phenotypes for disease modeling or passaging.
Collapse
Affiliation(s)
- Alison Ramser
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,University of Arkansas, Cell and Molecular Biology, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA
| | - Narayan Rath
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,Poultry Production and Product Safety Research, USDA/ARS, Fayetteville, AR 72701, USA
| | - Sami Dridi
- University of Arkansas, Center of Excellence for Poultry Science, Fayetteville, AR 72701, USA,University of Arkansas, Cell and Molecular Biology, Fayetteville, AR 72701, USA,Corresponding author:
| |
Collapse
|
12
|
Meroni G, Tsikopoulos A, Tsikopoulos K, Allemanno F, Martino PA, Soares Filipe JF. A Journey into Animal Models of Human Osteomyelitis: A Review. Microorganisms 2022; 10:1135. [PMID: 35744653 PMCID: PMC9228829 DOI: 10.3390/microorganisms10061135] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Osteomyelitis is an infection of the bone characterized by progressive inflammatory destruction and apposition of new bone that can spread via the hematogenous route (hematogenous osteomyelitis (HO)), contiguous spread (contiguous osteomyelitis (CO)), and direct inoculation (osteomyelitis associated with peripheral vascular insufficiency (PVI)). Given the significant financial burden posed by osteomyelitis patient management, the development of new preventive and treatment methods is warranted. To achieve this objective, implementing animal models (AMs) of infection such as rats, mice, rabbits, avians, dogs, sheep, goats, and pigs might be of the essence. This review provides a literature analysis of the AMs developed and used to study osteomyelitis. Historical relevance and clinical applicability were taken into account to choose the best AMs, and some study methods are briefly described. Furthermore, the most significant strengths and limitations of each species as AM are discussed, as no single model incorporates all features of osteomyelitis. HO's clinical manifestation results in extreme variability between patients due to multiple variables (e.g., age, sex, route of infection, anatomical location, and concomitant diseases) that could alter clinical studies. However, these variables can be controlled and tested through different animal models.
Collapse
Affiliation(s)
- Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Alexios Tsikopoulos
- Department of Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Francesca Allemanno
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical, and Dental Sciences, University of Milan, Via Pascal 36, 20133 Milan, Italy; (F.A.); (P.A.M.)
| | - Joel Fernando Soares Filipe
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell’Università 6, 26900 Lodi, Italy;
| |
Collapse
|
13
|
Brugaletta G, Greene E, Ramser A, Maynard CW, Tabler TW, Sirri F, Anthony NB, Orlowski S, Dridi S. Effect of Cyclic Heat Stress on Hypothalamic Oxygen Homeostasis and Inflammatory State in the Jungle Fowl and Three Broiler-Based Research Lines. Front Vet Sci 2022; 9:905225. [PMID: 35692291 PMCID: PMC9174949 DOI: 10.3389/fvets.2022.905225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
Heat stress (HS) is devastating to poultry production sustainability due its detrimental effects on performance, welfare, meat quality, and profitability. One of the most known negative effects of HS is feed intake depression, which is more pronounced in modern high-performing broilers compared to their ancestor unselected birds, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the hypothalamic expression of a newly involved pathway, hypoxia/oxygen homeostasis, in heat-stressed broiler-based research lines and jungle fowl. Three populations of broilers (slow growing ACRB developed in 1956, moderate growing 95RB from broilers available in 1995, and modern fast growing MRB from 2015) and unselected Jungle fowl birds were exposed to cyclic heat stress (36°C, 9 h/day for 4 weeks) in a 2 × 4 factorial experimental design. Total RNAs and proteins were extracted from the hypothalamic tissues and the expression of target genes and proteins was determined by real-time quantitative PCR and Western blot, respectively. It has been previously shown that HS increased core body temperature and decreased feed intake in 95RB and MRB, but not in ACRB or JF. HS exposure did not affect the hypothalamic expression of HIF complex, however there was a line effect for HIF-1α (P = 0.02) with higher expression in JF under heat stress. HS significantly up regulated the hypothalamic expression of hemoglobin subunits (HBA1, HBBR, HBE, HBZ), and HJV in ACRB, HBA1 and HJV in 95RB and MRB, and HJV in JF, but it down regulated FPN1 in JF. Additionally, HS altered the hypothalamic expression of oxygen homeostasis- up and down-stream signaling cascades. Phospho-AMPKThr172 was activated by HS in JF hypothalamus, but it decreased in that of the broiler-based research lines. Under thermoneutral conditions, p-AMPKThr172 was higher in broiler-based research lines compared to JF. Ribosomal protein S6K1, however, was significantly upregulated in 95RB and MRB under both environmental conditions. HS significantly upregulated the hypothalamic expression of NF-κB2 in MRB, RelB, and TNFα in ACRB, abut it down regulated RelA in 95RB. The regulation of HSPs by HS seems to be family- and line-dependent. HS upregulated the hypothalamic expression of HSP60 in ACRB and 95RB, down regulated HSP90 in JF only, and decreased HSP70 in all studied lines. Taken together, this is the first report showing that HS modulated the hypothalamic expression of hypoxia- and oxygen homeostasis-associated genes as well as their up- and down-stream mediators in chickens, and suggests that hypoxia, thermotolerance, and feed intake are interconnected, which merit further in-depth investigations.
Collapse
Affiliation(s)
- Giorgio Brugaletta
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Elizabeth Greene
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Alison Ramser
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Craig W. Maynard
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Travis W. Tabler
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Nicholas B. Anthony
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Sami Dridi
| |
Collapse
|
14
|
Ramser A, Greene E, Alrubaye AA, Wideman R, Dridi S. Role of Autophagy Machinery Dysregulation in Bacterial Chondronecrosis with Osteomyelitis (BCO). Poult Sci 2022; 101:101750. [PMID: 35278754 PMCID: PMC8914211 DOI: 10.1016/j.psj.2022.101750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/27/2021] [Accepted: 01/23/2022] [Indexed: 12/22/2022] Open
Abstract
Autophagy is a cell survival and homeostasis mechanism involving lysosomal degradation of cellular components and foreign bodies. It plays a role in bone homeostasis, skeletal diseases, and bacterial infections as both a cell-survival or cell-death pathway. This study sought to determine if autophagy played a role in bacterial chondronecrosis with osteomyelitis (BCO). BCO is a prominent cause of lameness in modern broilers and results from bacterial infection of mechanically stressed leg bone growth plates. The protein and gene expression of key autophagy machinery was analyzed in both normal and BCO-affected broilers using real-time qPCR and immunoblot, respectively. Gene expression showed a significant downregulation of key target signatures involved in every stage of autophagy in BCO-affected bone, such as ATG13, SQSTM1 (p62), ATG9B, ATG16L, ATG12, LC3C, and RAB7A. Additionally, protein expression for LC3 was also significantly lower in BCO. An in vitro study using human fetal osteoblast cells challenged with BCO isolate, Staphylococcus agnetis 908, showed a similar dysregulation of autophagy machinery along with a significant decrease in cell viability. When autophagy was inhibited via 3-methyladenine or chloroquine, comparable decreases in cell viability were seen along with dysregulation of autophagy machinery. Together, these results are the first to implicate autophagy machinery dysregulation in the pathology of BCO.
Collapse
|
15
|
Ramser A, Greene E, Wideman R, Dridi S. Local and Systemic Cytokine, Chemokine, and FGF Profile in Bacterial Chondronecrosis with Osteomyelitis (BCO)-Affected Broilers. Cells 2021; 10:3174. [PMID: 34831397 PMCID: PMC8620240 DOI: 10.3390/cells10113174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Complex disease states, like bacterial chondronecrosis with osteomyelitis (BCO), not only result in physiological symptoms, such as lameness, but also a complex systemic reaction involving immune and growth factor responses. For the modern broiler (meat-type) chickens, BCO is an animal welfare, production, and economic concern involving bacterial infection, inflammation, and bone attrition with a poorly defined etiology. It is, therefore, critical to define the key inflammatory and bone-related factors involved in BCO. In this study, the local bone and systemic blood profile of inflammatory modulators, cytokines, and chemokines was elucidated along with inflammasome and key FGF genes. BCO-affected bone showed increased expression of cytokines IL-1β, while BCO-affected blood expressed upregulated TNFα and IL-12. The chemokine profile revealed increased IL-8 expression in both BCO-affected bone and blood in addition to inflammasome NLRC5 being upregulated in circulation. The key FGF receptor, FGFR1, was significantly downregulated in BCO-affected bone. The exposure of two different bone cell types, hFOB and chicken primary chondrocytes, to plasma from BCO-affected birds, as well as recombinant TNFα, resulted in significantly decreased cell viability. These results demonstrate an expression of proinflammatory and bone-resorptive factors and their potential contribution to BCO etiology through their impact on bone cell viability. This unique profile could be used for improved non-invasive detection of BCO and provides potential targets for treatments.
Collapse
Affiliation(s)
- Alison Ramser
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (A.R.); (E.G.); (R.W.)
- Department of Poultry Science, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
16
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
17
|
Detzen L, Cheat B, Besbes A, Hassan B, Marchi V, Baroukh B, Lesieur J, Sadoine J, Torrens C, Rochefort G, Bouchet J, Gosset M. NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J Cell Physiol 2021; 236:4455-4469. [PMID: 33319921 DOI: 10.1002/jcp.30162] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/18/2022]
Abstract
Overexpression of the nucleotide-binding leucine-rich repeat protein 3 (NLRP3) inflammasome in chronic auto-immune diseases leads to skeletal anomalies, with severe osteopenia due to the activation of osteoclasts. Reproducing this phenotype in Nlrp3 knock-in mice has provided insights into the role of NLRP3 in bone metabolism. We studied the role of NLRP3 in physiological bone development using a complete Nlrp3 knock-out mouse model. We found impaired skeletal development in Nlrp3-/- mice, resulting in a shorter stature than that of Nlrp3+/+ mice. These growth defects were associated with altered femur bone growth, characterized by a deficient growth plate and an osteopenic profile of the trabeculae. No differences in osteoclast recruitment or activity were observed. Instead, Nlrp3-/- femurs showed a less mineralized matrix in the trabeculae than those of Nlrp3+/+ mice, as well as less bone sialoprotein (BSP) expressing hypertrophic chondrocytes. In vitro, primary osteoblasts lacking NLRP3 expression showed defective mineralization, together with the downregulation of BSP expression. Finally, follow-up by micro-CT highlighted the role of NLPR3 in bone growth, occurring early in living mice, as the osteopenic phenotype diminishes over time. Overall, our data suggest that NLRP3 is involved in bone edification via the regulation of hypertrophic chondrocyte maturation and osteoblast activity. Furthermore, the defect appeared to be transitory, as the skeleton recovered with aging.
Collapse
Affiliation(s)
- L Detzen
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Département de Parodontologie, Service d'Odontologie, AP-HP, Hôpital Rothschild, Paris, France
- Laboratoire d'Excellence INFLAMEX, France
| | - B Cheat
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - A Besbes
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
- Faculté de Médecine Dentaire, Université de Monastir, Monastir, Tunisie
| | - B Hassan
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - V Marchi
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - B Baroukh
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Lesieur
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Sadoine
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Université de Paris, Paris, France
| | - C Torrens
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - G Rochefort
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - J Bouchet
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
| | - M Gosset
- UR 2496, Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, France
- Laboratoire d'Excellence INFLAMEX, France
- Service de Médecine Bucco-Dentaire, AP-HP, Hôpital Charles Foix, Ivry/seine, France
| |
Collapse
|
18
|
Ferver A, Greene E, Wideman R, Dridi S. Evidence of Mitochondrial Dysfunction in Bacterial Chondronecrosis With Osteomyelitis-Affected Broilers. Front Vet Sci 2021; 8:640901. [PMID: 33634182 PMCID: PMC7902039 DOI: 10.3389/fvets.2021.640901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/08/2021] [Indexed: 11/13/2022] Open
Abstract
A leading cause of lameness in modern broilers is bacterial chondronecrosis with osteomyelitis (BCO). While it is known that the components of BCO are bacterial infection, necrosis, and inflammation, the mechanism behind BCO etiology is not yet fully understood. In numerous species, including chicken, mitochondrial dysfunction has been shown to have a role in the pathogenicity of numerous diseases. The mitochondria is a known target for intracellular bacterial infections, similar to that of common causative agents in BCO, as well as a known regulator of cellular metabolism, stress response, and certain types of cell death. This study aimed to determine the expression profile of genes involved in mitochondrial biogenesis, dynamics, and function. RNA was isolated form the tibias from BCO-affected and healthy broilers and used to measure target gene expression via real-time qPCR. Mitochondrial biogenesis factors PGC-1α and PGC-1β were both significantly upregulated in BCO along with mitochondrial fission factors OMA1, MTFR1, MTFP1, and MFF1 as well as cellular respiration-related genes FOXO3, FOXO4, and av-UCP. Conversely, genes involved in mitochondrial function, ANT, COXIV, and COX5A showed decreased mRNA levels in BCO-affected tibia. This study is the first to provide evidence of potential mitochondrial dysfunction in BCO bone and warrants further mechanistic investigation into how this dysfunction contributes to BCO etiology.
Collapse
Affiliation(s)
- Alison Ferver
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Robert Wideman
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
19
|
Flees JJ, Ganguly B, Dridi S. Phytogenic feed additives improve broiler feed efficiency via modulation of intermediary lipid and protein metabolism-related signaling pathways. Poult Sci 2020; 100:100963. [PMID: 33652544 PMCID: PMC7936186 DOI: 10.1016/j.psj.2020.12.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/11/2020] [Accepted: 12/20/2020] [Indexed: 11/30/2022] Open
Abstract
Diets enriched with phytogenic feed additives (PFA) such as AV/HGP/16 premix (AVHGP), Superliv concentrate premix (SCP), and bacteriostatic herbal growth promotor (BHGP) with essential oils have been shown to improve feed efficiency (FE) in broilers. This FE improvement was achieved via modulation of hypothalamic neuropeptides, which results despite feed intake reduction, in increased breast yield without changes in body weight compared to the control group. To gain further insights into the mode of action of these PFA, the present study aimed to determine the potential involvement of signaling pathways associated with lipid and protein metabolism. One day-old male Cobb 500 chicks were randomly assigned into 1 of 4 treatments, comprising 8 replicates per treatment in a completely randomized design. The dietary treatments included a basal diet (control) or 0.55 g/kg diet of AVHGP, SCP, or BHGP. The birds had ad libitum access to water and feed. On day 35, after blood sampling, the liver, abdominal adipose tissue (AT), and breast muscle samples were collected. The levels of phosphorylated mechanistic target of rapamycin (mTOR)Ser2481 as well as its levels of mRNA and those of its downstream mediator RPS6B1 were significantly upregulated in the muscle of the PFA-fed groups compared with the control group. In the liver, the phosphorylated levels of acetyl-CoA carboxylase alpha at Ser79, the rate-limiting enzyme in fat synthesis, was significantly induced in the PFA-fed groups compared with the control group, indicating a lower hepatic lipogenesis. The hepatic expression of hepatic triglyceride lipase (LIPC) and adipose triglyceride lipase (ATGL) was significantly upregulated in the AVHGP-fed group compared with the control group. These hepatic changes were accompanied by a significant downregulation of hepatic sterol regulatory element-binding protein cleavage-activating protein in all the PFA groups and an upregulation of peroxisome proliferator–activated receptor alpha and gamma in the SCP-fed compared with the control group. In the AT, the mRNA abundances of ATGL and LIPC were significantly increased in both SCP- and BHGP-fed birds compared with the control group. Together these data indicate that PFA improve FE via modulation of muscle mTOR pathway and hepatic lipolytic/lipogenic programs, thus, favoring muscle protein synthesis and lowering hepatic lipogenesis.
Collapse
Affiliation(s)
- Joshua J Flees
- Center of Excellence For Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | - Bhaskar Ganguly
- Clinical Research, Ayurvet Limited, Baddi, Himachal Pradesh 173205, India
| | - Sami Dridi
- Center of Excellence For Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| |
Collapse
|
20
|
Yu C, Zhang C, Kuang Z, Zheng Q. The Role of NLRP3 Inflammasome Activities in Bone Diseases and Vascular Calcification. Inflammation 2020; 44:434-449. [PMID: 33215255 PMCID: PMC7985100 DOI: 10.1007/s10753-020-01357-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023]
Abstract
Continuous stimulation of inflammation is harmful to tissues of an organism. Inflammatory mediators not only have an effect on metabolic and inflammatory bone diseases but also have an adverse effect on certain genetic and periodontal diseases associated with bone destruction. Inflammatory factors promote vascular calcification in various diseases. Vascular calcification is a pathological process similar to bone development, and vascular diseases play an important role in the loss of bone homeostasis. The NLRP3 inflammasome is an essential component of the natural immune system. It can recognize pathogen-related molecular patterns or host-derived dangerous signaling molecules, recruit, and activate the pro-inflammatory protease caspase-1. Activated caspase-1 cleaves the precursors of IL-1β and IL-18 to produce corresponding mature cytokines or recognizes and cleaves GSDMD to mediate cell pyroptosis. In this review, we discuss the role of NLRP3 inflammasome in bone diseases and vascular calcification caused by sterile or non-sterile inflammation and explore potential treatments to prevent bone loss.
Collapse
Affiliation(s)
- Chenyang Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Caihua Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China
| | - Qiang Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China. .,Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
21
|
Greene ES, Zampiga M, Sirri F, Ohkubo T, Dridi S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci Rep 2020; 10:19191. [PMID: 33154530 PMCID: PMC7645691 DOI: 10.1038/s41598-020-76329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Orexins are originally characterized as orexigenic hypothalamic neuropeptides in mammals. Subsequent studies found orexin to be expressed and perform pleiotropic functions in multiple tissues in mammals. In avian (non-mammalian) species, however, orexin seemed to not affect feeding behavior and its physiological roles are poorly understood. Here, we provide evidence that orexin and its related receptors are expressed in chicken hepatocytes. Double immunofluorescence staining showed that orexin is localized in the ER, Golgi, and in the lysosomes in LMH cells. Brefeldin A treatment reduced orexin levels in the culture media, but increased it in the cell lysates. Administration of recombinant orexins upregulated the expression of orexin system in the liver of 9-day old chicks, but did not affect feed intake. Recombinant orexins increased fatty acid synthase (FASN) protein levels in chicken liver, activated acetyl-CoA carboxylase (ACCα), and increased FASN, ATP citrate lyase(ACLY), and malic enzyme (ME) protein expression in LMH cells. Blockade ERK1/2 activation by PD98059 attenuated these stimulating effects of orexin on lipogenic factors. Overexpression of ERK1/2 increased the expression of lipogenic genes, and orexin treatment induced the phosphorylated levels of ERK1/2Thr202/Tyr204, but not that of p38 Thr180/Tyr182 or JNK1/2 Thr183/Tyr185 in chicken liver and LMH cells. Taken together, this is the first report evidencing that orexin is expressed and secreted from chicken hepatocytes, and that orexin induced hepatic lipogenesis via activation of ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- E S Greene
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - M Zampiga
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - F Sirri
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - T Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, 300-0393, Japan
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
22
|
Alrubaye AAK, Ekesi NS, Hasan A, Elkins E, Ojha S, Zaki S, Dridi S, Wideman RF, Rebollo MA, Rhoads DD. Chondronecrosis with osteomyelitis in broilers: further defining lameness-inducing models with wire or litter flooring to evaluate protection with organic trace minerals. Poult Sci 2020; 99:5422-5429. [PMID: 33142459 PMCID: PMC7647863 DOI: 10.1016/j.psj.2020.08.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
The feed additive Availa-ZMC was investigated for the ability to reduce lameness in broilers using 2 alternative models for inducing lameness. The mixture of organic trace minerals was effective in reducing lameness by 20% in the wire flooring model and 25% in the litter flooring model with the bacterial challenge. Lameness in both models is overwhelmingly attributable to bacterial chondronecrosis with osteomyelitis. The reduction in lameness was associated, at least in part, with enhanced intestinal barrier integrity mediated by elevated expression of tight junction proteins and stimulation of bactericidal killing of adherent peripheral blood monocytes obtained from the birds treated with Availa-ZMC. Lameness is a major animal welfare concern in broiler production. The wire flooring model and litter flooring model with the bacterial challenge are effective models for evaluation of management strategies for mitigating infectious causes of lameness.
Collapse
Affiliation(s)
- Adnan A K Alrubaye
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Nnamdi S Ekesi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Amer Hasan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA; Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Ethan Elkins
- Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sohita Ojha
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sura Zaki
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA
| | - Sami Dridi
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | - Robert F Wideman
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Poultry Science, University of Arkansas, Fayetteville, USA
| | | | - Douglas D Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, USA; Department of Biological Sciences, University of Arkansas, Fayetteville, USA.
| |
Collapse
|
23
|
Tao Z, Wang J, Wen K, Yao R, Da W, Zhou S, Meng Y, Qiu S, Yang K, Zhu Y, Tao L. Pyroptosis in Osteoblasts: A Novel Hypothesis Underlying the Pathogenesis of Osteoporosis. Front Endocrinol (Lausanne) 2020; 11:548812. [PMID: 33488513 PMCID: PMC7821870 DOI: 10.3389/fendo.2020.548812] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis has become a worldwide disease characterized by a reduction in bone mineral density and the alteration of bone architecture leading to an increased risk of fragility fractures. And an increasing number of studies have indicated that osteoblasts undergo a large number of programmed death events by many different causes in osteoporosis and release NLRP3 and interleukin (e.g., inflammatory factors), which play pivotal roles in contributing to excessive differentiation of osteoclasts and result in exaggerated bone resorption. NLRP3 is activated during pyroptosis and processes the precursors of IL-1β and IL-18 into mature forms, which are released into the extracellular milieu accompanied by cell rupture. All of these compounds are the classical factors of pyroptosis. The cellular effects of pyroptosis are commonly observed in osteoporosis. Although many previous studies have focused on the pathogenesis of these inflammatory factors in osteoporosis, pyroptosis has not been previously evaluated. In this review, pyroptosis is proposed as a novel hypothesis of osteoporosis pathogenesis for the first time, thus providing a new direction for the treatment of osteoporosis in the future.
Collapse
Affiliation(s)
- Zhengbo Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaicheng Wen
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Renqi Yao
- Department of Burn Surgery, Changhai Hospital, the Naval Medical University, Shanghai, China
| | - Wacili Da
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shui Qiu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopaedics, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Lin Tao,
| |
Collapse
|