1
|
Sun Q, Li L, Li J, Li SY, Zhang Y, Chen XS, Liu SS, Hua ZY. Glycyrrhizin alleviates brain injury in necrotizing enterocolitis model mice by suppressing HMGB1/TLR4 pathway. Int Immunopharmacol 2025; 150:114294. [PMID: 39970710 DOI: 10.1016/j.intimp.2025.114294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Systemic inflammation from necrotizing enterocolitis (NEC) can adversely affect the developing central nervous system. Evidence indicates that gut-derived high mobility group box 1 (HMGB1) can migrate to the brain and activate microglia. OBJECTIVE To determine if glycyrrhizin, an HMGB1 inhibitor, can reduce microglial pyroptosis and neuroinflammatory injury in NEC by modulating the HMGB1/ Toll-like receptor 4 (TLR4) pathway. METHODS HMGB1 levels were analyzed in clinical NEC samples. NEC models were induced through hypoxia, cold exposure, and overfeeding. BV2 microglial cells were stimulated with lipopolysaccharide (LPS) to mimic NEC-induced inflammation. Histological assessments were performed on the intestines and brain. Cell proliferation was evaluated employing the cell counting kit-8 (CCK-8) assay. Real-time quantitative polymerase chain reaction (RT-qPCR) quantified mRNA levels of HMGB1, TLR4, nuclear factor kappa B p65 (NF-κB p65), tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, IL-6, and IL-18. Protein expression was analyzed using western blotting, ELISA, immunohistochemistry, and immunofluorescence for key markers. Small interfering RNAs (siRNAs) targeted HMGB1 and TLR4. RESULTS Elevated levels of HMGB1 were observed in both clinical NEC samples and the NEC mouse model, with higher concentrations detected in feces, cerebrospinal fluid, and brain tissue. In the NEC patients, Spearman analysis revealed a significant correlation between elevated HMGB1 levels in CSF and fecal supernatant. Treatment with glycyrrhizin appeared to mitigate brain damage in the NEC mice and seemed to reduce LPS-induced inflammation in BV2 microglial cells. Additionally, glycyrrhizin enhanced the expression of tight junction protein occludin and myelin basic protein (MBP), which may be associated with improvements in behavioral performance observed in the NEC mice. Furthermore, glycyrrhizin treatment resulted in a reduction of key inflammatory mediators, including NF-κB p65, NOD-like receptor protein 3 (NLRP3), Caspase-1 p20, gasdermin D (GSDMD), IL-1β, and IL-18 in brain tissue and BV2 microglial cells. These results suggest that glycyrrhizin may exert its effects, at least in part, through modulation of the HMGB1/TLR4 signaling pathway. CONCLUSION Glycyrrhizin effectively mitigates neuroinflammatory injury in NEC by inhibiting the HMGB1/TLR4 pathway, preserving MBP, protecting the blood-brain barrier, and reducing pyroptosis in BV2 microglial cells. These findings suggest that glycyrrhizin may provide a novel therapeutic approach for improving neurological outcomes in NEC.
Collapse
Affiliation(s)
- Qian Sun
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Ling Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Jing Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Si-Yu Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Xin-Si Chen
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Sha-Sha Liu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China
| | - Zi-Yu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China; Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing, China; Key Laboratory of Child Rare Diseases in Infection and Immunity, Chongqing, China; International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing, China; Key Laboratory of Pediatrics in Chongqing, Chongqing 400014, China.
| |
Collapse
|
2
|
Petracco G, Faimann I, Reichmann F. Inflammatory bowel disease and neuropsychiatric disorders: Mechanisms and emerging therapeutics targeting the microbiota-gut-brain axis. Pharmacol Ther 2025; 269:108831. [PMID: 40023320 DOI: 10.1016/j.pharmthera.2025.108831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/03/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Crohn's disease (CD) and ulcerative colitis (UC) are the two major entities of inflammatory bowel disease (IBD). These disorders are known for their relapsing disease course and severe gastrointestinal symptoms including pain, diarrhoea and bloody stool. Accumulating evidence suggests that IBD is not only restricted to the gastrointestinal tract and that disease processes are able to reach distant organs including the brain. In fact, up to 35 % of IBD patients also suffer from neuropsychiatric disorders such as generalized anxiety disorder and major depressive disorder. Emerging research in this area indicates that in many cases these neuropsychiatric disorders are a secondary condition as a consequence of the disturbed communication between the gut and the brain via the microbiota-gut-brain axis. In this review, we summarise the current knowledge on IBD-associated neuropsychiatric disorders. We examine the role of different pathways of the microbiota-gut-brain axis in the development of CNS disorders highlighting altered neural, immunological, humoral and microbial communication. Finally, we discuss emerging therapies targeting the microbiota-gut-brain axis to alleviate IBD and neuropsychiatric symptoms including faecal microbiota transplantation, psychobiotics, microbial metabolites and vagus nerve stimulation.
Collapse
Affiliation(s)
- Giulia Petracco
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Isabella Faimann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Florian Reichmann
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; BiotechMed-Graz, Austria.
| |
Collapse
|
3
|
Dai J, Yang J, Han S, Li N, Wang S, Xia S, Kim HH, Jun Y, Lee S, Kitagawa Y, Xie F, Yang L, Shen S, Chen L, Turner DP, Hodin RA, Martyn JAJ, Mao J, You Z. Deficiency of intestinal alkaline phosphatase affects behavior and microglia activity in mice. Brain Behav Immun 2025; 126:297-310. [PMID: 39984137 DOI: 10.1016/j.bbi.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/26/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
The gut microbiota plays crucial roles in the development and functions of the central nervous system (CNS) as well as in modulation of neurobehavior in heath and disease. The gut brush border enzyme intestinal alkaline phosphatase (IAP) is an important positive regulator of gut microbial homeostasis. In mice, IAP is encoded by Akp3 gene, which is specifically expressed in the duodenum of the small intestine. IAP deficiency alters gut bacterial composition and gut barrier function. Decreased IAP activity has been observed in aging, gut inflammatory diseases, and metabolic disorders. We hypothesized that this enzyme could also play an important role in modulating neurobehavior. We performed deep sequencing of gut bacterial 16S rRNA and found that IAP deficiency changed gut microbiota composition at various taxonomic levels. Using targeted metabolomic analysis, we also found that IAP deficiency resulted in changes of gut bacteria-derived metabolites in serum and brain metabolism. Neurobehavioral analyses revealed that Akp3-/- (IAP knockout) mice had decreased basal nociception thresholds, increased anxiety-like behavior, and reduced locomotor activity. Furthermore, Akp3-/- mice had more pronounced brain microglial phagocytic activity, together with an increase in the activated microglia population. Fecal microbiota transplantation from wildtype to Akp3-/- mice partially improved neurobehavior and reduced brain microglial phagocytic activity in Akp3-/- mice. This study demonstrates that deficiency of the endogenous gut-derived host factor IAP induces behavioral phenotype changes (nociception; motor activity, and anxiety) and affects brain microglia activity. Changes in the gut microbiota induced by knocking down Akp3 contribute to behavioral changes, which is probably mediated by microglia activity modulated by the gut bacteria-derived metabolites.
Collapse
Affiliation(s)
- Jiajia Dai
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Jinsheng Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Sen Han
- Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, the United States of America
| | - Na Li
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Shiyu Wang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Suyun Xia
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Hyung-Hwan Kim
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America
| | - Yonghyun Jun
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America; Department of Anatomy, School of Medicine, Chosun University, Dong-gu, Dong-gu, Gwangju, South Korea
| | - Seeun Lee
- Department of Radiology, Neurovascular Research Laboratory, Massachusetts General Hospital, Charlestown, MA, the United States of America
| | - Yoshinori Kitagawa
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America; Division of Anesthesiology and Critical Care Medicine, Department of Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Fei Xie
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Liuyue Yang
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Shiqian Shen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Lucy Chen
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Dana P Turner
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America
| | - Richard A Hodin
- Department of Surgery, Massachusetts General Hospital, Boston, MA, the United States of America
| | - J A Jeevendra Martyn
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America
| | - Jianren Mao
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America.
| | - Zerong You
- MGH Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, the United States of America; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Shriners Hospital for Children, Boston, MA, the United States of America.
| |
Collapse
|
4
|
Liu H, Liao X, Zhang Z, Min Q, Li Y, Xiong J, Lv Q, Xie X, Zhou J, Liao Z, Zhou H. HMGB1: key mediator in digestive system diseases. Inflamm Res 2025; 74:34. [PMID: 39903246 DOI: 10.1007/s00011-025-02002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025] Open
Abstract
High Mobility Group Box 1 (HMGB1), a multifunctional non-histone protein, and its involvement in various physiological and pathological contexts has garnered significant attention. Given HMGB1's central function in modulating key biological activities, such as inflammatory responses and cellular death, its contribution to the pathogenesis of digestive system diseases has become a focus of growing interest. This review aims to comprehensively explore the mechanisms by which HMGB1 contributes to the progression of inflammatory bowel disease (IBD), liver disorders, and pancreatitis. Furthermore, we explore the prospective clinical applications and outline future research directions for HMGB1 in digestive diseases, providing fresh perspectives that highlight the necessity of ongoing studies to understand its role in these conditions.
Collapse
Affiliation(s)
- Hengqian Liu
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181 Hanyu Road, Shapingba District, Chongqing, China
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Xiping Liao
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Zuo Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Qian Min
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Yuanyuan Li
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Junzhi Xiong
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Qiao Lv
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Xia Xie
- Department of Gastroenterology, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jianyun Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China
| | - Zhongli Liao
- School of Medicine, Chongqing University Cancer Hospital, Chongqing University, No. 181 Hanyu Road, Shapingba District, Chongqing, China.
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, No. 83 Xinqiao Main Street, Shapingba District, Chongqing, China.
| |
Collapse
|
5
|
Buey B, Latorre E, Castro M, Valero MS, Plaza MÁ, Arruebo MP, Abad I, Rodríguez-Largo A, Sánchez L, Mesonero JE. Neuroprotective effects of whey and buttermilk-based formulas on a DSS-induced colitis murine model. Biochem Cell Biol 2025; 103:1-11. [PMID: 39353208 DOI: 10.1139/bcb-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
Inflammatory bowel disease is a gut-brain axis disorder that comprises chronic inflammatory conditions affecting the gastrointestinal tract, where alterations in the mood of patients are common. Gut-brain axis is a bidirectional communication that link gut and brain. The close association between inflammatory bowel disease and neuroinflammation has far-reaching implications, as is increasingly recognized as a contributing factor to neuropsychiatric and neurodegenerative diseases. The increasing prevalence and high economic cost, together with the loss of life quality of people suffering from these diseases, point to the need to find alternatives to alleviate them. Exploring new therapeutic avenues prompts us to consider the potential benefits of milk fractions, taking advantage of the use of dairy by-products, such as whey and buttermilk. This study examines the impact of cow's whey- and buttermilk-based formulas supplemented with bovine lactoferrin and milk fat globule membrane on the expression of cytokines, as well as on the components of immune and serotonergic system of the brain in a murine model of dextran sodium sulfate-induced colitis. Our results show the potential of these dairy by-products, especially whey, as functional foods in ameliorating neuroinflammation and safeguarding the central nervous system function amid the neurological complications induced or concomitant with intestinal inflammatory processes.
Collapse
Affiliation(s)
- Berta Buey
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Eva Latorre
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Marta Castro
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Marta Sofía Valero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
| | - Miguel Ángel Plaza
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - María Pilar Arruebo
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| | - Inés Abad
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Ana Rodríguez-Largo
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - José Emilio Mesonero
- Departamento de Farmacología, Fisiología y Medicina Legal y Forense. Facultad de Veterinaria. Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza-CITA, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain
| |
Collapse
|
6
|
Atalar K, Alim E, Yigman Z, Belen HB, Erten F, Sahin K, Soylu A, Dizakar SOA, Bahcelioglu M. Transauricular vagal nerve stimulation suppresses inflammatory responses in the gut and brain in an inflammatory bowel disease model. J Anat 2024. [PMID: 39707162 DOI: 10.1111/joa.14178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 12/23/2024] Open
Abstract
Inflammatory bowel disease (IBD) encompasses Crohn's disease (CD) and ulcerative colitis (UC), is a major health problem on a global scale and its treatment is unsatisfactory. We aimed to investigate the effects of transauricular vagal nerve stimulation (tVNS) on inflammation in rats with IBD induced by trinitrobenzene sulfonic acid (TNBS). A total of 36 adult female Sprague-Dawley rats were given TNBS, or vehicle, and tVNS, or sham, every other day for 30 min for 10 days. Postmortem macroscopic and microscopic colon morphology were evaluated by histological staining. Additionally, IL-1β, IL-6, IL-10, and TNF-α cytokine levels in the colon and the brain were evaluated by immunohistochemistry and western blotting analysis. TNBS induced epithelial damage, inflammation, ulceration, and thickened mucosal layer in the colonic tissues. Administration of tVNS significantly ameliorated the severity of TNBS-induced tissue damage and inflammatory response. TNBS also alters pro-inflammatory and anti-inflammatory balance in the brain tissue. TVNS application significantly suppressed the protein levels of pro-inflammatory cytokines, namely IL-1β, IL-6, and TNF- α while augmenting the level of anti-inflammatory cytokine IL-10 in the colonic and the brain tissue. We have shown that TNBS-mediated colonic inflammation and tissue damage are associated with neuroinflammatory responses in the brain tissue. Also demonstrated for the first time that neuroinflammatory response in the gut-brain axis is suppressed by tVNS in the IBD model. Non-invasive tVNS stands out as a new potential treatment option for types of IBD.
Collapse
Affiliation(s)
- Kerem Atalar
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Ece Alim
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Ankara, Türkiye
| | - Zeynep Yigman
- Department of Histology and Embryology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University, Türkiye
| | - Hayrunnisa Bolay Belen
- Department of Neurology and Algology, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| | - Fusun Erten
- Department of Veterinary Medicine, Pertek Sakine Genc Vocational School, Munzur University, Tunceli, Türkiye
| | - Kazım Sahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Fırat University, Elazığ, Türkiye
| | - Ayse Soylu
- Department of Anatomy Faculty of Medicine, Gazi University, Ankara, Türkiye
| | | | - Meltem Bahcelioglu
- Department of Anatomy, Faculty of Medicine, Neuroscience and Neurotechnology Center of Excellence (NÖROM) and Neuropsychiatry Center, Gazi University, Ankara, Türkiye
| |
Collapse
|
7
|
Sotelo‐Parrilla G, Ruiz‐Calero A, García‐Miranda P, Calonge ML, Vázquez‐Carretero MD, Peral MJ. Motor, mood, and memory impairments persist during remission periods in chronic colitis and are influenced by neuroinflammation and sex. FASEB J 2024; 38:e70133. [PMID: 39460563 PMCID: PMC11580723 DOI: 10.1096/fj.202400837r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/25/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Ulcerative colitis is a chronic pathology characterized by relapsing-remitting phases of intestinal inflammation. Additionally, some patients develop neuropsychiatric disorders, such as depression and anxiety, or cognitive deficits. We aimed to investigate whether the development of chronic colitis elicits memory, locomotion, and mood impairments. It further examined whether these impairments are influenced by the relapsing-remitting phases of the colitis or by sex. Here, we used a chronic colitis model in male and female rats, induced with sodium dextran sulfate, mirroring the phases of human ulcerative colitis. Our results revealed that the severity of colitis was slightly higher in males than females. Chronic colitis triggered motor and short-term memory deficits and induced anxiety- and depression-like behaviors that remained throughout the development of the disease. There are also sex differences under control or inflammatory conditions. Therefore, in both situations, females compared to males displayed: (i) slightly lower locomotion, (ii) increased anxiety-like behaviors, (iii) similar depression-like behaviors, and (iv) similar short-term memory deficit. Additionally, under control conditions, the mRNA levels of IL-1β, IL-6, and TNF-α were higher in the female hippocampus. In both sexes, when chronic colitis was established, the neuroinflammation was evidenced by increased mRNA levels of these three cytokines in the hippocampus and in the motor and prefrontal cortices. Interestingly, this neuroinflammation was slightly greater in males. In summary, we show that the development of chronic colitis caused persistent behavioral abnormalities, highlighting sex differences, and that could be a consequence, at least in part, of the increase in IL-1β, IL-6, and TNF-α in the brain.
Collapse
Affiliation(s)
- Gema Sotelo‐Parrilla
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - Pablo García‐Miranda
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | - María L. Calonge
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| | | | - María J. Peral
- Departamento de Fisiología, Facultad de FarmaciaUniversidad de SevillaSevillaSpain
| |
Collapse
|
8
|
Truyens M, Lernout H, De Vos M, Laukens D, Lobaton T. Unraveling the fatigue puzzle: insights into the pathogenesis and management of IBD-related fatigue including the role of the gut-brain axis. Front Med (Lausanne) 2024; 11:1424926. [PMID: 39021817 PMCID: PMC11252009 DOI: 10.3389/fmed.2024.1424926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
A significant percentage of patients with an inflammatory bowel disease (IBD) encounter fatigue which can profoundly diminish patients' quality of life, particularly during periods of disease remission when gastrointestinal symptoms have receded. Various contributing risk factors have been identified including active inflammation, anemia, psychological, lifestyle and drug-related factors. While addressing these risk factors has been suggested as the initial approach to managing fatigue, a considerable number of patients still experience persisting symptoms, the primary causes of which remain incompletely understood. Recent insights suggest that dysfunction of the gut-brain axis may play a pathogenic role. This review provides an overview of established risk factors for fatigue, alongside emerging perspectives on the role of the gut-brain axis, and potential treatment strategies.
Collapse
Affiliation(s)
- Marie Truyens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| | - Hannah Lernout
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
| | - Martine De Vos
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Debby Laukens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research (IRC), Ghent University, Ghent, Belgium
- Ghent Gut Inflammation Group (GGIG), Ghent University, Ghent, Belgium
| | - Triana Lobaton
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, Ghent, Belgium
| |
Collapse
|
9
|
Li M, Xu J, Li L, Zhang L, Zuo Z, Feng Y, He X, Hu X. Voluntary wheel exercise improves glymphatic clearance and ameliorates colitis-associated cognitive impairment in aged mice by inhibiting TRPV4-induced astrocytic calcium activity. Exp Neurol 2024; 376:114770. [PMID: 38580155 DOI: 10.1016/j.expneurol.2024.114770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Chronic colitis exacerbates neuroinflammation, contributing to cognitive impairment during aging, but the mechanism remains unclear. The polarity distribution of astrocytic aquaporin 4 (AQP4) is crucial for the glymphatic system, which is responsible for metabolite clearance in the brain. Physical exercise (PE) improves cognition in the aged. This study aims to investigate the protective mechanism of exercise in colitis-associated cognitive impairment. METHODS To establish a chronic colitis model, 18-month-old C57BL/6 J female mice received periodic oral administration of 1% wt/vol dextran sodium sulfate (DSS) in drinking water. The mice in the exercise group received four weeks of voluntary wheel exercise. High-throughput sequencing was conducted to screen for differentially expressed genes. Two-photon imaging was performed to investigate the function of the astrocytic calcium activity and in vivo intervention with TRPV4 inhibitor HC-067047. Further, GSK1016790A (GSK1), a TRPV4 agonist, was daily intraperitoneally injected during the exercise period to study the involvement of TRPV4 in PE protection. Colitis pathology was confirmed by histopathology. The novel object recognition (NOR) test, Morris water maze test (MWM), and open field test were performed to measure colitis-induced cognition and anxiety-like behavior. In vivo two-photon imaging and ex vivo imaging of fluorescent CSF tracers to evaluate the function of the glymphatic system. Immunofluorescence staining was used to detect the Aβ deposition, polarity distribution of astrocytic AQP4, and astrocytic phenotype. Serum and brain levels of the inflammatory cytokines were tested by Enzyme-linked immunosorbent assay (ELISA). The brain TUNEL assay was used to assess DNA damage. Expression of critical molecules was detected using Western blotting. RESULTS Voluntary exercise alleviates cognitive impairment and anxiety-like behavior in aged mice with chronic colitis, providing neuroprotection against neuronal damage and apoptosis. Additionally, voluntary exercise promotes the brain clearance of Aβ via increased glymphatic clearance. Mechanistically, exercise-induced beneficial effects may be attributed, in part, to the inhibition of TRPV4 expression and TRPV4-related calcium hyperactivity, subsequent promotion of AQP4 polarization, and modulation of astrocyte phenotype. CONCLUSION The present study reveals a novel role of voluntary exercise in alleviating colitis-related cognitive impairment and anxiety disorder, which is mediated by the promotion of AQP4 polarization and glymphatic clearance of Aβ via inhibition of TRPV4-induced astrocytic calcium hyperactivity.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jinghui Xu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lili Li
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zejie Zuo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifeng Feng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaofei He
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Lee KI, Kim MS, Yuk HJ, Jo Y, Kim HJ, Kim J, Kim H, Shin JY, Kim D, Park KS. Alleviating depressive-like behavior in DSS-induced colitis mice: Exploring naringin and poncirin from Poncirus trifoliata extracts. Biomed Pharmacother 2024; 175:116770. [PMID: 38772154 DOI: 10.1016/j.biopha.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
Patients with inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD), often have concomitant mental disorders such as depression and anxiety. Therefore, a bidirectional approach involving the gut and brain axes is necessary for the prevention and treatment thereof. In this study, we explored the potential of Poncirus trifoliata extract (PT), traditionally known for its neuroprotective effects against gastrointestinal diseases, as a natural treatment agent for IBD in a dextran sulfate sodium (DSS)-induced colitis model. Oral administration of PT ameliorated weight loss and inflammatory responses in mice with DSS-induced colitis. Furthermore, PT treatment effectively restored the colon length and ameliorated enterocyte death by inhibiting DSS-induced reactive oxygen species (ROS)-mediated necroptosis. The main bioactive components of PT, poncirin and naringin, confirmed using ultra-performance liquid chromatography-quadrupole time-of-flight (UPLC-qTOF), can be utilized to regulate necroptosis. The antidepressant-like effects of PT were confirmed using open field test (OFT) and tail suspension test (TST). PT treatment also restored vascular endothelial cell integrity in the hippocampus. In the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) regions of the hippocampus, PT controlled the neuroinflammatory responses of proliferated microglia. In conclusion, PT, which contains high levels of poncirin and naringin, has potential as a bidirectional therapeutic agent that can simultaneously improve IBD-associated intestinal and mental disorders.
Collapse
Affiliation(s)
- Kang-In Lee
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Min-Soo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heung Joo Yuk
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Yousang Jo
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hye Jin Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Jieun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyungjun Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Ju-Young Shin
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghwan Kim
- Food Functionality Research Division, Korea Food Research Institute, Jeollabuk-do, Republic of Korea
| | - Ki-Sun Park
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| |
Collapse
|
11
|
Mohammadgholi-Beiki A, Sheibani M, Jafari-Sabet M, Motevalian M, Rahimi-Moghaddam P. Anti-inflammatory and protective effects of Aripiprazole on TNBS-Induced colitis and associated depression in rats: Role of kynurenine pathway. Int Immunopharmacol 2024; 133:112158. [PMID: 38691917 DOI: 10.1016/j.intimp.2024.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND The prevalence of depression is higher in patients with inflammatory bowel disease (IBD) than in the general population. Inflammatory cytokines and the kynurenine pathway (KP) play important roles in IBD and associated depression. Aripiprazole (ARP), an atypical antipsychotic, shows various anti-inflammatory properties and may be useful in treating major depressive disorder. This study aimed to evaluate the protective effects of ARP on TNBS-induced colitis and subsequent depression in rats, highlighting the role of the KP. MATERIAL AND METHODS Fifty-six male Wistar rats were used, and all groups except for the normal and sham groups received a single dose of intra-rectal TNBS. Three different doses of ARP and dexamethasone were injected intraperitoneally for two weeks in treatment groups. On the 15th day, behavioral tests were performed to evaluate depressive-like behaviors. Colon ulcer index and histological changes were assessed. The tissue levels of inflammatory cytokines, KP markers, lipopolysaccharide (LPS), nuclear factor-kappa-B (NF-κB), and zonula occludens (ZO-1) were evaluated in the colon and hippocampus. RESULTS TNBS effectively induced intestinal damages and subsequent depressive-like symptoms in rats. TNBS treatment significantly elevated the intestinal content of inflammatory cytokines and NF-κB expression, dysregulated the KP markers balance in both colon and hippocampus tissues, and increased the serum levels of LPS. However, treatment with ARP for 14 days successfully reversed these alterations, particularly at higher doses. CONCLUSION ARP could alleviate IBD-induced colon damage and associated depressive-like behaviors mainly via suppressing inflammatory cytokines activity, serum LPS concentration, and affecting the NF-κB/kynurenine pathway.
Collapse
Affiliation(s)
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Majid Jafari-Sabet
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Manijeh Motevalian
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
12
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
13
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
14
|
Lee K, Kumazoe M, Marugame Y, Fujimura Y, Tachibana H. Dextran sulfate sodium-induced mild chronic colitis induced cognitive impairment accompanied by inhibition of neuronal maturation in adolescent mice. Biochem Biophys Res Commun 2023; 669:46-53. [PMID: 37262952 DOI: 10.1016/j.bbrc.2023.05.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
INTRODUCTION Epidemiological studies indicated that inflammatory bowel disease (IBD), with Crohn's disease and ulcerative colitis as its two main types, is associated with dementia. However, little is known about how adolescents with IBD will affect their cognitive ability as adults. The hippocampus, which is crucial for memory and adult neurogenesis, is closely associated with modulation of cognitive processes. Using a low kDa dextran sulfate sodium (DSS, 5 kDa)-induced chronic colitis (mild chronic colitis) mice model in adolescent mice, we investigated the effects of mild chronic colitis on cognitive functions and hippocampal neurogenesis from adolescent mice to adult mice. METHODS We induced DSS-induced mild chronic colitis in C57BL/6J male mice by multiple-cycle administration of 1%-2% DSS in autoclaved drinking water. Mice were subjected to novel-object recognition and Y-maze tests. Neurogenesis markers and neuroinflammation-related proteins in the hippocampus of mice were measured. Tight junction proteins in the colon of mice were measured. RESULTS Mild chronic colitis induced cognitive impairment and decreased adult neurogenesis. Notably, we found a positive correlation with the protein levels between tight junction protein, ZO-1, in the colon and mature neuron marker, NeuN, in the hippocampus. Moreover, mild chronic colitis leads to hippocampal neuroinflammation in adolescent mice. CONCLUSION Our findings provide new evidence of the association between IBD and dementia risk.
Collapse
Affiliation(s)
- Kwanwoo Lee
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yuki Marugame
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
15
|
Chen X, Wang S, Mao X, Xiang X, Ye S, Chen J, Zhu A, Meng Y, Yang X, Peng S, Deng M, Wang X. Adverse health effects of emerging contaminants on inflammatory bowel disease. Front Public Health 2023; 11:1140786. [PMID: 36908414 PMCID: PMC9999012 DOI: 10.3389/fpubh.2023.1140786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
Inflammatory bowel disease (IBD) is becoming increasingly prevalent with the improvement of people's living standards in recent years, especially in urban areas. The emerging environmental contaminant is a newly-proposed concept in the progress of industrialization and modernization, referring to synthetic chemicals that were not noticed or researched before, which may lead to many chronic diseases, including IBD. The emerging contaminants mainly include microplastics, endocrine-disrupting chemicals, chemical herbicides, heavy metals, and persisting organic pollutants. In this review, we summarize the adverse health effect of these emerging contaminants on humans and their relationships with IBD. Therefore, we can better understand the impact of these new emerging contaminants on IBD, minimize their exposures, and lower the future incidence of IBD.
Collapse
Affiliation(s)
- Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Sidan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xueyi Mao
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xin Xiang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Ye
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Jie Chen
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Centre for Global Health, Zhejiang University, Hangzhou, China
| | - Angran Zhu
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yifei Meng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiya Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Shuyu Peng
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Minzi Deng
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, Hunan, China
| |
Collapse
|
16
|
García-Revilla J, Herrera AJ, de Pablos RM, Venero JL. Inflammatory Animal Models of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S165-S182. [PMID: 35662128 PMCID: PMC9535574 DOI: 10.3233/jpd-213138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accumulating evidence suggests that microglia and peripheral immune cells may play determinant roles in the pathogenesis of Parkinson’s disease (PD). Consequently, there is a need to take advantage of immune-related models of PD to study the potential contribution of microglia and peripheral immune cells to the degeneration of the nigrostriatal system and help develop potential therapies for PD. In this review, we have summarised the main PD immune models. From a historical perspective, we highlight first the main features of intranigral injections of different pro-inflammogens, including lipopolysaccharide (LPS), thrombin, neuromelanin, etc. The use of adenoviral vectors to promote microglia-specific overexpression of different molecules in the ventral mesencephalon, including α-synuclein, IL-1β, and TNF, are also presented and briefly discussed. Finally, we summarise different models associated with peripheral inflammation whose contribution to the pathogenesis of neurodegenerative diseases is now an outstanding question. Illustrative examples included systemic LPS administration and dextran sulfate sodium-induced colitis in rodents.
Collapse
Affiliation(s)
- Juan García-Revilla
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Antonio J. Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - José Luis Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
17
|
Masanetz RK, Winkler J, Winner B, Günther C, Süß P. The Gut-Immune-Brain Axis: An Important Route for Neuropsychiatric Morbidity in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:11111. [PMID: 36232412 PMCID: PMC9570400 DOI: 10.3390/ijms231911111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) comprises Crohn's disease (CD) and ulcerative colitis (UC) and is associated with neuropsychiatric symptoms like anxiety and depression. Both conditions strongly worsen IBD disease burden. In the present review, we summarize the current understanding of the pathogenesis of depression and anxiety in IBD. We present a stepwise cascade along a gut-immune-brain axis initiated by evasion of chronic intestinal inflammation to pass the epithelial and vascular barrier in the gut and cause systemic inflammation. We then summarize different anatomical transmission routes of gut-derived peripheral inflammation into the central nervous system (CNS) and highlight the current knowledge on neuroinflammatory changes in the CNS of preclinical IBD mouse models with a focus on microglia, the brain-resident macrophages. Subsequently, we discuss how neuroinflammation in IBD can alter neuronal circuitry to trigger symptoms like depression and anxiety. Finally, the role of intestinal microbiota in the gut-immune-brain axis in IBD will be reviewed. A more comprehensive understanding of the interaction between the gastrointestinal tract, the immune system and the CNS accounting for the similarities and differences between UC and CD will pave the path for improved prediction and treatment of neuropsychiatric comorbidities in IBD and other inflammatory diseases.
Collapse
Affiliation(s)
- Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Center of Rare Diseases Erlangen (ZSEER), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Claudia Günther
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Internal Medicine 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| |
Collapse
|
18
|
Voigt RM, Zalta AK, Raeisi S, Zhang L, Brown JM, Forsyth CB, Boley RA, Held P, Pollack MH, Keshavarzian A. Abnormal intestinal milieu in posttraumatic stress disorder is not impacted by treatment that improves symptoms. Am J Physiol Gastrointest Liver Physiol 2022; 323:G61-G70. [PMID: 35638693 PMCID: PMC9291416 DOI: 10.1152/ajpgi.00066.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/09/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder, resulting from exposure to traumatic events. Current recommended first-line interventions for the treatment of PTSD include evidence-based psychotherapies, such as cognitive processing therapy (CPT). Psychotherapies are effective for reducing PTSD symptoms, but approximately two-thirds of veterans continue to meet diagnostic criteria for PTSD after treatment, suggesting there is an incomplete understanding of what factors sustain PTSD. The intestine can influence the brain and this study evaluated intestinal readouts in subjects with PTSD. Serum samples from controls without PTSD (n = 40) from the Duke INTRuST Program were compared with serum samples from veterans with PTSD (n = 40) recruited from the Road Home Program at Rush University Medical Center. Assessments included microbial metabolites, intestinal barrier, and intestinal epithelial cell function. In addition, intestinal readouts were assessed in subjects with PTSD before and after a 3-wk CPT-based intensive treatment program (ITP) to understand if treatment impacts the intestine. Compared with controls, veterans with PTSD had a proinflammatory intestinal environment including lower levels of microbiota-derived metabolites, such as acetic, lactic, and succinic acid, intestinal barrier dysfunction [lipopolysaccharide (LPS) and LPS-binding protein], an increase in HMGB1, and a concurrent increase in the number of intestinal epithelial cell-derived extracellular vesicles. The ITP improved PTSD symptoms but no changes in intestinal outcomes were noted. This study confirms the intestine is abnormal in subjects with PTSD and suggests that effective treatment of PTSD does not alter intestinal readouts. Targeting beneficial changes in the intestine may be an approach to enhance existing PTSD treatments.NEW & NOTEWORTHY This study confirms an abnormal intestinal environment is present in subjects with PTSD. This study adds to what is already known by examining the intestinal barrier and evaluating the relationship between intestinal readouts and PTSD symptoms and is the first to report the impact of PTSD treatment (which improves symptoms) on intestinal readouts. This study suggests that targeting the intestine as an adjunct approach could improve the treatment of PTSD.
Collapse
Affiliation(s)
- Robin M Voigt
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Alyson K Zalta
- Department of Psychological Science, University of California, Irvine, California
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Shohreh Raeisi
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - Lijuan Zhang
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
| | - J Mark Brown
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio
- Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
- Center for Microbiome and Human Health, Cleveland Clinic Foundation, Cleveland, Ohio
| | - Christopher B Forsyth
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | - Randy A Boley
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Philip Held
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Mark H Pollack
- Department of Psychological Science, University of California, Irvine, California
| | - Ali Keshavarzian
- Rush Center for Microbiome and Chronobiology Research, Rush University Medical Center, Chicago Illinois
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
- Department of Physiology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
19
|
Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. JOURNAL OF INTENSIVE MEDICINE 2022; 2:156-166. [PMID: 36789020 PMCID: PMC9924014 DOI: 10.1016/j.jointm.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 04/12/2023]
Abstract
Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden
- Corresponding author: Ulf Andersson, Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden.
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| |
Collapse
|
20
|
Cluny NL, Nyuyki KD, Almishri W, Griffin L, Lee BH, Hirota SA, Pittman QJ, Swain MG, Sharkey KA. Recruitment of α4β7 monocytes and neutrophils to the brain in experimental colitis is associated with elevated cytokines and anxiety-like behavior. J Neuroinflammation 2022; 19:73. [PMID: 35379260 PMCID: PMC8981853 DOI: 10.1186/s12974-022-02431-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Background Behavioral comorbidities, such as anxiety and depression, are a prominent feature of IBD. The signals from the inflamed gut that cause changes in the brain leading to these behavioral comorbidities remain to be fully elucidated. We tested the hypothesis that enhanced leukocyte–cerebral endothelial cell interactions occur in the brain in experimental colitis, mediated by α4β7 integrin, to initiate neuroimmune activation and anxiety-like behavior. Methods Female mice treated with dextran sodium sulfate were studied at the peak of acute colitis. Circulating leukocyte populations were determined using flow cytometry. Leukocyte–cerebral endothelial cell interactions were examined using intravital microscopy in mice treated with anti-integrin antibodies. Brain cytokine and chemokines were assessed using a multiplex assay in animals treated with anti-α4β7 integrin. Anxiety-like behavior was assessed using an elevated plus maze in animals after treatment with an intracerebroventricular injection of interleukin 1 receptor antagonist. Results The proportion of classical monocytes expressing α4β7 integrin was increased in peripheral blood of mice with colitis. An increase in the number of rolling and adherent leukocytes on cerebral endothelial cells was observed, the majority of which were neutrophils. Treatment with anti-α4β7 integrin significantly reduced the number of rolling leukocytes. After anti-Ly6C treatment to deplete monocytes, the number of rolling and adhering neutrophils was significantly reduced in mice with colitis. Interleukin-1β and CCL2 levels were elevated in the brain and treatment with anti-α4β7 significantly reduced them. Enhanced anxiety-like behavior in mice with colitis was reversed by treatment with interleukin 1 receptor antagonist. Conclusions In experimental colitis, α4β7 integrin-expressing monocytes direct the recruitment of neutrophils to the cerebral vasculature, leading to elevated cytokine levels. Increased interleukin-1β mediates anxiety-like behavior. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02431-z.
Collapse
Affiliation(s)
- Nina L Cluny
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Kewir D Nyuyki
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Wagdi Almishri
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Lateece Griffin
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Benjamin H Lee
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | - Simon A Hirota
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mark G Swain
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology and Hepatology, Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|