1
|
Zhang N, Wang YT, Dai SS, Fan FY, Qiu L, Yi H, Yang YJ. Inhibiting autophagy enhances idarubicin chemosensitivity and induces immune escape in FAT1-low-expressing AML cells. Int Immunopharmacol 2025; 144:113484. [PMID: 39615108 DOI: 10.1016/j.intimp.2024.113484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024]
Abstract
OBJECTIVE Both Autophagy and FAT atypical cadherin 1 (FAT1) regulates the chemosensitivity and immune escape of tumour cells. Our previous paper showed that FAT1 decreased acute myeloid leukemia (AML) autophagy by inhibiting the TGFβ-Smad2/3 pathway. This study builds upon our previous paper and aims to explore whether FAT1-inhibited autophagy is involved in regulating chemosensitivity and immune escape in AML. METHODS We validated the inhibitory effect of FAT1 on AML autophagy through western blot, qPCR, and luciferase reporter assays. In addition, we explored the effect of FAT1-inhibited autophagy on idarubicin (IDA) sensitivity and AML immune escape through caspase-3 activity analysis, trypan blue exclusion assays, and flow cytometry. RESULTS We demonstrated for the first time that the autophagy inhibitor chloroquine (CQ) enhances the cytotoxic effect of IDA on FAT1-low-expressing (FAT1-L) AML cells. We also found that CQ weakened CD8+ T cell infiltration in FAT1-L AML cells. Further research revealed that CQ upregulated PD-L1 protein levels by decreasing its autophagic degradation and that the PD-L1 inhibitor atezolizumab reversed the decrease in CD8+ T cell infiltration caused by CQ in FAT1-L AML cells. In addition, we found that FAT1 decreased autophagy related 10 (ATG10) transcription, leading to decreased AML autophagy. CONCLUSIONS These results revealed that in FAT1-L AML cells, inhibiting autophagy by CQ enhances the cytotoxic effect of IDA, but leads to immune escape, resulting in AML recurrence. Our study supports the use of a combination of autophagy and PD-L1 inhibitors with IDA to increase the cytotoxic effect of IDA while inhibiting AML recurrence.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Yu-Ting Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Su-Si Dai
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Fang-Yi Fan
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Ling Qiu
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China
| | - Hai Yi
- Department of Hematology, People's Liberation Army The General Hospital of Western Theater Command, Sichuan Clinical Research Center for Hematological Disease, Branch of National Clinical Research Center for Hematological Disease, Chengdu, China.
| | - Yong-Jian Yang
- Department of Cardiology, People's Liberation Army The General Hospital of Western Theater Command, Chengdu, China.
| |
Collapse
|
2
|
Yang Y, Hu X, Wang S, Tian Y, Yang K, Li C, Wu Q, Liu W, Gao T, Yuan F, Guo R, Liu Z, Yang Y, Zhou D. Rosmarinic acid-mediated downregulation of RIG-I and p62 in microglia confers resistance to Japanese encephalitis virus-induced inflammation. BMC Vet Res 2024; 20:555. [PMID: 39643884 PMCID: PMC11622684 DOI: 10.1186/s12917-024-04397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic pathogen that causes encephalitis in humans and reproductive failure in pigs. The transmission of JEV between humans and animals poses a significant public health threat and results in substantial economic losses. Excessive inflammation in the central nervous system of JEV-infected patients is a major cause of mortality and disability. Rosmarinic acid (RA), a polyhydroxyphenolic compound isolated from medicinal herbs, has been preliminarily shown to possess anti-inflammatory properties and significantly inhibit JEV-induced neuroinflammation in mice. RESULTS This study investigated the antiviral capacity and potential mechanisms of RA in JEV-infected cells. The results demonstrated that RA could inhibit JEV replication in vitro. Furthermore, the expression levels of inflammatory cytokines (including IL-6, IL-1β, CCL-2, and TNF-α), membrane receptors (including RIG-I, TLR3, TLR4, TLR7, and TLR8), NF-κB complex and p62/SQSTM1 were assessed using qPCR, ELISA, and Western blot, respectively. The findings indicated that RA significantly suppressed the expression of IL-6, IL-1α, TNF-α, and CCL-2 in JEV-infected BV-2 cells in a dose-dependent manner. Additionally, RA treatment downregulated the expression levels of RIG-I and p62, while p62 silencing inhibited the upregulation of inflammatory cytokines in JEV-infected BV-2 cells. CONCLUSION Our present study highlights the important role of RA-mediated reduction of RIG-I and p62 in microglia, conferring resistance to Japanese encephalitis virus-induced inflammation.
Collapse
Affiliation(s)
- Yuxin Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China
| | - XianWang Hu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Shuangshuang Wang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yongxiang Tian
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Keli Yang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Chang Li
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Qiong Wu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Wei Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Ting Gao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Fangyan Yuan
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Rui Guo
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Zewen Liu
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China
| | - Yuying Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, China.
| | - Danna Zhou
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis (Ministry of Agriculture), Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Provincial Key Laboratory of Animal Pathogenic Microbiology, Wuhan, 430064, China.
| |
Collapse
|
3
|
Cominelli G, Lonati C, Pinto D, Rinaldi F, Franco C, Favero G, Rezzani R. Melatonin Attenuates Ferritinophagy/Ferroptosis by Acting on Autophagy in the Liver of an Autistic Mouse Model BTBR T +Itpr3 tf/J. Int J Mol Sci 2024; 25:12598. [PMID: 39684310 DOI: 10.3390/ijms252312598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Autism spectrum disorders (ASDs) are a pool of neurodevelopment disorders in which social impairment is the main symptom. Presently, there are no definitive medications to cure the symptoms but the therapeutic strategies that are taken ameliorate them. The purpose of this study was to investigate the effects of melatonin (MLT) in treating ASDs using an autistic mouse model BTBR T+Itpr3tf/J (BTBR). We evaluated the hepatic cytoarchitecture and some markers of autophagy, ferritinophagy/ferroptosis, in BTBR mice treated and not-treated with MLT. The hepatic morphology and the autophagy and ferritinophagy/ferroptosis pathways were analyzed by histological, immunohistochemical, and Western blotting techniques. We studied p62 and microtubule-associated protein 1 light chain 3 B (LC3B) for evaluating the autophagy; nuclear receptor co-activator 4 (NCOA4) and long-chain-coenzyme synthase (ACSL4) for monitoring ferritinophagy/ferroptosis. The liver of BTBR mice revealed that the hepatocytes showed many cytoplasmic inclusions recognized as Mallory-Denk bodies (MDBs); the expression and levels of p62 and LC3B were downregulated, whereas ACSL4 and NCOA4 were upregulated, as compared to control animals. MLT administration to BTBR mice ameliorated liver damage and reduced the impairment of autophagy and ferritinophagy/ferroptosis. In conclusion, we observed that MLT alleviates liver damage in BTBR mice by improving the degradation of intracellular MDBs, promoting autophagy, and suppressing ferritinophagy/ferroptosis.
Collapse
Affiliation(s)
- Giorgia Cominelli
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Claudio Lonati
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
| | - Daniela Pinto
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Fabio Rinaldi
- Human Microbiome Advanced Project Institute, 20129 Milan, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale-SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research Adaption and Regeneration of Tissues and Organs-(ARTO), University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
4
|
Das D, Sharma M, Gahlot D, Nia SS, Gain C, Mecklenburg M, Zhou ZH, Bourdenx M, Thukral L, Martinez-Lopez N, Singh R. VPS4A is the selective receptor for lipophagy in mice and humans. Mol Cell 2024; 84:4436-4453.e8. [PMID: 39520981 PMCID: PMC11631789 DOI: 10.1016/j.molcel.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Lipophagy is a ubiquitous mechanism for degradation of lipid droplets (LDs) in lysosomes. Autophagy receptors selectively target organelles for lysosomal degradation. The selective receptor for lipophagy remains elusive. Using mouse liver phosphoproteomics and human liver transcriptomics, we identify vacuolar-protein-sorting-associated protein 4A (VPS4A), a member of a large family AAA+ ATPases, as a selective receptor for lipophagy. We show that phosphorylation of VPS4A on Ser95,97 and its localization to LDs in response to fasting drives lipophagy. Imaging/three-dimensional (3D) reconstruction and biochemical analyses reveal the concomitant degradation of VPS4A and LDs in lysosomes in an autophagy-gene-7-sensitive manner. Either silencing VPS4A or targeting VPS4AS95,S97 phosphorylation or VPS4A binding to LDs or LC3 blocks lipophagy without affecting other forms of selective autophagy. Finally, VPS4A levels and markers of lipophagy are markedly reduced in human steatotic livers-revealing a fundamental role of VPS4A as the lipophagy receptor in mice and humans.
Collapse
Affiliation(s)
- Debajyoti Das
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mridul Sharma
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Deepanshi Gahlot
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shervin S Nia
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chandrima Gain
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew Mecklenburg
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mathieu Bourdenx
- UK Dementia Research Institute, London, UK; UCL Queen Square Institute of Neurology, London, UK
| | - Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Nuria Martinez-Lopez
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, CA, USA
| | - Rajat Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Comprehensive Liver Research Center at University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Hinz K, Niu M, Ni HM, Ding WX. Targeting Autophagy for Acetaminophen-Induced Liver Injury: An Update. LIVERS 2024; 4:377-387. [PMID: 39301093 PMCID: PMC11412313 DOI: 10.3390/livers4030027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Acetaminophen (APAP) overdose can induce hepatocyte necrosis and acute liver failure in experimental rodents and humans. APAP is mainly metabolized via hepatic cytochrome P450 enzymes to generate the highly reactive metabolite N-acetyl-p-benzoquinone imine (NAPQI), which forms acetaminophen protein adducts (APAP-adducts) and damages mitochondria, triggering necrosis. APAP-adducts and damaged mitochondria can be selectively removed by autophagy. Increasing evidence implies that the activation of autophagy may be beneficial for APAP-induced liver injury (AILI). In this minireview, we briefly summarize recent progress on autophagy, in particular, the pharmacological targeting of SQSTM1/p62 and TFEB in AILI.
Collapse
Affiliation(s)
- Kaitlyn Hinz
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Liu ZY, Tang JM, Yang MQ, Yang ZH, Xia JZ. The role of LncRNA-mediated autophagy in cancer progression. Front Cell Dev Biol 2024; 12:1348894. [PMID: 38933333 PMCID: PMC11199412 DOI: 10.3389/fcell.2024.1348894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) are a sort of transcripts that are more than 200 nucleotides in length. In recent years, many studies have revealed the modulatory role of lncRNAs in cancer. Typically, lncRNAs are linked to a variety of essential events, such as apoptosis, cellular proliferation, and the invasion of malignant cells. Simultaneously, autophagy, an essential intracellular degradation mechanism in eukaryotic cells, is activated to respond to multiple stressful circumstances, for example, nutrient scarcity, accumulation of abnormal proteins, and organelle damage. Autophagy plays both suppressive and promoting roles in cancer. Increasingly, studies have unveiled how dysregulated lncRNAs expression can disrupt autophagic balance, thereby contributing to cancer progression. Consequently, exploring the interplay between lncRNAs and autophagy holds promising implications for clinical research. In this manuscript, we methodically compiled the advances in the molecular mechanisms of lncRNAs and autophagy and briefly summarized the implications of the lncRNA-mediated autophagy axis.
Collapse
Affiliation(s)
- Zi-yuan Liu
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-ming Tang
- Department of Neurology, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Meng-qi Yang
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Zhi-hui Yang
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| | - Jia-zeng Xia
- Gastroenterological Surgery, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
- Department of General Surgery, Jiangnan University Medical Center, Wuxi, China
| |
Collapse
|
8
|
Yang S, Zhang T, Ge Y, Cheng Y, Yin L, Pu Y, Chen Z, Liang G. Ferritinophagy Mediated by Oxidative Stress-Driven Mitochondrial Damage Is Involved in the Polystyrene Nanoparticles-Induced Ferroptosis of Lung Injury. ACS NANO 2023; 17:24988-25004. [PMID: 38086097 DOI: 10.1021/acsnano.3c07255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Nanoplastics are a common type of contaminant in the air. However, no investigations have focused on the toxic mechanism of lung injury induced by nanoplastic exposure. In the present study, polystyrene nanoplastics (PS-NPs) caused ferroptosis in lung epithelial cells, which could be alleviated by ferrostatin-1, deferoxamine, and N-acetylcysteine. Further investigation found that PS-NPs disturbed mitochondrial structure and function and triggered autophagy. Mechanistically, oxidative stress-derived mitochondrial damage contributed to ferroptosis, and autophagy-dependent ferritinophagy was a pivotal intermediate link, resulting in ferritin degradation and iron ion release. Furthermore, inhibition of ferroptosis using ferrostatin-1 alleviated pulmonary and systemic toxicity to reverse the mouse lung injury induced by PS-NPs inhalation. Most importantly, the lung-on-a-chip was further used to clarify the role of ferroptosis in the PS-NPs-induced lung injury by visualizing the ferroptosis, oxidative stress, and alveolar-capillary barrier dysfunction at the organ level. In summary, our study indicated that ferroptosis was an important mechanism for nanoplastics-induced lung injury through different lung cells, mouse inhalation models, and three-dimensional-based lung-on-a-chip, providing an insightful reference for pulmonary toxicity assessment of nanoplastics.
Collapse
Affiliation(s)
- Sheng Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Tianyi Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yiling Ge
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yanping Cheng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, P. R. China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
9
|
Maiers JL, Chakraborty S. The Cellular, Molecular, and Pathologic Consequences of Stress on the Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1353-1354. [PMID: 37544504 PMCID: PMC10548265 DOI: 10.1016/j.ajpath.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/08/2023]
Affiliation(s)
- Jessica L Maiers
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|