1
|
Khan S, Do CW, Ho EA. Recent updates on drug delivery approaches for improved ocular delivery with an insight into nanostructured drug delivery carriers for anterior and posterior segment disorders. Drug Deliv Transl Res 2024:10.1007/s13346-024-01756-x. [PMID: 39674854 DOI: 10.1007/s13346-024-01756-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 12/16/2024]
Abstract
Ocular diseases have a major impact on patient's vision and quality of life, with approximately 2.2 billion people have visual impairment worldwide according to the findings from the World Health Organization (WHO). The eye is a complex organ with unique morphology and physiology consisting of numerous ocular barriers which hinders the entry of exogenous substances and impedes drug absorption. This in turn has a substantial impact on effective drug delivery to treat ocular diseases, especially intraocular disorders which has consistently presented a challenge to eye care professionals. The most common method of delivering medications to the eye is topical instillation of eye drops. Although this approach is a viable option for treating many ocular diseases remains a major challenge for the effective treatment of posterior ocular conditions. Up till now, incessant efforts have been committed to design innovative drug delivery systems with the hopes of potential clinical application. Modern developments in nanocarrier's technology present a potential chance to overcome these obstacles by enabling targeted delivery of the loaded medication to the eyes with improved solubility, delayed release, higher penetration and increased retention. This review covers the anatomy of eye with associated ocular barriers, ocular diseases and administration routes. In addition it primarily focuses on the latest progress and contemporary applications of ophthalmic formulations providing specific insight on nanostructured drug delivery carriers reported over the past 5 years highlighting their values in achieving efficient ocular drug delivery to both anterior and posterior segments. Most importantly, we outlined in this review the macro and nanotechnology based ophthalmic drug formulations that are being patented or marketed so far for treating ocular diseases. Finally, based on current trends and therapeutic concepts, we highlighted the challenges faced by novel ocular drug delivery systems and provided prospective future developments for further research in these directions. We hope that this review will serve as a source of motivation and ideas for formulation scientists in improving the design of innovative ophthalmic formulations.
Collapse
Affiliation(s)
- Samiullah Khan
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| | - Emmanuel A Ho
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong, Hong Kong.
- School of Pharmacy, University of Waterloo, Waterloo, Canada.
- Waterloo Institute for Nanotechnology, Waterloo, Canada.
| |
Collapse
|
2
|
Kattar A, Vivero-Lopez M, Concheiro A, Mudakavi R, Chauhan A, Alvarez-Lorenzo C. Oleogels for the ocular delivery of epalrestat: formulation, in vitro, in ovo, ex vivo and in vivo evaluation. Drug Deliv Transl Res 2024; 14:3291-3308. [PMID: 38780858 PMCID: PMC11445291 DOI: 10.1007/s13346-024-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 05/25/2024]
Abstract
The ocular administration of lipophilic and labile drugs such as epalrestat, an aldose reductase inhibitor with potential for diabetic retinopathy treatment, demands the development of topical delivery systems capable of providing sufficient ocular bioavailability. The aim of this work was to develop non-aqueous oleogels based on soybean oil and gelators from natural and sustainable sources (ethyl cellulose, beeswax and cocoa butter) and to assess their reproducibility, safety and efficiency in epalrestat release and permeation both ex vivo and in vivo. Binary combinations of gelators at 10% w/w resulted in solid oleogels (oleorods), while single gelator oleogels at 5% w/w remained liquid at room temperature, with most of the oleogels displaying shear thinning behavior. The oleorods released up to 4 µg epalrestat per mg of oleorod in a sustained or burst pattern depending on the gelator (approx. 10% dose in 24 h). The HET-CAM assay indicated that oleogel formulations did not induce ocular irritation and were safe for topical ocular administration. Corneal and scleral ex vivo assays evidenced the permeation of epalrestat from the oleorods up to 4 and 2.5 µg/cm2 after six hours, respectively. Finally, the capacity of the developed oleogels to sustain release and provide significant amounts of epalrestat to the ocular tissues was demonstrated in vivo against aqueous-based niosomes and micelles formulations loaded with the same drug concentration. Overall, the gathered information provides valuable insights into the development of oleogels for ocular drug delivery, emphasizing their safety and controlled release capabilities, which have implications for the treatment of diabetic neuropathy and other ocular conditions.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Rajeev Mudakavi
- Department of Chemical Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Anuj Chauhan
- Department of Chemical Engineering, Colorado School of Mines, Golden, CO, 80401, USA
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain.
| |
Collapse
|
3
|
Elmotasem H, Salama AAA, Shalaby ES. Hyaluronate functionalized Span-Labrasol nanovesicular transdermal therapeutic system of ferulic acid targeting diabetic nephropathy. Int J Biol Macromol 2024; 279:135292. [PMID: 39236956 DOI: 10.1016/j.ijbiomac.2024.135292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/19/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Diabetic kidney disease, known as diabetic nephropathy (DN), is a widespread severe diabetes complication leading to kidney failure. Due to the lack of efficacious therapies, this study endeavors to enhance DN therapeutic effectiveness of ferulic acid (FRA), a natural phenolic with poor oral bioavailability, by developing a transdermal kidney-targeted spanlastic formulation. Spanlastics (SP) nanovesicles were prepared using Span 60 and Labrasol or Brij35 as edge activators (EA). Cationic guar (CG) and hyaluronic acid (HA) were employed as coatings. The formulations were assessed for entrapment efficiency (EE), particle size (PS) and zeta potential (ZP). A 21 × 31 factorial optimization of FRA spanlastic formulations revealed the desirable nanoformula was FRA-L-H-SP comprising Labrasol and hyaluronate coating. Transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR), Diphenylpicrylhydrazyl (DPPH) antioxidant activity, in-vitro release, and rat skin ex-vivo permeation assessed this formula and the uncoated one (FRA-L-SP). Biochemical indicators and histopathology for diabetes and kidney injury were evaluated in the Streptozotocin (STZ)-induced DN rat model. Results showed significant improvements after treatment with FRA-L-H-SP compared to FRA-L-SP and free FRA, with decreased blood glucose, creatinine, and intercellular adhesion molecule-1 (ICAM-1) levels and increased insulin, AMP-activated protein kinase (AMPK), and sirtuins (SIRT). This enhancement can be acknowledged as passive targeting of SP and active targeting properties of hyaluronic to cluster of differentiation 44 (CD44) receptors, revealing the potential to improve DN pathophysiology.
Collapse
Affiliation(s)
- Heba Elmotasem
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt.
| | - Abeer A A Salama
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Cairo 12622, Egypt
| | - Eman Samy Shalaby
- Pharmaceutical Technology Department, Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
4
|
Zhang W, Wu M, Shen C, Wang Z, Zhou X, Guo R, Yang Y, Zhang Z, Sun X, Gong T. A new long-acting analgesic formulation for postoperative pain management. Int J Pharm 2024; 664:124599. [PMID: 39154917 DOI: 10.1016/j.ijpharm.2024.124599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Local anesthetics (LA), as part of multimodal analgesia, have garnered significant interest for their role in delaying the initiation of opioid therapy, reducing postoperative opioid usage, and mitigating both hospitalization duration and related expenses. Despite numerous endeavors to extend the duration of local anesthetic effects, achieving truly satisfactory long-acting analgesia remains elusive. Drawing upon prior investigations, vesicular phospholipid gels (VPGs) emerge as promising candidates for extended-release modalities in small-molecule drug delivery systems. Therefore, we tried to use the amphiphilicity of phospholipids to co-encapsulate levobupivacaine hydrochloride and meloxicam, two drugs with different hydrophilicity, to obtain a long-term synergistic analgesic effect. Initially, the physicochemical attributes of the formulation were characterized, followed by an examination of its in vitro release kinetics, substantiating the viability of extending the release duration of the dual drugs. Sequentially, in vivo investigations encompassing pharmacokinetic profiling and assessment of analgesic efficacy were undertaken, revealing a prolonged release duration of up to 120 h and attainment of optimal postoperative analgesia. Subsequently, inquiries into the mechanism underlying synergistic analgesic effects and safety evaluations pertinent to the delivery strategy were pursued. In summation, we successfully developed a promising formulation to achieve long-acting analgesia.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Mengying Wu
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chen Shen
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zijun Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xueru Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Guo
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuping Yang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Elmanawy MA, Boraie N, Bakr BA, Makled S. Augmented ocular uptake and anti-inflammatory efficacy of decorated Genistein-loaded NLCs incorporated in in situ gel. Int J Pharm 2024; 662:124508. [PMID: 39053680 DOI: 10.1016/j.ijpharm.2024.124508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Genistein (Gen); a naturally occurring isoflavone, acts as a tyrosine kinase inhibitor and efficiently downregulates inflammatory cytokines, which are pivotal in eye inflammation. Also, Gen suffers from sparse ocular bioavailability due to poor solubility. In this work, nanostructured lipid carriers (NLCs) were successfully fabricated by using solid (stearic acid and compritol) and liquid (oleic acid) lipids. The optimized Gen-loaded NLCs showed a nanosize range of 140-246 nm, ≥ 98 % entrapment efficiency, and controlled release over 48 h. The ζ-potential of NLCs was increased from -27.3 mV to 25-27.4 mV due to surface modification with chitosan (CS) or eudragit RS100 (ERS 100). All NLCs showed prominent biocompatibility with enhanced cellular uptake on corneal stromal fibroblasts. Moreover, the different NLCs were incorporated into a mucoadhesive in situ gel. The optimized in situ gel (G9), containing 20 % poloxamers and 0.5 % hydroxyethyl cellulose, exhibited excellent gelling ability within 10.5 s, gelling temperature at 33.1 ± 0.6 ℃, spreadability diameter of 4.73 ± 0.12 cm, shear-thinning behavior, and 20 min ex vivo mucoadhesion time with drug release for 120 h. The in vivo results showed distinguished permeation and distribution potential for ocular delivery. In vivo anti-inflammatory effects after 3 days of treatment with CS-Gen-NLCs/G9 and ERS-Gen-NLCs/G9 revealed a downregulation of interleukin-6 levels in the cornea and retina compared to the untreated group. Our research highlights the promising anti-inflammatory potential of ERS-Gen-NLCs/G9 as an efficient, non-irritant Gen nanodelivery system for managing anterior and posterior ocular inflammation.
Collapse
Affiliation(s)
- Marwa A Elmanawy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Nabila Boraie
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21568, Egypt
| | - Shaimaa Makled
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| |
Collapse
|
6
|
Teba HE, Khalil IA, Gebreel RM, Fahmy LI, Sorogy HME. Development of antifungal fibrous ocular insert using freeze-drying technique. Drug Deliv Transl Res 2024; 14:2520-2538. [PMID: 38366116 PMCID: PMC11291584 DOI: 10.1007/s13346-024-01527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Candida species is one of the pathogenic fungi of the eye responsible for keratitis that frequently causes vision impairment and blindness. Effective treatment requires long-term use of antifungal drugs, which is opposed by the defensive mechanisms of the eye and inadequate corneal penetration. The objective of this study was to develop a carrier for prolonged ocular application of fluconazole (FLZ) to treat keratitis. FLZ was encapsulated into chitosan fibrous matrices (F1-F4) using different chitosan concentrations (0.02, 0.1, 0.5, and 1%w/v, respectively) by freeze-drying as a single-step technique. Studying the morphology and surface properties of the inserts revealed a porous matrix with fibrous features with a large surface area. Thermal stability and chemical compatibility were confirmed by DSC/TGA/DTA and FT-IR, respectively. Loading capacity (LC) and entrapment efficiency (EE) were determined. According to the in vitro release study, F4 (0.11 mg mg-1 LC and 87.53% EE) was selected as the optimum insert because it had the most sustained release, with 15.85% burst release followed by 75.62% release within 12 h. Ex vivo corneal permeation study revealed a 1.2-fold increase in FLZ permeation from F4 compared to FLZ aqueous solution. Also, in the in vivo pharmacokinetic study in rabbits, F4 increased the AUC0-8 of FLZ by 9.3-fold and its concentration in aqueous humor was maintained above the MIC through the experimentation time. Studies on cytotoxicity (MTT assay) provide evidence for the safety and biocompatibility of F4. Therefore, the freeze-dried FLZ-loaded chitosan fibrous insert could be a promising candidate for treating ocular keratitis.
Collapse
Affiliation(s)
- Hoda E Teba
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Rana M Gebreel
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts, 12451, 6th of October, Giza, Egypt
| | - Heba M El Sorogy
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Manufacturing, Misr University for Science and Technology, 12566, 6th of October, Giza, Egypt.
| |
Collapse
|
7
|
Cheng X, Han X, Si J, Dong C, Ji Z, Zhao S, Wu X, Li H, Jin X. Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation. Pharmaceutics 2024; 16:1155. [PMID: 39339192 PMCID: PMC11434666 DOI: 10.3390/pharmaceutics16091155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Curcumin, a naturally occurring poorly water-soluble polyphenol with a broad spectrum, is a typical BCS IV drug. The objective of this study was to develop curcumin nanocrystals liposomes with the aim of improving bioavailability. In this study, we prepared cationic curcumin nanocrystals with a particle size of only 29.42 nm; such a phenomenal range of particle sizes is very rare. Moreover, we summarized and evaluated the parameters of the nanocrystal preparation process, including methods, formulations, etc., and the rules we concluded can be generalized to other nanocrystal preparation processes. To counteract the instability of the nanocrystals in the digestive tract, cationic curcumin nanocrystals were loaded into negatively charged liposomes through gravitational force between different charges. Unexpectedly, chitosan oligosaccharide was found to promote the self-assembly process of curcumin nanocrystal liposomes. In vitro and in vivo experiments demonstrated that chitosan-modified curcumin nanocrystal liposomes exhibited enhanced resistance to enzyme barriers, mucus barriers, and cellular barriers, resulting in a 5.4-fold increase in bioavailability compared to crude powder formulations. It can be concluded that cationic nanocrystals liposomes represent an appropriate novel strategy for improving the dissolution rate and bioavailability of poorly soluble natural products such as curcumin.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Xiaoran Han
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Jia Si
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Cong Dong
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Zhongjuan Ji
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Shicong Zhao
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Xiangting Wu
- Department of Pharmacy, Jilin University, Changchun 130021, China
| | - Haiyan Li
- Department of Pharmacy, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Xiangqun Jin
- Department of Pharmacy, Jilin University, Changchun 130021, China
| |
Collapse
|
8
|
PALEI NN, MOHANTA BC, RAJANGAM J, GUPTHA PM. Olmesartan Medoxomil-Loaded Niosomal Gel for Buccal Delivery: Formulation, Optimization, and Ex Vivo Studies. Turk J Pharm Sci 2024; 21:199-210. [PMID: 38994813 PMCID: PMC11590553 DOI: 10.4274/tjps.galenos.2023.93765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/13/2024]
Abstract
Objectives Olmesartan medoxomil (OLM) is a low bioavailability antihypertensive drug. This study aimed to prepare and optimize an OLM niosomal gel and investigate drug permeation via a chicken buccal pouch. Materials and Methods OLM-loaded niosome were prepared using a film hydration technique. The vesicle size, zeta potential, entrapment efficiency, and percentage cumulative drug release of niosome were evaluated. The niosomes were incorporated into a Carbopol 974P (1.5% w/v) gel, and the drug permeability of the niosomal gel was evaluated. The formulations of the niosomal gel were optimized using the Box-Behnken design. The optimized formulation was further characterized by transmission electron microscopy (TEM) and Fourier transform infrared radiation analysis. Results The particle size and zeta potential of the optimized niosomal formulations were 296.4 nm and -38.4 mV, respectively. Based on TEM analysis, the niosomes were found to be spherical in shape. The permeability, flux, and permeability coefficient of the optimized niosomal gel were 0.507 mg/cm2, 0.083 mg/cm2 × hour, and 041 cm/hour, respectively. Histopathological evaluation revealed that the niosomal gel had better permeability than the OLM gel. Conclusion Based on the results of the OLM niosomal gel, it can be concluded that the formulation can be beneficial in increasing bioavailability, resulting in better therapeutic efficacy.
Collapse
Affiliation(s)
| | - Bibhash Chandra MOHANTA
- Department of Pharmacy, Faculty of Health Science, Central University of South Bihar, Gaya, India
| | | | | |
Collapse
|
9
|
Ibrahiem B, Shamma R, Salama A, Refai H. Magnetic targeting of lornoxicam/SPION bilosomes loaded in a thermosensitive in situ hydrogel system for the management of osteoarthritis: Optimization, in vitro, ex vivo, and in vivo studies in rat model via modulation of RANKL/OPG. Drug Deliv Transl Res 2024; 14:1982-2002. [PMID: 38158473 PMCID: PMC11153292 DOI: 10.1007/s13346-023-01503-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Osteoarthritis is a bone and joint condition characterized pathologically by articular cartilage degenerative damage and can develop into a devastating and permanently disabling disorder. This investigation aimed to formulate the anti-inflammatory drug lornoxicam (LOR) into bile salt-enriched vesicles loaded in an in situ forming hydrogel as a potential local treatment of osteoarthritis. This was achieved by formulating LOR-loaded bilosomes that are also loaded with superparamagnetic iron oxide nanoparticles (SPIONs) for intra-muscular (IM) administration to improve joint targeting and localization by applying an external magnet to the joint. A 31.22 full factorial design was employed to develop the bilosomal dispersions and the optimized formula including SPION (LSB) was loaded into a thermosensitive hydrogel. Moreover, in vivo evaluation revealed that the IM administration of LSB combined with the application of an external magnet to the joint reversed carrageen-induced suppression in motor activity and osteoprotegerin by significantly reducing the elevations in mitogen-activated protein kinases, extracellular signal-regulated kinase, and receptor activator of nuclear factor kappa beta/osteoprotegerin expressions. In addition, the histopathological evaluation of knee joint tissues showed a remarkable improvement in the injured joint tissues. The results proved that the developed LSB could be a promising IM drug delivery system for osteoarthritis management.
Collapse
Affiliation(s)
- Basma Ibrahiem
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt
| | - Rehab Shamma
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Abeer Salama
- Department of Pharmacology, National Research Centre (NRC), Giza, 12622, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, 12566, Egypt.
| |
Collapse
|
10
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
11
|
Datta D, Priyanka Bandi S, Colaco V, Dhas N, Siva Reddy DV, Vora LK. Fostering the unleashing potential of nanocarriers-mediated delivery of ocular therapeutics. Int J Pharm 2024; 658:124192. [PMID: 38703931 DOI: 10.1016/j.ijpharm.2024.124192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/21/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Ocular delivery is the most challenging aspect in the field of pharmaceutical research. The major hurdle for the controlled delivery of drugs to the eye includes the physiological static barriers such as the complex layers of the cornea, sclera and retina which restrict the drug from permeating into the anterior and posterior segments of the eye. Recent years have witnessed inventions in the field of conventional and nanocarrier drug delivery which have shown considerable enhancement in delivering small to large molecules across the eye. The dynamic challenges associated with conventional systems include limited drug contact time and inadequate ocular bioavailability resulting from solution drainage, tear turnover, and dilution or lacrimation. To this end, various bioactive-based nanosized carriers including liposomes, ethosomes, niosomes, dendrimer, nanogel, nanofibers, contact lenses, nanoprobes, selenium nanobells, nanosponge, polymeric micelles, silver nanoparticles, and gold nanoparticles among others have been developed to circumvent the limitations associated with the conventional dosage forms. These nanocarriers have been shown to achieve enhanced drug permeation or retention and prolong drug release in the ocular tissue due to their better tissue adherence. The surface charge and the size of nanocarriers (10-1000 nm) are the important key factors to overcome ocular barriers. Various nanocarriers have been shown to deliver active therapeutic molecules including timolol maleate, ampicillin, natamycin, voriconazole, cyclosporine A, dexamethasone, moxifloxacin, and fluconazole among others for the treatment of anterior and posterior eye diseases. Taken together, in a nutshell, this extensive review provides a comprehensive perspective on the numerous facets of ocular drug delivery with a special focus on bioactive nanocarrier-based approaches, including the difficulties and constraints involved in the fabrication of nanocarriers. This also provides the detailed invention, applications, biodistribution and safety-toxicity of nanocarriers-based therapeutcis for the ophthalmic delivery.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India.
| | - Sony Priyanka Bandi
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal 500078, Telangana, India.
| | - Viola Colaco
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - D V Siva Reddy
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio TX78227, USA
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| |
Collapse
|
12
|
Mahfufah U, Sya'ban Mahfud MA, Saputra MD, Abd Azis SB, Salsabila A, Asri RM, Habibie H, Sari Y, Yulianty R, Alsayed AR, Pamornpathomkul B, Mir M, Permana AD. Incorporation of Inclusion Complexes in the Dissolvable Microneedle Ocular Patch System for the Efficiency of Fluconazole in the Therapy of Fungal Keratitis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25637-25651. [PMID: 38728098 DOI: 10.1021/acsami.3c19482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Fluconazole (FNL) is one of the first-line treatments for fungal keratitis as it is an effective broad-spectrum antimicrobial commonly administered orally or topically. However, FNL has a very low water solubility, limiting its drug formulation, therapeutic application, and bioavailability through tissues. To overcome these limitations, this study aimed to develop FNL inclusion complexes (FNL-IC) with cyclodextrin (α-cyclodextrin, sulfobutylether-β-cyclodextrin, and hydroxypropyl-γ cyclodextrin) and incorporate it into a dissolvable microneedle (DMN) system to improve solubility and drug penetration. FNL-IC was evaluated for saturation solubility, Fourier transform infrared spectroscopy, differential scanning calorimetry, in vitro release, minimum inhibitory concentration, minimum fungicidal concentration, and time-killing assay. DMN-FNL-IC was evaluated for mechanical and insertion properties, surface pH, moisture absorption ability, water vapor transmission, and drug content recovery. Moreover, ocular kinetic, ex vivo antimicrobial, in vivo antifungal, and chorioallantoic membrane (HET-CAM) assays were conducted to assess the overall performance of the formulation. Mechanical strength and insertion properties revealed that DMN-FNL-IC has great mechanical and insertion properties. The in vitro release of FNL-IC was significantly improved, exhibiting a 9-fold increase compared to pure FNL. The ex vivo antifungal activity showed significant inhibition of Candida albicans from 6.54 to 0.73 log cfu/mL or 100-0.94%. In vivo numbers of colonies of 0.87 ± 0.13 log cfu/mL (F2), 4.76 ± 0.26 log cfu/mL (FNL eye drops), 3.89 ± 0.24 log cfu/mL (FNL ointments), and 8.04 ± 0.58 log cfu/mL (control) showed the effectiveness of DMN preparations against other standard commercial preparations. The HET-CAM assay showed that DMN-FNL-IC (F2) did not show any vascular damage. Finally, a combination of FNL-IC and DMN was developed appropriately for ocular delivery of FNL, which was safe and increased the effectiveness of treatments for fungal keratitis.
Collapse
Affiliation(s)
- Ulfah Mahfufah
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | | | | | - Azimah Salsabila
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Habibie Habibie
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Yessie Sari
- Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | - Risfah Yulianty
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Ahmad R Alsayed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | | | - Maria Mir
- Department of Pharmacy, Iqra University, Islamabad 45320, Pakistan
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| |
Collapse
|
13
|
Kailasam V, Kumara BN, Prasad KS, Nirmal J. Combination of self-assembling system and N,O-carboxymethyl chitosan improves ocular residence of anti-glaucoma drug. Eur J Pharm Biopharm 2024; 197:114208. [PMID: 38336235 DOI: 10.1016/j.ejpb.2024.114208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Glaucoma is known to be one of the principal causes of vision loss due to elevated intraocular pressure. Currently, latanoprost eye drops is used as first-line treatment for glaucoma; however, it possesses low bioavailability due to rapid precorneal clearance. A novel delivery system with a mucoadhesive property could overcome this problem. Therefore, we attempt to develop a combination of self-assembling latanoprost nanomicelles (Latcel) and a mucoadhesive polymer (N,O-carboxymethyl chitosan: N,O-CMC) to improve the corneal residence time. Latcel was developed using Poloxamer-407 by thin film hydration method, followed by the addition of N,O-CMC using simple solvation to obtain Latcel-CMC and characterized using various physicochemical characterization techniques. The particle size of Latcel-CMC was 94.07 ± 2.48 nm and a zeta potential of -16.03 ± 0.66 mV, with a sustained release for 24h whereas marketed latanoprost drops released 90 % of the drug within 1h. In vitro cytotoxicity studies, HET-CAM, and in vivo Draize test showed the biocompatibility of Latcel-CMC. Cellular uptake studies performed using fluorescein isothiocyanate (FITC) loaded nanomicelles in human corneal epithelial cells indicates the increased cellular uptake as compare to plain FITC solution. In vivo ocular residence time was evaluated in Wistar rats using Indocyanine green (ICG) loaded nanomicelles by an in vivo imaging system (IVIS), indicating Latcel-CMC (8h) has better residence time than plain ICG solution (2h). The Latcel-CMC showed improved corneal residence time and sustained release of latanoprost due to increased mucoadhesion. Thus, the developed N,O-Carboxymethyl chitosan based nanomicelles eye drop could be a better strategy than conventional eye drops for topical delivery of latanoprost to treat glaucoma.
Collapse
Affiliation(s)
- Velmurugan Kailasam
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Bommanahalli Nagaraju Kumara
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India
| | - K Sudhakara Prasad
- Nanomaterial Research Laboratory [NMRL], Nano Division, Yenepoya Research Centre, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India; Centre for Nutrition Studies, Yenepoya [Deemed to be University], Deralakatte, Mangalore 575 018, India.
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India.
| |
Collapse
|
14
|
Abd-Elaty DM, Ishak RAH, Osman R, Geneidi AS. Engineering a novel water-in-oil biocompatible microemulsion system for the ocular delivery of dexamethasone sodium phosphate in the treatment of acute uveitis. Int J Pharm 2024; 650:123704. [PMID: 38097148 DOI: 10.1016/j.ijpharm.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/18/2023]
Abstract
Due to their unique characteristics, microemulsions (ME) represent one of the most promising delivery systems which can conquer poor ocular drug bioavailability providing long residence time. Development of a ME system, relying on the use of a safe and non-irritant surfactant combination derived from sustainable resources and which can consolidate the small ME droplets, is the goal of this work. Herein, we report the design and characterization of a novel biocompatible, eco-friendly ME system loaded with the hydrophilic dexamethasone sodium phosphate (DEXP) using a novel surfactant mixture composed of D-α-tocopherol polyethylene glycol succinate (TPGS) and Plantacare® (coco-Glycosides). Capryol™ PGMC and double-distilled water were used as the respective oil and aqueous phases and the MEs were prepared by the water titration method, suitable for scaling up. Optimization of ME formulae was conducted by varying Plantacare® grades, TPGS to Plantacare® mass ratios and drug loading. The formulae were characterized in terms of physical appearance, droplet size (PS), size distribution (PDI), zeta potential (ZP), and stability. The optimized DEXP-loaded ME formula attained acceptable PS, PDI, and ZP values of 43 ± 5 nm, 0.35 ± 0.07, -12 ± 4 mV, respectively. TEM images confirmed a small PS ≤ 100 nm. The in vivo safety of ME was proved by the Draize test. The ME formula prompted excellent mucoadhesion and transcorneal permeation. The confocal studies showed deep penetration into the rabbits' corneas. In vivo studies using endotoxin-induced uveitis showed high ocular efficacy and a significant reduction in inflammatory cells, including interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The obtained results elect the novel engineered ME system as a promising tool for the ocular delivery of hydrophilic moieties in the management of various ophthalmic diseases.
Collapse
Affiliation(s)
- Dina M Abd-Elaty
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| | - Rihab Osman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Ahmed S Geneidi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| |
Collapse
|
15
|
Regu VPR, Behera D, Sunkara SP, Gohel V, Tripathy S, Swain RP, Subudhi BB. Ocular Delivery of Metformin for Sustained Release and in Vivo Efficacy. J Pharm Sci 2023; 112:2494-2505. [PMID: 37031863 DOI: 10.1016/j.xphs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Metformin is known to lower inflammation, independent of its anti-diabetic action. Thus, topical metformin can be a therapeutic strategy for managing ocular inflammation associated with diabetes. To achieve this and address the issues of ocular retention and controlled release an in situ gel of metformin was developed. The formulations were prepared using sodium hyaluronate, hypromellose, and gellan gum. The composition was optimized by monitoring gelling time/capacity, viscosity, and mucoadhesion. MF5 was selected as the optimized formulation. It showed both chemical and physiological compatibility. It was found to be sterile and stable. MF5 exhibited sustained release of metformin for 8h that fitted best with zero-order kinetics. Further, the release mode was found to be close to the Korsmeyer-Peppas model. Supported by an ex vivo permeation study, it showed potential for prolonged action. It showed a significant reduction in ocular inflammation that was comparable to that of the standard drug. MF5 shows translational potential as a safe alternative to steroids for managing ocular inflammation.
Collapse
Affiliation(s)
- Vara Prasada Rao Regu
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Dhananjay Behera
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Sai Prathyusha Sunkara
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Vinit Gohel
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India; ProCyto Labs Pvt Ltd., KIIT-TBI, Bhubaneswar, Odisha 751024, India
| | - Shyamalendu Tripathy
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Ranjit Prasad Swain
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be) University, Bhubaneswar, Odisha, India.
| |
Collapse
|
16
|
Ahmed MM, Ameen MSM, Abazari M, Badeleh SM, Rostamizadeh K, Mohammed SS. Chitosan-decorated and tripolyphosphate-crosslinked pH-sensitive niosomal nanogels for Controlled release of fluoropyrimidine 5-fluorouracil. Biomed Pharmacother 2023; 164:114943. [PMID: 37267634 DOI: 10.1016/j.biopha.2023.114943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023] Open
Abstract
In the present study, 5-fluorouracil-loaded niosomal nanoparticles were successfully prepared and coated with chitosan and subsequently crosslinked by tripolyphosphate to form niosomal nanogels. The prepared niosomal formulations were fully characterized for their particle size, zeta potential, particle morphology, drug entrapment efficiency, and in vitro drug release profile. The prepared niosomal nanocarriers exhibited nanoscale particle sizes of 165.35 ± 2.75-322.85 ± 2.75 nm. Chitosan-coated and TPP-crosslinked niosomes exhibited a slightly decreased in particle size and a switch of zeta potential from negative to positive values. In addition, high yield percentage, drug encapsulation efficiency, and drug loading values of 92.11 ± 2.07 %, 66.59 ± 6.06, and 4.65 ± 0.5 were obtained for chitosan-coated formulations, respectively. Moreover, lowering the rate of 5-FU in vitro release was achieved within 72 h by using chitosan-coated formulations. All prepared formulations revealed hemocompatible properties in hemolysis assay with less than 5 % hemolysis percentage at their higher possible concentrations (500 µM and 1 mM). The cell viability by MTT assay showed higher anticancer activity against B16F10 cancerous cells and lower cytotoxicity toward NIH3T3 normal cells than control and pure 5-FU in the studied concentration range (10-100 µM). Investigating the cell migration inhibition properties of fabricated formulations revealed similar results with in vitro cell viability assay with a higher migration inhibition rate for B16F10 cells than NIH3T3 cells, controls, and free 5-FU.
Collapse
Affiliation(s)
- Mohammed Mahmood Ahmed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| | | | - Morteza Abazari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Safa Momeni Badeleh
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kobra Rostamizadeh
- Department of Psychiatry and Behavioral sciences, Department of Pharmacology, School of medicine, University of Washington, WA, USA.
| | - Shahen Salih Mohammed
- Department of Pharmaceutics, College of Pharmacy, University of Sulaimani, Sulaimani, Iraq.
| |
Collapse
|
17
|
Kattar A, Quelle-Regaldie A, Sánchez L, Concheiro A, Alvarez-Lorenzo C. Formulation and Characterization of Epalrestat-Loaded Polysorbate 60 Cationic Niosomes for Ocular Delivery. Pharmaceutics 2023; 15:pharmaceutics15041247. [PMID: 37111732 PMCID: PMC10142600 DOI: 10.3390/pharmaceutics15041247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to develop niosomes for the ocular delivery of epalrestat, a drug that inhibits the polyol pathway and protects diabetic eyes from damage linked to sorbitol production and accumulation. Cationic niosomes were made using polysorbate 60, cholesterol, and 1,2-di-O-octadecenyl-3-trimethylammonium propane. The niosomes were characterized using dynamic light scattering, zeta-potential, and transmission electron microscopy to determine their size (80 nm; polydispersity index 0.3 to 0.5), charge (-23 to +40 mV), and shape (spherical). The encapsulation efficiency (99.76%) and the release (75% drug release over 20 days) were measured with dialysis. The ocular irritability potential (non-irritating) was measured using the Hen's Egg Test on the Chorioallantoic Membrane model, and the blood glucose levels (on par with positive control) were measured using the gluc-HET model. The toxicity of the niosomes (non-toxic) was monitored using a zebrafish embryo model. Finally, corneal and scleral permeation was assessed with the help of Franz diffusion cells and confirmed with Raman spectroscopy. Niosomal permeation was higher than an unencapsulated drug in the sclera, and accumulation in tissues was confirmed with Raman. The prepared niosomes show promise to encapsulate and carry epalrestat through the eye to meet the need for controlled drug systems to treat the diabetic eye.
Collapse
Affiliation(s)
- Axel Kattar
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Laura Sánchez
- Departamento de Zooloxía, Xenética y Antropoloxía Física, Facultade de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
18
|
Bal-Öztürk A, Özcan-Bülbül E, Gültekin HE, Cecen B, Demir E, Zarepour A, Cetinel S, Zarrabi A. Application of Convergent Science and Technology toward Ocular Disease Treatment. Pharmaceuticals (Basel) 2023; 16:445. [PMID: 36986546 PMCID: PMC10053244 DOI: 10.3390/ph16030445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
Eyes are one of the main critical organs of the body that provide our brain with the most information about the surrounding environment. Disturbance in the activity of this informational organ, resulting from different ocular diseases, could affect the quality of life, so finding appropriate methods for treating ocular disease has attracted lots of attention. This is especially due to the ineffectiveness of the conventional therapeutic method to deliver drugs into the interior parts of the eye, and the also presence of barriers such as tear film, blood-ocular, and blood-retina barriers. Recently, some novel techniques, such as different types of contact lenses, micro and nanoneedles and in situ gels, have been introduced which can overcome the previously mentioned barriers. These novel techniques could enhance the bioavailability of therapeutic components inside the eyes, deliver them to the posterior side of the eyes, release them in a controlled manner, and reduce the side effects of previous methods (such as eye drops). Accordingly, this review paper aims to summarize some of the evidence on the effectiveness of these new techniques for treating ocular disease, their preclinical and clinical progression, current limitations, and future perspectives.
Collapse
Affiliation(s)
- Ayça Bal-Öztürk
- Department of Stem Cell and Tissue Engineering, Institute of Health Sciences, Istinye University, Istanbul 34396, Türkiye
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Ece Özcan-Bülbül
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul 34396, Türkiye
| | - Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Türkiye
| | - Berivan Cecen
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Ebru Demir
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Türkiye
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Türkiye
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye
| |
Collapse
|
19
|
Ahmed S, Amin MM, Sayed S. Ocular Drug Delivery: a Comprehensive Review. AAPS PharmSciTech 2023; 24:66. [PMID: 36788150 DOI: 10.1208/s12249-023-02516-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/14/2023] [Indexed: 02/16/2023] Open
Abstract
The human eye is a sophisticated organ with distinctive anatomy and physiology that hinders the passage of drugs into targeted ophthalmic sites. Effective topical administration is an interest of scientists for many decades. Their difficult mission is to prolong drug residence time and guarantee an appropriate ocular permeation. Several ocular obstacles oppose effective drug delivery such as precorneal, corneal, and blood-corneal barriers. Routes for ocular delivery include topical, intravitreal, intraocular, juxtascleral, subconjunctival, intracameral, and retrobulbar. More than 95% of marketed products exists in liquid state. However, other products could be in semi-solid (ointments and gels), solid state (powder, insert and lens), or mixed (in situ gel). Nowadays, attractiveness to nanotechnology-based carries is resulted from their capabilities to entrap both hydrophilic and lipophilic drugs, enhance ocular permeability, sustain residence time, improve drug stability, and augment bioavailability. Different in vitro, ex vivo, and in vivo characterization approaches help to predict the outcomes of the constructed nanocarriers. This review aims to clarify anatomy of the eye, various ocular diseases, and obstacles to ocular delivery. Moreover, it studies the advantages and drawbacks of different ocular routes of administration and dosage forms. This review also discusses different nanostructured platforms and their characterization approaches. Strategies to enhance ocular bioavailability are also explained. Finally, recent advances in ocular delivery are described.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt.
| | - Maha M Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
20
|
Elmotasem H, El-Marasy SA, Mohamed AL. Benzocaine mesoporous silica nanoparticles/bio polysaccharides-based hydrogels loaded cotton bandage as a platform for topical anesthesia. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
21
|
Almehmady AM, El-Say KM, Mubarak MA, Alghamdi HA, Somali NA, Sirwi A, Algarni R, Ahmed TA. Enhancing the Antifungal Activity and Ophthalmic Transport of Fluconazole from PEGylated Polycaprolactone Loaded Nanoparticles. Polymers (Basel) 2022; 15:polym15010209. [PMID: 36616558 PMCID: PMC9823753 DOI: 10.3390/polym15010209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Fungal eye infections are caused mainly by an eye injury and can result in serious eye damage. Fluconazole (FLZ), a broad-spectrum antifungal agent, is a poorly soluble drug with a risk of hepatotoxicity. This work aimed to investigate the antifungal activity, ocular irritation, and transport of FLZ-loaded poly (ε-caprolactone) nanoparticles using a rabbit eye model. Three formulation factors affecting the nanoparticle's size, zeta potential, and entrapment efficiency were optimized utilizing the Box-Behnken design. Morphological characteristics and antifungal activity of the optimized nanoparticles were studied. The optimized nanoparticles were loaded into thermosensitive in situ hydrogel and hydroxypropylmethylcellulose (HPMC) hydrogel ophthalmic formulations. The rheological behavior, in vitro release and in vivo corneal transport were investigated. Results revealed that the percentage of poly (ε-caprolactone) in the nanoparticle matrix, polymer addition rate, and mixing speed significantly affected the particle size, zeta potential, and entrapment efficiency. The optimized nanoparticles were spherical in shape and show an average size of 145 nm, a zeta potential of -28.23 mV, and a FLZ entrapment efficiency of 98.2%. The antifungal activity of FLZ-loaded nanoparticles was significantly higher than the pure drug. The developed ophthalmic formulations exhibited a pseudoplastic flow, prolonged the drug release and were found to be non-irritating to the cornea. The prepared FLZ pegylated nanoparticles were able to reach the posterior eye segment without eye irritation. As a result, the developed thermosensitive in situ hydrogel formulation loaded with FLZ polymeric nanoparticles is a promising drug delivery strategy for treating deep fungal eye infections.
Collapse
Affiliation(s)
- Alshaimaa M. Almehmady
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.A.); (T.A.A.); Tel.: +966-2-640-0000 (ext. 24057) (A.M.A.); +966-2-640-0000 (ext. 22250) (T.A.A.)
| | - Khalid M. El-Say
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal A. Mubarak
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haneen A. Alghamdi
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Njood A. Somali
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rahmah Algarni
- Pharmaceutical Care Department, King Abdulaziz University Hospital, Jeddah 21589, Saudi Arabia
| | - Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (A.M.A.); (T.A.A.); Tel.: +966-2-640-0000 (ext. 24057) (A.M.A.); +966-2-640-0000 (ext. 22250) (T.A.A.)
| |
Collapse
|
22
|
A Current Overview of Cyclodextrin-Based Nanocarriers for Enhanced Antifungal Delivery. Pharmaceuticals (Basel) 2022; 15:ph15121447. [PMID: 36558897 PMCID: PMC9785708 DOI: 10.3390/ph15121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are an extremely serious health problem, particularly in patients with compromised immune systems. Most antifungal agents have low aqueous solubility, which may hamper their bioavailability. Their complexation with cyclodextrins (CDs) could increase the solubility of antifungals, facilitating their antifungal efficacy. Nanoparticulate systems are promising carriers for antifungal delivery due to their ability to overcome the drawbacks of conventional dosage forms. CD-based nanocarriers could form beneficial combinations of CDs and nanoparticulate platforms. These systems have synergistic or additive effects regarding improved drug loading, enhanced chemical stability, and enhanced drug permeation through membranes, thereby increasing the bioavailability of drugs. Here, an application of CD in antifungal drug formulations is reviewed. CD-based nanocarriers, such as nanoparticles, liposomes, nanoemulsions, nanofibers, and in situ gels, enhancing antifungal activity in a controlled-release manner and possessing good toxicological profiles, are described. Additionally, the examples of current, updated CD-based nanocarriers loaded with antifungal drugs for delivery by various routes of administration are discussed and summarized.
Collapse
|
23
|
Das B, Nayak AK, Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Rathod S. Interpenetrating polymeric network (IPNs) in ophthalmic drug delivery: Breaking the barriers. Int Ophthalmol 2022; 43:1063-1074. [PMID: 36053474 DOI: 10.1007/s10792-022-02482-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 08/20/2022] [Indexed: 10/14/2022]
Abstract
To maintain the therapeutic drug concentration for a prolonged period of time in aqueous and vitreous humor is primary challenge for ophthalmic drug delivery. Majority of the locally administered drug into the eye is lost as to natural reflexes like blinking and lacrimation resulting in the short span of drug residence. Consequently, less than 5% of the applied drug penetrate through the cornea and reaches the intraocular tissues. The major targets for optimal ophthalmic drug delivery are increasing drug residence time in cul-de-sac of the eye, prolonging intraocular exposure, modulating drug release from the delivery system, and minimizing pre-corneal drug loss. Development of in situ gel, contact lens, intraocular lens, inserts, artificial cornea, scaffold, etc., for ophthalmic drug delivery are few approaches to achieve these major targeted objectives for delivering the drug optimally. Interpenetrating polymeric network (IPN) or smart hydrogels or stimuli sensitive hydrogels are the class of polymers that can help to achieve the targets in ophthalmic drug delivery due to their versatility, biocompatibility and biodegradability. These novel ''smart" materials can alter their molecular configuration and result in volume phase transition in response to environmental stimuli, such as temperature, pH, ionic strength, electric and magnetic field. Hydrogel and tissue interaction, mechanical/tensile properties, pore size and surface chemistry of IPNs can also be modulated for tuning the drug release kinetics. Stimuli sensitive IPNs has been widely exploited to prepare in situ gelling formulations for ophthalmic drug delivery. Low refractive index hydrogel biomaterials with high water content, soft tissue-like physical properties, wettability, oxygen, glucose permeability and desired biocompatibility makes IPNs versatile candidate for contact lenses and corneal implants. This review article focuses on the exploration of these smart polymeric networks/IPNs for therapeutically improved ophthalmic drug delivery that has unfastened novel arenas in ophthalmic drug delivery.
Collapse
Affiliation(s)
- Sachin Rathod
- Maliba Pharmacy College, UKA Tarsadia University, Gopal-Vidyanagar Campus, Surat, 394350, India. .,Parul Institute of Pharmacy and Research, Parul University, Waghodia, Vadodara, 391760, India.
| |
Collapse
|
25
|
Al Hujran TA, Magharbeh MK, Habashneh AY, Al-Dmour RS, Aboelela A, Tawfeek HM. Insight into the Inclusion Complexation of Fluconazole with Sulfonatocalix[4]naphthalene in Aqueous Solution, Solid-State, and Its Antimycotic Activity. Molecules 2022; 27:molecules27144425. [PMID: 35889298 PMCID: PMC9317573 DOI: 10.3390/molecules27144425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
The study aims to assess the interaction between fluconazole and sulfonatocalix[4]naphthalene towards enhancing its dissolution performance and antimycotic activity. A solubility study was carried out at different pH conditions, and the results revealed the formation of a 1:1 molar ratio fluconazole-sulfonatocalix[4]naphthalene inclusion complex with an AL type phase solubility diagrams. The solid powder systems of fluconazole-sulfonatocalix[4]naphthalene were prepared using kneaded and co-evaporation techniques and physical mixtures. DCS, PXRD, TGA-DTG, FT-IR, and in vitro dissolution performance characterize the prepared systems. According to physicochemical characterization, the co-evaporation approach produces an amorphous inclusion complex of the drug inside the cavity of sulfonatocalix[4]naphthalene. The co-evaporate product significantly increased the drug dissolution rate up to 93 ± 1.77% within 10 min, unlike other prepared solid powders. The antimycotic activity showed an increase substantially (p ≤ 0.05, t-test) antimycotic activity of fluconazole co-evaporate mixture with sulfonatocalix[4]naphthalene compared with fluconazole alone against clinical strains of Candida albicans and Candida glabrata. In conclusion, sulfonatocalix[4]naphthalene could be considered an efficient complexing agent for fluconazole to enhance its aqueous solubility, dissolution performance, and antimycotic activity.
Collapse
Affiliation(s)
- Tayel A Al Hujran
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Mousa K Magharbeh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Almeqdad Y Habashneh
- The Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan
| | - Rasha S Al-Dmour
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan
| | - Ashraf Aboelela
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, Assiut 71515, Egypt
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
26
|
Wang Y, Wang C. Novel Eye Drop Delivery Systems: Advance on Formulation Design Strategies Targeting Anterior and Posterior Segments of the Eye. Pharmaceutics 2022; 14:pharmaceutics14061150. [PMID: 35745723 PMCID: PMC9229693 DOI: 10.3390/pharmaceutics14061150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
Eye drops are the most common and convenient route of topical administration and the first choice of treatment for many ocular diseases. However, the ocular bioavailability of traditional eye drops (i.e., solutions, suspensions, and ointments) is very low because of ophthalmic physiology and barriers, which greatly limits their therapeutic effect. Over the past few decades, many novel eye drop delivery systems, such as prodrugs, cyclodextrins, in situ gels, and nanoparticles, have been developed to improve ophthalmic bioavailability. These novel eye drop delivery systems have good biocompatibility, adhesion, and propermeation properties and have shown superior performance and efficacy over traditional eye drops. Therefore, the purpose of this review was to systematically present the research progress on novel eye drop delivery systems and provide a reference for the development of dosage form, clinical application, and commercial transformation of eye drops.
Collapse
|
27
|
Recent progress in colloidal nanocarriers loaded in situ gel in ocular therapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Zingale E, Romeo A, Rizzo S, Cimino C, Bonaccorso A, Carbone C, Musumeci T, Pignatello R. Fluorescent Nanosystems for Drug Tracking and Theranostics: Recent Applications in the Ocular Field. Pharmaceutics 2022; 14:pharmaceutics14050955. [PMID: 35631540 PMCID: PMC9147643 DOI: 10.3390/pharmaceutics14050955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022] Open
Abstract
The greatest challenge associated with topical drug delivery for the treatment of diseases affecting the posterior segment of the eye is to overcome the poor bioavailability of the carried molecules. Nanomedicine offers the possibility to overcome obstacles related to physiological mechanisms and ocular barriers by exploiting different ocular routes. Functionalization of nanosystems by fluorescent probes could be a useful strategy to understand the pathway taken by nanocarriers into the ocular globe and to improve the desired targeting accuracy. The application of fluorescence to decorate nanocarrier surfaces or the encapsulation of fluorophore molecules makes the nanosystems a light probe useful in the landscape of diagnostics and theranostics. In this review, a state of the art on ocular routes of administration is reported, with a focus on pathways undertaken after topical application. Numerous studies are reported in the first section, confirming that the use of fluorescent within nanoparticles is already spread for tracking and biodistribution studies. The first section presents fluorescent molecules used for tracking nanosystems’ cellular internalization and permeation of ocular tissues; discussions on the classification of nanosystems according to their nature (lipid-based, polymer-based, metallic-based and protein-based) follows. The following sections are dedicated to diagnostic and theranostic uses, respectively, which represent an innovation in the ocular field obtained by combining dual goals in a single administration system. For its great potential, this application of fluorescent nanoparticles would experience a great development in the near future. Finally, a brief overview is dedicated to the use of fluorescent markers in clinical trials and the market in the ocular field.
Collapse
Affiliation(s)
- Elide Zingale
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Alessia Romeo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Salvatore Rizzo
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Cinzia Cimino
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
| | - Angela Bonaccorso
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Department of Pharmaceutical and Health Sciences, University of Catania, 95124 Catania, Italy; (E.Z.); (A.R.); (S.R.); (C.C.); (A.B.); (C.C.); (T.M.)
- NANO-i—Research Center for Ocular Nanotechnology, University of Catania, 95124 Catania, Italy
- Correspondence:
| |
Collapse
|
29
|
Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Self-assembled nanocarrier drug delivery has received profuse attention in the field of diagnosis and treatment of diseases. These carriers have proved that serious life-threatening diseases can be eliminated evidently by virtue of their characteristic design and features. This review is aimed at systematically presenting the research and advances in the field of self-assembled nanocarriers such as polymeric nanoparticles, dendrimers, liposomes, inorganic nanocarriers, solid lipid nanoparticles, polymerosomes, micellar systems, niosomes, and some other nanoparticles. The self-assembled delivery of nanocarriers has been developed in recent years for targeting diseases. Some of the innovative attempts with regard to prolonging drug action, improving bioavailability, avoiding drug resistance, enhancing cellular uptake, and so on have been discussed. The discussion about various delivery systems included the investigation conducted at the preliminary stage, i.e., preclinical trials and assessment of safety. The clinical studies of some of the recently developed self-assembled products are currently at the clinical trial phase or FDA approved.
Collapse
|
30
|
BaŞaran E, AykaÇ K, Yenİlmez E, BÜyÜkkÖroĞlu G, Tunali Y, Demİrel M. Formulation and Characterization Studies of Inclusion Complexes of Voriconazole for Possible Ocular Application. Pharm Dev Technol 2022; 27:228-241. [PMID: 35107405 DOI: 10.1080/10837450.2022.2037635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In our study Voriconazole (VOR) was selected as an active agent to be used for the treatment of ocular fungal infections. To overcome low aqueous solubility of VOR, inclusion complexes with α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), γ-cyclodextrin (γ-CD), hydroxypropyl-cyclodextrin (HP-CD), hydroxypropyl-β-cyclodextrin (HP-β-CD) hydroxypropyl-γ-cyclodextrin (HP-γ-CD), methyl-β-cyclodextrin (M-β-CD) and sulfabutylether-β-cyclodextrin (SBE-β-CD) were formulated. Characterization studies revealed that inclusion complexes were formulated successfully with lyophilization method. Aqueous solubility of VOR was enhanced up to 86 fold with the formation of the inclusion complexes. MTT analyses results revealed the safety of the complexes on 3T3 mouse fibroblast cell lines while Microbroth Dilution Method revealed the remarkable antifungal activities of the complexes. Analyses results revealed that inclusion complexes will overcome the poor ocular bioavailability of VOR resulting in efficient treatment of severe ocular fungal infections.
Collapse
Affiliation(s)
- Ebru BaŞaran
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Kadir AykaÇ
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Evrim Yenİlmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülay BÜyÜkkÖroĞlu
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Yağmur Tunali
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Müzeyyen Demİrel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
31
|
Chaudhari P, Naik R, Sruthi Mallela L, Roy S, Birangal S, Ghate V, Balladka Kunhanna S, Lewis SA. A supramolecular thermosensitive gel of ketoconazole for ocular applications: In silico, in vitro, and ex vivo studies. Int J Pharm 2021; 613:121409. [PMID: 34952148 DOI: 10.1016/j.ijpharm.2021.121409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/04/2021] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
Abstract
The incidence of corneal fungal infections continues to be a growing concern worldwide. Ocular delivery of anti-fungal drugs is challenging due to the anatomical and physiological barriers of the eye. The ocular bioavailability of ketoconazole (KTZ), a widely prescribed antifungal agent, is hampered by its limited aqueous solubility and permeation. In the study, the physicochemical properties of KTZ were improved by complexation with sulfobutylether-β-cyclodextrin (SBE-β-CD).KTZ-SBE-β-CD complex was studied in silico with docking and dynamics simulations, followed by wet-lab experiments.The optimized KTZ-SBE-β-CD complex was loaded into a thermosensitivein situ gel to increase corneal bioavailability. The supramolecular complex increased the solubility of KTZ by 5-folds and exhibited a 10-fold increment in drug release compared to the pure KTZ. Owing to the diffusion, thein situ gel exhibited a more sustained drug release profile. Theex vivocorneal permeation studies showed higher permeation from KTZ-SBE-β-CD in situ gel (flux of ∼19.11 µg/cm2/h) than KTZin situ gel (flux of ∼1.17 µg/cm2/h). The cytotoxicity assays and the hen's egg chorioallantoic membrane assay (HET-CAM) confirmed the formulations' safety and non-irritancy. In silico guided design of KTZ-SBE-β-CD inclusion complexes successfully modified the physicochemical properties of KTZ. In addition, the loading of the KTZ-SBE-β-CD complex into an in situ gel significantly increased the precorneal retention and permeation of KTZ, indicating that the developed formulation is a viable modality to treat fungal keratitis.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Ranjitha Naik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Lakshmi Sruthi Mallela
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, India
| | - Sumit Birangal
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Vivek Ghate
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sarojini Balladka Kunhanna
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Mangalore 574199, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
32
|
Fungal keratitis infected eye treatment with antibiotic-loaded zinc ions tagged polyvinyl acetate phthalate-g-polypyrrole drug carrier. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
34
|
Ibrahim TM, El-Megrab NA, El-Nahas HM. An overview of PLGA in-situ forming implants based on solvent exchange technique: effect of formulation components and characterization. Pharm Dev Technol 2021; 26:709-728. [PMID: 34176433 DOI: 10.1080/10837450.2021.1944207] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
As a result of the low oral bioavailability of several drugs, there is a renewed interest for parenteral administration to target their absorption directly into the blood bypassing the long gastrointestinal route and hepatic metabolism. In order to address the potential side effects of frequent injections, sustained release systems are the most popular approaches for achieving controlled long-acting drug delivery. Injectable in-situ forming implants (ISFIs) have gained greater popularity in comparison to other sustained systems. Their significant positive aspects are attributed to easier production, acceptable administration route, reduced dosing frequency and patient compliance achievement. ISFI systems, comprising biodegradable polymers such as poly (lactide-co-glycolide) (PLGA) based on solvent exchange mechanisms, are emerged as liquid formulations that develop solid or semisolid depots after injection and deliver drugs over extended periods. The drug release from ISFI systems is generally characterized by an initial burst during the matrix solidification, followed by diffusion processes and finally polymeric degradation and erosion. The choice of suitable solvent with satisfactory viscosity, miscibility and biocompatibility along with considerable PLGA hydrophobicity and molecular weights is fundamental for optimizing the drug release. This overview gives a particular emphasis on evaluations and the wide ranges of requirements needed to achieve reasonable physicochemical characteristics of ISFIs.
Collapse
Affiliation(s)
| | - Nagia Ahmed El-Megrab
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | |
Collapse
|
35
|
Constantinou AP, Georgiou TK. Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: a review. POLYM INT 2021. [DOI: 10.1002/pi.6266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Anna P Constantinou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| | - Theoni K Georgiou
- Department of Materials Imperial College London, South Kensington Campus, Royal School of Mines London UK
| |
Collapse
|
36
|
Samimi MS, Mahboobian MM, Mohammadi M. Ocular toxicity assessment of nanoemulsion in-situ gel formulation of fluconazole. Hum Exp Toxicol 2021; 40:2039-2047. [PMID: 34036827 DOI: 10.1177/09603271211017314] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Fluconazole is an effective anti-fungal drug. Due to the limitations of fluconazole, such as poor water solubility and consequently low ocular bioavailability, an optimized fluconazole nanoemulsion in-situ gel formulation (temperature-sensitive) was developed. METHODS AND MATERIALS To verify formulation's safety for ophthalmic use, preparation was tested for potential ocular toxicity using a cell viability assay on retinal cells. The hen's egg test-chorioallantoic membrane (HET-CAM), as a borderline test between in vivo and in vitro techniques, was chosen for investigating the irritation potential of the formulation. HET-CAM test was done by adding the formulation directly to the CAM surface and monitoring the vessels visually in terms of irritation reactions. Eye tolerance was determined using the modified Draize test. RESULTS Viability assay on retinal cells displayed that fluconazole nanoemulsion in-situ gel formulation was non-toxic and can be safely used in the eye at concentrations of 0.1% and 0.5%. HET-CAM and Draize tests revealed that optimized formulation of fluconazole did not result in any irritation and was considered non-irritant and well-tolerated for ocular use. CONCLUSION Regarding to the findings of the three mentioned methods, fluconazole nanoemulsion in-situ gel formulation is harmless and as a proper and safe alternative, can be considered for ocular delivery of fluconazole in the future.
Collapse
Affiliation(s)
- M S Samimi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - M M Mahboobian
- Department of Pharmaceutics, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| | - M Mohammadi
- Department of Pharmacology and Toxicology, School of Pharmacy, 48430Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv Transl Res 2021; 11:1352-1375. [PMID: 33840082 DOI: 10.1007/s13346-021-00966-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Ocular infection induced by bacteria and fungi is a major cause of visual impairment and blindness. Topical administration of antibiotics remains the first-line treatment, as effective eradication of pathogens is the core of the anti-infection strategy. Whereas, eye drops lack efficiency and have relatively low bioavailability. Intraocular injection may cause concurrent ocular damage and secondary infection. In addition, antibiotic-based management can be limited by the low sensitivity to multidrug-resistant bacteria. Nanomedicine is proposed as a prospective, effective, and noninvasive platform to mediate ocular delivery and combat pathogen or even resistant strains. Nanomedicine can not only carry antimicrobial agents to fight against pathogens but also directly active microbicidal capability, killing pathogens. More importantly, by modification, nanomedicine can achieve enhanced residence time and release time on the cornea, and easy penetration through corneal tissues into anterior and posterior segments of the eye, thus improving the therapeutic effect for ocular infection. In this review, several categories of antimicrobial nanomedicine are systematically discussed, where the efficiency and possibility of further embellishment and improvement to adapt to clinical use are also investigated. All in all, novel antimicrobial nanomedicine provides potent and prospective ways to manage severe and refractory ocular infections.
Collapse
|
38
|
Mucoadhesive Poloxamer-Based Hydrogels for the Release of HP-β-CD-Complexed Dexamethasone in the Treatment of Buccal Diseases. Pharmaceutics 2021; 13:pharmaceutics13010117. [PMID: 33477667 PMCID: PMC7831945 DOI: 10.3390/pharmaceutics13010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/17/2022] Open
Abstract
Oral lichen planus (OLP) is an ongoing and chronic inflammatory disease affecting the mucous membrane of the oral cavity. Currently, the treatment of choice consists in the direct application into the buccal cavity of semisolid formulations containing a corticosteroid molecule to decrease inflammatory signs and symptoms. However, this administration route has shown various disadvantages limiting its clinical use and efficacy. Indeed, the frequency of application and the incorrect use of the preparation may lead to a poor efficacy and limit the treatment compliance. Furthermore, the saliva clearance and the mechanical stress present in the buccal cavity also involve a decrease in the mucosal exposure to the drug. In this context, the design of a new pharmaceutical formulation, containing a steroidal anti-inflammatory, mucoadhesive, sprayable and exhibiting a sustained and controlled release seems to be suitable to overcome the main limitations of the existing pharmaceutical dosage forms. The present work reports the formulation, optimization and evaluation of the mucoadhesive and release properties of a poloxamer 407 thermosensitive hydrogel containing a poorly water-soluble corticosteroid, dexamethasone acetate (DMA), threaded into hydroxypropyl-beta-cyclodextrin (HP-β-CD) molecules. Firstly, physicochemical properties were assessed to ensure suitable complexation of DMA into HP-β-CD cavities. Then, rheological properties, in the presence and absence of various mucoadhesive agents, were determined and optimized. The hydration ratio (0.218-0.191), the poloxamer 407 (15-17 wt%) percentage and liquid-cyclodextrin state were optimized as a function of the gelation transition temperature, viscoelastic behavior and dynamic flow viscosity. Deformation and resistance properties were evaluated in the presence of various mucoadhesive compounds, being the sodium alginate and xanthan gum the most suitable to improve adhesion and mucoadhesion properties. Xanthan gum was shown as the best agent prolonging the hydrogel retention time up to 45 min. Furthermore, xanthan gum has been found as a relevant polymer matrix controlling drug release by diffusion and swelling processes in order to achieve therapeutic concentration for prolonged periods of time.
Collapse
|
39
|
Elkomy MH, Elmowafy M, Shalaby K, Azmy AF, Ahmad N, Zafar A, Eid HM. Development and machine-learning optimization of mucoadhesive nanostructured lipid carriers loaded with fluconazole for treatment of oral candidiasis. Drug Dev Ind Pharm 2021; 47:246-258. [PMID: 33416006 DOI: 10.1080/03639045.2020.1871005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this work was to prepare and optimize mucoadhesive nanostructured lipid carrier (NLC) impregnated with fluconazole for better management of oral candidiasis. The NLCs were fabricated using an emulsification/sonication technique. The nanoparticles consisted of stearic acid, oleic acid, Pluronic F127, and lecithin. Box-Behnken design, artificial neural networking, and variable weight desirability were employed to optimize the joint effect of drug concentration in the drug/lipid mixture, solid lipid concentration in the solid/liquid lipid mixture, and surfactant concentration in the total mixture on size and entrapment. The optimized NLCs were coated with chitosan. The nanoparticles were characterized by surface charge, spectroscopic, thermal, morphological, mucoadhesion, release, histopathological, and antifungal properties. The nanoparticles are characterized by a particle size of 335 ± 13.5 nm, entrapment efficiency of 73.1 ± 4.9%, sustained release, minor histopathological effects on rabbit oral mucosa, and higher fungal inhibition efficiency for an extended period of time compared with fluconazole solution. Coating the nanoparticles with chitosan increased its adhesion to rabbit oral buccal mucosa and improved its anti-candidiasis activity. It is concluded that mucoadhesive lipid-based nanoparticles amplify the effect of fluconazole on Candida albicans in vitro. This finding warrants pre-clinical and clinical studies in oral candidiasis disease models to corroborate in vitro findings.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy (Boys), Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy (Boys), Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ahmed F Azmy
- Faculty of Pharmacy, Department of Microbiology & Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hussein M Eid
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
40
|
Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management. Int J Biol Macromol 2020; 164:1149-1163. [DOI: 10.1016/j.ijbiomac.2020.07.133] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/02/2020] [Accepted: 07/11/2020] [Indexed: 01/01/2023]
|
41
|
Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. J Drug Deliv Sci Technol 2020; 61:102156. [PMID: 33078064 PMCID: PMC7553870 DOI: 10.1016/j.jddst.2020.102156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
We herein disclose how global cyclodextrin-based pharmaceutical technologies have evolved since the early 80s through a 1998 patents dataset retrieved from Derwent Innovation Index. We used text-mining techniques based on the patents semantic content to extract the knowledge contained therein, to analyze technologies related to the principal attributes of CDs: solubility, stability, and taste-masking enhancement. The majority of CDs pharmaceutical technologies are directed toward parenteral aqueous solutions. The development of oral and ocular formulations is rapidly growing, while technologies for nasal and pulmonary routes are emerging and seem to be promising. Formulations for topical, transdermal, vaginal, and rectal routes do not account for a high number of patents, but they may be hiding a great potential, representing opportunity research areas. Certainly, the progress in materials sciences, supramolecular chemistry, and nanotechnology, will influence the trend of that, apparently neglected, research. The bottom line, CDs pharmaceutical technologies are still increasing, and this trend is expected to continue in the coming years. Patent monitoring allows the identification of relevant technologies and trends to prioritize research, development, and investment in both, academia and industry. We expect the scope of this approach to be applied in the pharmaceutical field beyond CDs technological applications.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Yara C Almanza-Arjona
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Ciudad de México, Mexico
| | - Yareli Rojas-Aguirre
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
42
|
Durak S, Esmaeili Rad M, Alp Yetisgin A, Eda Sutova H, Kutlu O, Cetinel S, Zarrabi A. Niosomal Drug Delivery Systems for Ocular Disease-Recent Advances and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1191. [PMID: 32570885 PMCID: PMC7353242 DOI: 10.3390/nano10061191] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 12/11/2022]
Abstract
The eye is a complex organ consisting of several protective barriers and particular defense mechanisms. Since this organ is exposed to various infections, genetic disorders, and visual impairments it is essential to provide necessary drugs through the appropriate delivery routes and vehicles. The topical route of administration, as the most commonly used approach, maybe inefficient due to low drug bioavailability. New generation safe, effective, and targeted drug delivery systems based on nanocarriers have the capability to circumvent limitations associated with the complex anatomy of the eye. Nanotechnology, through various nanoparticles like niosomes, liposomes, micelles, dendrimers, and different polymeric vesicles play an active role in ophthalmology and ocular drug delivery systems. Niosomes, which are nano-vesicles composed of non-ionic surfactants, are emerging nanocarriers in drug delivery applications due to their solution/storage stability and cost-effectiveness. Additionally, they are biocompatible, biodegradable, flexible in structure, and suitable for loading both hydrophobic and hydrophilic drugs. These characteristics make niosomes promising nanocarriers in the treatment of ocular diseases. Hereby, we review niosome based drug delivery approaches in ophthalmology starting with different preparation methods of niosomes, drug loading/release mechanisms, characterization techniques of niosome nanocarriers and eventually successful applications in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Saliha Durak
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Monireh Esmaeili Rad
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Abuzer Alp Yetisgin
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Materials Science and Nano-Engineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Hande Eda Sutova
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey; (S.D.); (M.E.R.); (A.A.Y.); (H.E.S.); (O.K.)
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| |
Collapse
|
43
|
Salama AH, Elmotasem H, Salama AAA. Nanotechnology based blended chitosan-pectin hybrid for safe and efficient consolidative antiemetic and neuro-protective effect of meclizine hydrochloride in chemotherapy induced emesis. Int J Pharm 2020; 584:119411. [PMID: 32423876 DOI: 10.1016/j.ijpharm.2020.119411] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
Abstract
The aim of this study was to formulate an easily-administered, safe and effective dosage form loaded with meclizine for treatment of chemotherapy-induced nausea and vomiting (CINV) through the buccal route. CINV comprises bothersome side effects accompanying cytotoxic drugs administration in cancer patients. Meclizine was loaded in chitosan-pectin nanoparticles which were further incorporated within a buccal film. Different formulations were prepared based on a 21.31 full factorial study using Design Expert®8. The optimum formulation possessed favorable characters regarding its particle size (129 nm), entrapment efficiency (90%) and release profile. Moreover, its permeation efficiency through sheep buccal mucosa was assessed via Franz cell diffusion and confocal laser microscopy methods. Enhanced permeation was achieved compared with the free drug form. In-vivo performance was assessed using cyclophosphamide induced emesis. The proposed formulation exerted significant relief of the measured responses (reduced body weight and motor coordination, elevated emesis, anorexia, proinflammatory mediators and neurotransmitters that were also associated with scattered degenerated neurons and glial cells). The developed formulation ameliorated all behavioral, biochemical and histopathological changes induced by cyclophosphamide. The obtained data were promising suggesting that our bioadhesive formulation can offer an auspicious medication for treating distressing symptoms associated with chemotherapy for cancer patients.
Collapse
Affiliation(s)
- Alaa H Salama
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Ahram Canadian University, 6(th) of October City, Cairo, Egypt.
| | - Heba Elmotasem
- Pharmaceutical Technology Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Abeer A A Salama
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|