1
|
Zhong W, Xu Y, Wang Z, Wang X, Li Y, Liu J, Zhao C, Shi X, He Z, Sun B, Tian C. Dual role of triglyceride structures facilitates anti-tumor drug delivery: Both as a self-assembling module and a responsive module. J Colloid Interface Sci 2025; 678:24-34. [PMID: 39277950 DOI: 10.1016/j.jcis.2024.09.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Small molecule prodrugs self-assembled nano-delivery systems with tumor responsive linkages are emerging as an effective platform. However, the heterogeneity of tumor microenvironment may limit the anti-tumor effect of prodrug nanomedicines with a single response module. Here, we chose disulfide bond as the response module and branched chain alcohol as the self-assembly modification module to construct a single-responsive prodrug. We also constructed a double-responsive paclitaxel prodrug combining triglyceride and disulfide bond, taking into account of the highly expressed lipase and glutathione levels in tumor cells. The results showed that the anti-tumor effect of single-responsive branched chain alcohol modified prodrug nanoparticles was inferior to triglyceride prodrug nanoparticles with dual response modules. The triglyceride structure can not only serve as a self-assembly modification module, but also serve as a response module for intelligent drug release in tumor. Such dual roles will facilitate the efficient delivery of small molecule self-assembled prodrugs to tumor sites.
Collapse
Affiliation(s)
- Wenxin Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Yalin Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Zixuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiyan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaqi Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jinrui Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Can Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning 110016, China.
| |
Collapse
|
2
|
Guo J, Zhang X, Dong F, Wang S, Wang D, Li Y, Zuo S, Wang Q, Li W, Sun J, He Z, Zhang T, Jiang Q, Sun B. Revealing the impact of modified modules flexibility on gemcitabine prodrug nanoassemblies for effective cancer therapy. J Colloid Interface Sci 2025; 677:941-952. [PMID: 39128288 DOI: 10.1016/j.jcis.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Prodrug nanoassemblies combine the advantages of prodrug strategies and nanotechnology have been widely utilized for delivering antitumor drugs. These prodrugs typically comprise active drug modules, response modules, and modification modules. Among them, the modification modules play a critical factor in improving the self-assembly ability of the parent drug. However, the impact of the specific structure of the modification modules on prodrug self-assembly remains elusive. In this study, two gemcitabine (GEM) prodrugs are developed using 2-octyl-1-dodecanol (OD) as flexible modification modules and cholesterol (CLS) as rigid modification modules. Interestingly, the differences in the chemical structure of modification modules significantly affect the assembly performance, drug release, cytotoxicity, tumor accumulation, and antitumor efficacy of prodrug nanoassemblies. It is noteworthy that the prodrug nanoassemblies constructed with flexible modifying chains (OD) exhibit improved stability, faster drug release, and enhanced antitumor effects. Our findings elucidate the significant impact of modification modules on the construction of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Jiayu Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoxiao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fudan Dong
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Simeng Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tianhong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
3
|
Yang L, Zhang Y, Lai Y, Xu W, Lei S, Chen G, Wang Z. A computer-aided, heterodimer-based "triadic" carrier-free drug delivery platform to mitigate multidrug resistance in lung cancer and enhance efficiency. J Colloid Interface Sci 2025; 677:523-540. [PMID: 39154445 DOI: 10.1016/j.jcis.2024.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
Co-delivering multiple drugs or circumventing the drug efflux mechanism can significantly decrease multidrug resistance (MDR), a major cause of cancer treatment failure. In this study, we designed and fabricated a universal "three-in-one" self-delivery system for synergistic cancer therapy using a computer-aided strategy. First, we engineered two glutathione (GSH)-responsive heterodimers, ERL-SS-CPT (erlotinib [ERL] linked with camptothecin [CPT] via a disulfide bond [SS]) and CPT-SS-ERI (CPT conjugated with erianin [ERI]), which serve as both cargo and carrier material. Next, molecular dynamics simulations indicated that multiple noncovalent molecular forces, including π-π stacking, hydrogen bonds, hydrophobic interactions, and sulfur bonds, drive the self-assembly process of these heterodimers. We then explored the universality of the heterodimers and developed a "triadic" drug delivery platform comprising 40 variants. Subsequently, we conducted case studies on docetaxel (DTX)-loaded ERL-SS-CPT nanoparticles (denoted as DTX@ERL-SS-CPT NPs) and curcumin (CUR)-loaded ERL-SS-CPT NPs (identified as CUR@CPT-SS-ERI NPs) to comprehensively investigate their self-assembly mechanism, physicochemical properties, storage stability, GSH-responsive drug release, cellular uptake, apoptosis effects, biocompatibility, and cytotoxicity. Both NPs exhibited well-defined spherical structures, high drug loading rates, and excellent storage stability. DTX@ERL-SS-CPT NPs exhibited the strongest cytotoxicity in A549 cells, following the order of DTX@ERL-SS-CPT NPs > ERL-SS-CPT NPs > CPT > DTX > ERL. Conversely, DTX@ERL-SS-CPT NPs showed negligible cytotoxicity in normal human bronchial epithelium cell line (BEAS-2B), indicating good biocompatibility and safety. Similar observations were made for CUR@CPT-SS-ERI NPs regarding biocompatibility and cytotoxicity. Upon endocytosis and encountering intracellular overexpressed GSH, the disulfide-bond linker is cleaved, resulting in the release of the versatile NPs into three parts. The spherical NPs enhance water solubility, reduce the required dosage of free drugs, and increase cellular drug accumulation while suppressing P-glycoprotein (P-gp) expression, leading to apoptosis. This work provides a computer-aided universal strategy-a heterodimer-based "triadic" drug delivery platform-to enhance anticancer efficiency while reducing multidrug resistance.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China; Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yingying Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Yuxin Lai
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Wenjing Xu
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Shizeng Lei
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Guixiang Chen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus, Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
4
|
Li Y, Sun Y, Wang Q, Wang S, Liu C, Huang Y, Zhong W, Wang X, Wang W, Zuo S, Shi X, Pu X, Sun J, He Z, Sun B. Hydrophilic Ethylene Glycol Fragments: A Determinant Affecting the Therapeutic Index of Paclitaxel Prodrug Nanoassemblies. ACS CENTRAL SCIENCE 2024; 10:2253-2265. [PMID: 39735304 PMCID: PMC11672549 DOI: 10.1021/acscentsci.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/22/2024] [Accepted: 11/08/2024] [Indexed: 12/31/2024]
Abstract
Prodrug-based nanoassemblies are promising platforms for cancer therapy. Prodrugs typically consist of three main components: drug modules, intelligent response modules, and modification modules. However, the available modification modules are usually hydrophobic aliphatic side chains, which affect the activation efficiency of the prodrugs. Herein, hydrophilic ethylene glycol fragments were inserted between the modification modules and the response modules, and the important effects of hydrophilic fragments on the assembly, drug release, and therapeutic index of the prodrugs were investigated. Notably, the introduction of hydrophilic fragments affected the intermolecular forces of the prodrugs and increased the interaction of hydrogen bonding. In addition, hydrophilic fragments significantly improved the redox drug release profiles, which affected the therapeutic index of the prodrug nanoassemblies. PTX-SS-OA NPs with hydrophilic fragments exhibited increased redox sensitivity, enhanced cytotoxicity, and superior antitumor efficacy. In comparison, PTX-SS-OAL NPs without hydrophilic fragments showed limited redox sensitivity and cytotoxicity but displayed better safety. Overall, the hydrophilic fragment is a critical determinant in modulating the therapeutic index of the prodrug nanoassemblies, which contributes to the development of advanced prodrug nanodelivery systems.
Collapse
Affiliation(s)
- Yaqi Li
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixin Sun
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qing Wang
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuo Wang
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Cuiyun Liu
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuetong Huang
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenxin Zhong
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiyan Wang
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjing Wang
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shiyi Zuo
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School
of Chemical Engineering, The University
of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xianbao Shi
- Department
of Pharmacy, The First Affiliated Hospital
of Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaohui Pu
- State
Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Avenue, Kaifeng 475004, China
| | - Jin Sun
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Joint
International Research Laboratory of Intelligent Drug Delivery Systems,
Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Joint
International Research Laboratory of Intelligent Drug Delivery Systems,
Ministry of Education, Shenyang 110016, China
- State
Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Avenue, Kaifeng 475004, China
| | - Bingjun Sun
- Department
of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- Joint
International Research Laboratory of Intelligent Drug Delivery Systems,
Ministry of Education, Shenyang 110016, China
| |
Collapse
|
5
|
Yang C, Zhao Y, Jiao Y, Yang L, He B, Dai W, Zhang H, Zhang Q, Wang X. Organelle-Level Trafficking and Metabolism Kinetics for Redox-Responsive Paclitaxel Prodrug Nanoparticles Characterized by Experimental and Modeling Analysis. ACS NANO 2024. [PMID: 39688493 DOI: 10.1021/acsnano.4c09704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Redox-responsive self-assembled prodrug nanoparticles have received extensive attention for their high loading efficiency and environmentally responsive properties. However, the intracellular metabolism and transportation kinetics were poorly understood, which limited the rational design and development of this delivery system. Herein, tetraphenylporphyrin-paclitaxel (TxP) prodrugs with thioether, disulfide, and dicarbon linkers (TsP, TssP, and TccP) were synthesized and self-assembled as nanoparticles. The redox responsiveness was investigated both in the simulated medium and in tumor cells via mass spectrometry. TxP NP and PTX concentrations in 4T1 whole cells, endosomal systems, and cytoplasm over time were quantified by UPLC-MS/MS and modeled using the nonlinear mixed effect (NLME) approach. Cytotoxicity was studied in 4T1 and MCF-7 cell lines, and antitumor efficacy was analyzed in 4T1 tumor-bearing mice. Mass spectrometry identified both oxidative and reductive metabolites in redox simulants for TssP NPs and TsP NPs. In 4T1 cells, only reductive metabolites for TssP NPs were detected, while both oxidative and reductive metabolites for TsP NPs were detected. The developed subcellular pharmacokinetic model suggested that the estimated metabolism rates of TxP NPs in endosomal systems were 10 to 27 times of the rates in cytoplasm, indicating that endosomal systems were the dominant place for intracellular metabolism. These rates were numerically higher for TsP NPs than TssP NPs in endosomal systems (1.7-fold) and the cytoplasm (2.5-fold). The internalization of nanoparticles was identified to be slow (kmax,int, 0.015 h-1) and saturable. The transportation rate constant across the endosomal membranes was fast for PTX (27.1 h-1) and slow for TxP NPs (0.098 h-1). TsP and TssP NPs had comparable in vivo antitumor efficacy, which was higher than that of TccP NPs. This study quantified the organelle-level transportation and metabolism kinetics for three prodrug nanoparticles with redox-responsive or inert linkers using a combined experimental and modeling approach. These findings and the modeling framework might inform future studies for redox-responsive prodrug design and drug delivery systems.
Collapse
Affiliation(s)
- Canyu Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yao Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanyuan Jiao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pharmacy, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Long Yang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Wang D, Huang Y, Yuan J, Wang S, Sheng J, Zhao Y, Zhang H, Wang X, Yu Y, Shi X, He Z, Liu T, Sun B, Sun J. Exploring the optimal chain length of modification module in disulfide bond bridged paclitaxel prodrug nanoassemblies for breast tumor treatment. J Control Release 2024; 375:47-59. [PMID: 39222794 DOI: 10.1016/j.jconrel.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
In the prodrug-based self-assembled nanoassemblies, prodrugs usually consist of drug modules, response modules, and modification modules. Modification modules play a critical role in regulating the nano-assembly ability of the prodrugs. Herein, we carried out a "fatty alcoholization" strategy and chose various lengths of aliphatic alcohol chains (AC) as modification modules to construct disulfide bond bridged paclitaxel (PTX) prodrug nanoassemblies. The PTX-AC prodrugs would self-assemble into nanoassemblies (PTX-AC PNs) with higher drug loading, stability, and tumor selectivity than commercial preparations. After comprehensive exploration, we found the chain length (AC12, AC16, AC20, AC24) of modification modules affected the assembly of PTX-AC PNs, further leading to disparate in vivo fate and antitumor efficacy. With the increase of the chain length of the modification modules (from AC12 to AC20), the assembly ability of the nanoassemblies was improved, attributed to the appropriate enhancement of hydrophobic force. When the chain length was further increased to AC24, the excessive hydrophobic force will lead to the aggregation of prodrugs and weaken the assembly ability. Therefore, PTX-AC20 PNs with proper chain length may solve the paradox of efficacy and tolerance in 4 T1 breast tumor owing to their optimal nano-assembly stability and modest redox-sensitivity. In short, this work highlighted the importance of screening optimal modification modules in developing prodrug nanoassemblies.
Collapse
Affiliation(s)
- Danping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jun Yuan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzhe Sheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingjie Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hao Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
7
|
Zhang H, Liu T, Sun Y, Wang S, Wang W, Kuang Z, Duan M, Du T, Liu M, Wu L, Sun F, Sheng J, He Z, Sun J. Carbon-Spaced Tandem-Disulfide Bond Bridge Design Addresses Limitations of Homodimer Prodrug Nanoassemblies: Enhancing Both Stability and Activatability. J Am Chem Soc 2024; 146:22675-22688. [PMID: 39088029 DOI: 10.1021/jacs.4c07312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Redox-responsive homodimer prodrug nanoassemblies (RHPNs) have emerged as a significant technology for overcoming chemotherapeutical limitations due to their high drug-loading capacity, low excipient-associated toxicity, and straightforward preparation method. Previous studies indicated that α-position disulfide bond bridged RHPNs exhibited rapid drug release rates but unsatisfactory assembly stability. In contrast, γ-disulfide bond bridged RHPNs showed better assembly stability but low drug release rates. Therefore, designing chemical linkages that ensure both stable assembly and rapid drug release remains challenging. To address this paradox of stable assembly and rapid drug release in RHPNs, we developed carbon-spaced double-disulfide bond (CSDD)-bridged RHPNs (CSDD-RHPNs) with two carbon-spaces. Pilot studies showed that CSDD-RHPNs with two carbon-spaces exhibited enhanced assembly stability, reduction-responsive drug release, and improved selective toxicity compared to α-/γ-position single disulfide bond bridged RHPNs. Based on these findings, CSDD-RHPNs with four and six carbon-spaces were designed to further investigate the properties of CSDD-RHPNs. These CSDD-RHPNs exhibited excellent assembly ability, safety, and prolonged circulation. Particularly, CSDD-RHPNs with two carbon-spaces displayed the best antitumor efficacy on 4T1 and B16-F10 tumor-bearing mice. CSDD chemical linkages offer novel perspectives on the rational design of RHPNs, potentially overcoming the design limitations regarding contradictory assembly ability and drug release rate.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Yitong Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenjing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhiyu Kuang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengyuan Duan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tengda Du
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengyu Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Linsheng Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fei Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingzhe Sheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
8
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Liu X, Zhang J, Zheng S, Li M, Xu W, Shi J, Kamei KI, Tian C. Hybrid adipocyte-derived exosome nano platform for potent chemo-phototherapy in targeted hepatocellular carcinoma. J Control Release 2024; 370:168-181. [PMID: 38643936 DOI: 10.1016/j.jconrel.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/19/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The high prevalence and severity of hepatocellular carcinoma (HCC) present a significant menace to human health. Despite the significant advancements in nanotechnology-driven antineoplastic agents, there remains a conspicuous gap in the development of targeted chemotherapeutic agents specifically designed for HCC. Consequently, there is an urgent need to explore potent drug delivery systems for effective HCC treatment. Here we have exploited the interplay between HCC and adipocyte to engineer a hybrid adipocyte-derived exosome platform, serving as a versatile vehicle to specifically target HCC and exsert potent antitumor effect. A lipid-like prodrug of docetaxel (DSTG) with a reactive oxygen species (ROS)-cleavable linker, and a lipid-conjugated photosensitizer (PPLA), spontaneously co-assemble into nanoparticles, functioning as the lipid cores of the hybrid exosomes (HEMPs and NEMPs). These nanoparticles are further encapsuled within adipocyte-derived exosome membranes, enhancing their affinity towards HCC cancer cells. As such, cancer cell uptakes of hybrid exosomes are increased up to 5.73-fold compared to lipid core nanoparticles. Our in vitro and in vivo experiments have demonstrated that HEMPs not only enhance the bioactivity of the prodrug and extend its circulation in the bloodstream but also effectively inhibit tumor growth by selectively targeting hepatocellular carcinoma tumor cells. Self-facilitated synergistic drug release subsequently promoting antitumor efficacy, inducing significant inhibition of tumor growth with minimal side effects. Our findings herald a promising direction for the development of targeted HCC therapeutics.
Collapse
Affiliation(s)
- Xinying Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jiaxin Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Shunzhe Zheng
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Meng Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Wenqian Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Jianbin Shi
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ken-Ichiro Kamei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan; Program of Biology, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Program of Bioengineering, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates; Department of Biomedical Engineering, Tandon School of Engineering, New York University, MetroTech, Brooklyn, NY 11201, United States of America.
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, PR China; Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, PR China.
| |
Collapse
|
10
|
Yang C, Liu P. Disulfide/α-Amide-Bridged Doxorubicin Dimeric Prodrug: Effect of Aggregation Structures on pH/GSH Dual-Triggered Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11098-11105. [PMID: 38739904 DOI: 10.1021/acs.langmuir.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.
Collapse
Affiliation(s)
- Chen Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Zhang M, Miao Y, Zhao C, Liu T, Wang X, Wang Z, Zhong W, He Z, Tian C, Sun J. Fine-tuning the activation behaviors of ternary modular cabazitaxel prodrugs for efficient and on-target oral anti-cancer therapy. Asian J Pharm Sci 2024; 19:100908. [PMID: 38623486 PMCID: PMC11017284 DOI: 10.1016/j.ajps.2024.100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/27/2024] [Accepted: 02/25/2024] [Indexed: 04/17/2024] Open
Abstract
The disulfide bond plays a crucial role in the design of anti-tumor prodrugs due to its exceptional tumor-specific redox responsiveness. However, premature breaking of disulfide bonds is triggered by small amounts of reducing substances (e.g., ascorbic acid, glutathione, uric acid and tea polyphenols) in the systemic circulation. This may lead to toxicity, particularly in oral prodrugs that require more frequent and high-dose treatments. Fine-tuning the activation kinetics of these prodrugs is a promising prospect for more efficient on-target cancer therapies. In this study, disulfide, steric disulfide, and ester bonds were used to bridge cabazitaxel (CTX) to an intestinal lymph vessel-directed triglyceride (TG) module. Then, synthetic prodrugs were efficiently incorporated into self-nanoemulsifying drug delivery system (corn oil and Maisine CC were used as the oil phase and Cremophor EL as the surfactant). All three prodrugs had excellent gastric stability and intestinal permeability. The oral bioavailability of the disulfide bond-based prodrugs (CTX-(C)S-(C)S-TG and CTX-S-S-TG) was 11.5- and 19.1-fold higher than that of the CTX solution, respectively, demonstrating good oral delivery efficiency. However, the excessive reduction sensitivity of the disulfide bond resulted in lower plasma stability and safety of CTX-S-S-TG than that of CTX-(C)S-(C)S-TG. Moreover, introducing steric hindrance into disulfide bonds could also modulate drug release and cytotoxicity, significantly improving the anti-tumor activity even compared to that of intravenous CTX solution at half dosage while minimizing off-target adverse effects. Our findings provide insights into the design and fine-tuning of different disulfide bond-based linkers, which may help identify oral prodrugs with more potent therapeutic efficacy and safety for cancer therapy.
Collapse
Affiliation(s)
- Mingyang Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yifan Miao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Can Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tong Liu
- Liaoning Provincial Institute of Drug Inspection and Testing, Shenyang 110036, China
| | - Xiyan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zixuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxin Zhong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, Hangzhou 310058, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
12
|
Zhang B, Li L, Huang M, Zhao E, Li Y, Sun J, He Z, Fu C, Liu G, Sun B. Probing the Impact of Surface Functionalization Module on the Performance of Mitoxantrone Prodrug Nanoassemblies: Improving the Effectiveness and Safety. NANO LETTERS 2024; 24:3759-3767. [PMID: 38478977 DOI: 10.1021/acs.nanolett.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Prodrug nanoassemblies are emerging as a novel drug delivery system for chemotherapy, comprising four fundamental modules: a drug module, a modification module, a response module, and a surface functionalization module. Among these modules, surface functionalization is an essential process to enhance the biocompatibility and stability of the nanoassemblies. Here, we selected mitoxantrone (MTO) as the drug module and DSPE-PEG2K as surface functionalization module to develop MTO prodrug nanoassemblies. We systematically evaluated the effect of surface functionalization module ratios (10%, 20%, 40%, and 60% of prodrug, WDSPE-mPEG2000/Wprodrug) on the prodrug nanoassemblies. The results indicated that 40% NPs significantly improved the self-assembly stability and cellular uptake of prodrug nanoassemblies. Compared with MTO solution, 40% NPs showed better tumor specificity and pharmacokinetics, resulting in potent antitumor activity with a good safety profile. These findings highlighted the pivotal role of the surface functionalization module in regulating the performance of mitoxantrone prodrug nanoassemblies for cancer treatment.
Collapse
Affiliation(s)
- Bowen Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Minglong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Erwei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yaqiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Chunwang Fu
- Shenyang Xingqi Pharmaceutical Co., Ltd., Shenyang 110162, China
| | - Guojie Liu
- Department of Chemistry, China Medical University School of Forensic Medicine, Shenyang 110122, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
13
|
Zuo S, Liu T, Li L, Xu H, Guo J, Wang Q, Yang Y, He Z, Sun J, Sun B. Tetrasulfide bond boosts the anti-tumor efficacy of dimeric prodrug nanoassemblies. Cell Rep Med 2024; 5:101432. [PMID: 38387464 PMCID: PMC10982979 DOI: 10.1016/j.xcrm.2024.101432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024]
Abstract
Dimeric prodrug nanoassemblies (DPNAs) stand out as promising strategies for improving the efficiency and safety of chemotherapeutic drugs. The success of trisulfide bonds (-SSS-) in DPNAs makes polysulfide bonds a worthwhile focus. Here, we explore the comprehensive role of tetrasulfide bonds (-SSSS-) in constructing superior DPNAs. Compared to trisulfide and disulfide bonds, tetrasulfide bonds endow DPNAs with superlative self-assembly stability, prolonged blood circulation, and high tumor accumulation. Notably, the ultra-high reduction responsivity of tetrasulfide bonds make DPNAs a highly selective "tumor bomb" that can be ignited by endogenous reducing agents in tumor cells. Furthermore, we present an "add fuel to the flames" strategy to intensify the reductive stress at tumor sites by replenishing exogenous reducing agents, making considerable progress in selective tumor inhibition. This work elucidates the crucial role of tetrasulfide bonds in establishing intelligent DPNAs, alongside the combination methodology, propelling DPNAs to new heights in potent cancer therapy.
Collapse
Affiliation(s)
- Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Hezhen Xu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jiayu Guo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Qing Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Yinxian Yang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P.R. China.
| |
Collapse
|
14
|
Wang S, Liu T, Huang Y, Du C, Wang D, Wang X, Lv Q, He Z, Zhai Y, Sun B, Sun J. The effect of lengths of branched-chain fatty alcohols on the efficacy and safety of docetaxel-prodrug nanoassemblies. Acta Pharm Sin B 2024; 14:1400-1411. [PMID: 38486988 PMCID: PMC10934334 DOI: 10.1016/j.apsb.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/18/2023] [Accepted: 09/14/2023] [Indexed: 03/17/2024] Open
Abstract
The self-assembly prodrugs are usually consisted of drug modules, activation modules, and assembly modules. Keeping the balance between efficacy and safety by selecting suitable modules remains a challenge for developing prodrug nanoassemblies. This study designed four docetaxel (DTX) prodrugs using disulfide bonds as activation modules and different lengths of branched-chain fatty alcohols as assembly modules (C16, C18, C20, and C24). The lengths of the assembly modules determined the self-assembly ability of prodrugs and affected the activation modules' sensitivity. The extension of the carbon chains improved the prodrugs' self-assembly ability and pharmacokinetic behavior while reducing the cytotoxicity and increased cumulative toxicity. The use of C20 can balance efficacy and safety. These results provide a great reference for the rational design of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chaoying Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiyan Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Binzhou 256600, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
15
|
Li L, Liu T, Zuo S, Li Y, Zhao E, Lu Q, Wang D, Sun Y, He Z, Sun B, Sun J. Satellite-Type Sulfur Atom Distribution in Trithiocarbonate Bond-Bridged Dimeric Prodrug Nanoassemblies: Achieving Both Stability and Activatability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310633. [PMID: 37983894 DOI: 10.1002/adma.202310633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Homodimeric prodrug nanoassemblies (HDPNs) hold promise for improving the delivery efficiency of chemo-drugs. However, the key challenge lies in designing rational chemical linkers that can simultaneously ensure the chemical stability, self-assembly stability, and site-specific activation of prodrugs. The "in series" increase in sulfur atoms, such as trisulfide bond, can improve the assembly stability of HDPNs to a certain extent, but limits the chemical stability of prodrugs. Herein, trithiocarbonate bond (─SC(S)S─), with a stable "satellite-type" distribution of sulfur atoms, is developed via the insertion of a central carbon atom in trisulfide bonds. ─SC(S)S─ bond effectively addresses the existing predicament of HDPNs by improving the chemical and self-assembly stability of homodimeric prodrugs while maintaining the on-demand bioactivation. Furthermore, ─SC(S)S─ bond inhibits antioxidant defense system, leading to up-regulation of the cellular ROS and apoptosis of tumor cells. These improvements of ─SC(S)S─ bond endow the HDPNs with in vivo longevity and tumor specificity, ultimately enhancing the therapeutic outcomes. ─SC(S)S─ bond is, therefore, promising for overcoming the bottleneck of HDPNs for efficient oncological therapy.
Collapse
Affiliation(s)
- Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yaqiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Erwei Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Danping Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
16
|
Xu H, Zuo S, Wang D, Zhang Y, Li W, Li L, Liu T, Yu Y, Lv Q, He Z, Sun J, Sun B. Cabazitaxel prodrug nanoassemblies with branched chain modifications: Narrowing the gap between efficacy and safety. J Control Release 2023; 360:784-795. [PMID: 37451544 DOI: 10.1016/j.jconrel.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The clinical application of cabazitaxel (CTX) is restricted by severe dose-related toxicity, failing to considering therapeutic efficacy and safety together. Self-assembled prodrugs promote new drug delivery paradigms as they can self-deliver and self-formulate. However, the current studies mainly focused on the use of straight chains to construct self-assembled prodrugs, and the role of branched chains in prodrug nanoassemblies remains to be clarified. In this study, we systematically explored the structure-function relationship of prodrug nanoassemblies using four CTX prodrugs that contained branched chain aliphatic alcohols (BAs) with different alkyl lengths. Overall, CTX-SS-BA20 NPs with the proper alkyl length exhibited significant improvements in both antitumor efficacy and biosafety. Furthermore, compared with straight chain (SC) modified prodrug nanoassemblies (CTX-SS-SC20 NPs), CTX-SS-BA20 NPs still hold great therapeutic promise due to its good biosafety. These findings illustrated the significance of BAs as modified chains in designing prodrug nanoassemblies for narrowing the efficacy-to-safety gap of cancer therapy.
Collapse
Affiliation(s)
- Hezhen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shiyi Zuo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danping Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuanhao Yu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qingzhi Lv
- School of Pharmacy, Binzhou Medical University, Binzhou 256603, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
17
|
Guo X, Wu M, Deng Y, Liu Y, Liu Y, Xu J. Redox-Responsive Lipidic Prodrug Nano-Delivery System Improves Antitumor Effect of Curcumin Derivative C210. Pharmaceutics 2023; 15:pharmaceutics15051546. [PMID: 37242789 DOI: 10.3390/pharmaceutics15051546] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The poor bioavailability of curcumin and its derivatives limits their antitumor efficacy and clinical translation. Although curcumin derivative C210 has more potent antitumor activity than curcumin, it has a similar deficiency to curcumin. In order to improve its bioavailability and accordingly enhance its antitumor activity in vivo, we developed a redox-responsive lipidic prodrug nano-delivery system of C210. Briefly, we synthesized three conjugates of C210 and oleyl alcohol (OA) via different linkages containing single sulfur/disulfide/carbon bonds and prepared their nanoparticles using a nanoprecipitation method. The prodrugs required only a very small amount of DSPE-PEG2000 as a stabilizer to self-assemble in aqueous solution to form nanoparticles (NPs) with a high drug loading capacity (~50%). Among them, the prodrug (single sulfur bond) nanoparticles (C210-S-OA NPs) were the most sensitive to the intracellular redox level of cancer cells; therefore, they could rapidly release C210 in cancer cells and thus had the strongest cytotoxicity to cancer cells. Furthermore, C210-S-OA NPs exerted a dramatic improvement in its pharmacokinetic behavior; that is, the area under the curve (AUC), mean retention time and accumulation in tumor tissue were 10, 7 and 3 folds that of free C210, respectively. Thus, C210-S-OA NPs exhibited the strongest antitumor activity in vivo than C210 or other prodrug NPs in mouse models of breast cancer and liver cancer. The results demonstrated that the novel prodrug self-assembled redox-responsive nano-delivery platform was able to improve the bioavailability and antitumor activity of curcumin derivative C210, which provides a basis for further clinical applications of curcumin and its derivatives.
Collapse
Affiliation(s)
- Xin Guo
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Min Wu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yanping Deng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yan Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Yanpeng Liu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Jianhua Xu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
- Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
18
|
Wang D, Li L, Xu H, Sun Y, Li W, Liu T, Li Y, Shi X, He Z, Zhai Y, Sun B, Sun J. Rational Engineering Docetaxel Prodrug Nanoassemblies: Response Modules Guiding Efficacy Enhancement and Toxicity Reduction. NANO LETTERS 2023; 23:3549-3557. [PMID: 37053460 DOI: 10.1021/acs.nanolett.3c00704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Prodrug-based nanoassemblies have been developed to solve the bottlenecks of chemotherapeutic drugs. The fabricated prodrugs usually consist of active drug modules, response modules, and modification modules. Among three modules, the response modules play a vital role in controlling the intelligent drug release at tumor sites. Herein, various locations of disulfide bond linkages were selected as response modules to construct three Docetaxel (DTX) prodrugs. Interestingly, the small structural difference caused by the length of response modules endowed corresponding prodrug nanoassemblies with unique characteristic. α-DTX-OD nanoparticles (NPs) possessed the advantages of high redox-responsiveness due to their shortest linkages. However, they were too sensitive to retain the intact structure in the blood circulation, leading to severe systematic toxicity. β-DTX-OD NPs significantly improved the pharmacokinetics of DTX but may induce damage to the liver. In comparison, γ-DTX-OD NPs with the longest linkages greatly ameliorated the delivery efficiency of DTX as well as improved DTX's tolerance dose.
Collapse
Affiliation(s)
- Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hezhen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
19
|
Wang X, Liu T, Huang Y, Dong F, Li L, Song J, Zuo S, Zhu Z, Kamei KI, He Z, Sun B, Sun J. Critical roles of linker length in determining the chemical and self-assembly stability of SN38 homodimeric nanoprodrugs. NANOSCALE HORIZONS 2023; 8:235-244. [PMID: 36537183 DOI: 10.1039/d2nh00425a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Homodimeric prodrug nanoassemblies (HDPNs) have been widely studied for efficient cancer therapy by virtue of their ultra-high drug loading and distinct nanostructure. However, the development of SN38 HDPNs is still a great challenge due to the rigid planar aromatic ring structure. Improving the structural flexibility of homodimeric prodrugs by increasing the linker length may be a potential strategy for constructing SN38 HDPNs. Herein, three SN38 homodimeric prodrugs with different linker lengths were synthesized. The number of carbon atoms from the disulfide bond to the adjacent ester bond is 1 (denoted as α-SN38-SS-SN38), 2 (β-SN38-SS-SN38), and 3 (γ-SN38-SS-SN38), respectively. Interestingly, we found that α-SN38-SS-SN38 exhibited extremely low yield and poor chemical stability. Additionally, β-SN38-SS-SN38 demonstrated suitable chemical stability but poor self-assembly stability. In comparison, γ-SN38-SS-SN38 possessed good chemical and self-assembly stability, thereby improving the tumor accumulation and antitumor efficacy of SN38. We developed the SN38 HDPNs for the first time and illustrated the underlying molecular mechanism of increasing the linker length to enhance the chemical and self-assembly stability of homodimeric prodrugs. These findings would provide new insights for the rational design of HDPNs with superior performance.
Collapse
Affiliation(s)
- Xin Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuetong Huang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Fudan Dong
- Henan Provincial People's Hospital, Zhengzhou, 450003, P. R. China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jiaxuan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shiyi Zuo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhengyang Zhu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Ken-Ichiro Kamei
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
20
|
Liu Y, Wang X, Wang Z, Liao R, Qiu Q, Wang Y, Luo C. Reduction-Responsive Stearyl Alcohol-Cabazitaxel Prodrug Nanoassemblies for Cancer Chemotherapy. Pharmaceutics 2023; 15:262. [PMID: 36678891 PMCID: PMC9864162 DOI: 10.3390/pharmaceutics15010262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Cabazitaxel (CTX) has distinct therapeutic merits for advanced and metastatic cancer. However, the present clinical formulation (Jevtana®) has several defects, especially for undesirable tumor-targeting and serious side effects, greatly limiting the therapeutic efficacy. Small-molecule prodrug-based nanoassemblies integrate the advantages of both prodrug strategy and nanotechnology, emerging as a promising treatment modality. Herein, disulfide bonds with different lengths were employed as linkages to elaborately synthesize three redox-sensitive stearyl alcohol (SAT)-CTX prodrug-based nanoassemblies (SAC NPs, SBC NPs and SGC NPs) for seeking optimal chemotherapeutical treatment. All the prodrug-based nanoassemblies exhibited impressive drug-loading efficiency, superior self-assembly capability and excellent colloidal stability. Interestingly, the drug release behaviors of three prodrug-nanoassemblies in the same reductive environment were different owing to tiny changes in the carbon chain length of disulfide bonds, resulting in disparate cytotoxicity effects, pharmacokinetic outcomes and in vivo antitumor efficacies. Among them, SAC NPs displayed rapid drug release, excellent cytotoxicity, long blood circulation and enhanced tumor accumulation, thus showing strong tumor inhibition in the 4T1-bearing mouse model. Our study shed light on the vital role of connecting bonds in designing high-efficiency, low-toxicity prodrug nanoassemblies.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
21
|
Ren G, Li Y, Ping C, Duan D, Li N, Tang J, Wang R, Guo W, Niu X, Ji Q, Zhang G, Wang R, Zhang S. Docetaxel prodrug and hematoporphyrin co-assembled nanoparticles for anti-tumor combination of chemotherapy and photodynamic therapy. Drug Deliv 2022; 29:3358-3369. [PMID: 36397301 PMCID: PMC9848415 DOI: 10.1080/10717544.2022.2147280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To realize the synergistic anti-tumor effect of chemotherapy and photodynamic therapy, the mono sulfide-modified docetaxel (DTX) prodrugs (DSD) provided by our laboratory and hematoporphyrin (HP) were used to physically prepare co-assembled nanoparticles (DSD/HP NPs) by nano-precipitation. For the first time, this study showed its characteristics, in vitro anti-tumor activity, pharmacokinetic behavior in rats, in vivo distribution, and pharmacodynamic effects on 4T1 tumor-bearing Bal b/c mice. DSD/HP NPs optimized by single-factor and response surface optimization had several distinct characteristics. First, it had dark purple appearance with particle size of 105.16 ± 1.24 nm, PDI of 0.168 ± 0.15, entrapment efficiency and drug loading of DSD and HP in DSD/HP NPs of 96.27 ± 1.03% and 97.70 ± 0.20%, 69.22 ± 1.03% and 20.03 ± 3.12%, respectively. Second, it had good stability and could release DTX and HP slowly in the media of pH 7.4 PBS with 10 mM DTT (H2O2). Moreover, DSD/HP NPs along with NiR treatment significantly inhibited 4T1 cells proliferation, and induced more reactive oxygen species and cells apoptosis. In vivo pharmacokinetic and pharmacodynamic studies showed that DSD/HP NPs could prolong the drug circulation time in rats, increase drug distribution in tumor site, obviously inhibit tumor growth, and decrease the exposure of drug to normal tissues. Therefore, DSD/HP NPs as a promising co-assembled nano-drug delivery system could potentially improve the therapeutic efficiency of chemotherapeutic drug and achieve better anti-tumor effects due to the combination of chemotherapy and photodynamic therapy.
Collapse
Affiliation(s)
- Guolian Ren
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,CONTACT Guolian Ren
| | - Yujie Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Canqi Ping
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Danyu Duan
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Ning Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Jiaqi Tang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Rongrong Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Wenju Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,Department of Pharmacy, Shanxi Bethune Hospital, Taiyuan, China
| | - Xiaomin Niu
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Qiuyue Ji
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Guoshun Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Ruili Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China,Shuqiu Zhang School of Pharmacy, Shanxi Medical University, 56 Xinjian South Road, Taiyuan030001, China
| |
Collapse
|
22
|
Liu T, Li L, Wang S, Dong F, Zuo S, Song J, Wang X, Lu Q, Wang H, Zhang H, Cheng M, Liu X, He Z, Sun B, Sun J. Hybrid chalcogen bonds in prodrug nanoassemblies provides dual redox-responsivity in the tumor microenvironment. Nat Commun 2022; 13:7228. [PMID: 36434014 PMCID: PMC9700694 DOI: 10.1038/s41467-022-35033-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022] Open
Abstract
Sulfur bonds, especially trisulfide bond, have been found to ameliorate the self-assembly stability of homodimeric prodrug nanoassemblies and could trigger the sensitive reduction-responsive release of active drugs. However, the antitumor efficacy of homodimeric prodrug nanoassemblies with single reduction-responsivity may be restricted due to the heterogeneous tumor redox microenvironment. Herein, we replace the middle sulfur atom of trisulfide bond with an oxidizing tellurium atom or selenium atom to construct redox dual-responsive sulfur-tellurium-sulfur and sulfur-selenium-sulfur hybrid chalcogen bonds. The hybrid chalcogen bonds, especially the sulfur-tellurium-sulfur bond, exhibit ultrahigh dual-responsivity to both oxidation and reduction conditions, which could effectively address the heterogeneous tumor microenvironment. Moreover, the hybrid sulfur-tellurium-sulfur bond promotes the self-assembly of homodimeric prodrugs by providing strong intermolecular forces and sufficient steric hindrance. The above advantages of sulfur-tellurium-sulfur bridged homodimeric prodrug nanoassemblies result in the improved antitumor efficacy of docetaxel with satisfactory safety. The exploration of hybrid chalcogen bonds in drug delivery deepened insight into the development of prodrug-based chemotherapy to address tumor redox heterogeneity, thus enriching the design theory of prodrug-based nanomedicines.
Collapse
Affiliation(s)
- Tian Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Lingxiao Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Shuo Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Fudan Dong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Shiyi Zuo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Jiaxuan Song
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Xin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Qi Lu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Helin Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Haotian Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Xiaohong Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China.
| |
Collapse
|
23
|
Wang D, Du C, Wang S, Li L, Liu T, Song J, He Z, Zhai Y, Sun B, Sun J. Probing the Role of Connecting Bonds and Modifying Chains in the Rational Design of Prodrug Nanoassemblies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51200-51211. [PMID: 36397309 DOI: 10.1021/acsami.2c14523] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Prodrug-based self-assembled nanoparticles combined with the merits of nanotechnology and prodrugs strategies have gradually become a research trending topic in the field of drug delivery. These prodrugs usually consist of parent drugs, connecting bonds, and modifying chains. The influences of the connecting bonds and modifying chains on the pharmaceutical characteristics, in vivo delivery fate, and antitumor activity of prodrug nanoassemblies remain elusive. Herein, three docetaxel (DTX) prodrugs were designed using sulfur bonds (thioether bond or disulfide bond) as connecting bonds and fatty alcohols (straight chain or branched chain) as modifying chains. Interestingly, the difference between connecting bonds and modifying chains deeply influenced the colloidal stability, redox responsive drug release, cytotoxicity, pharmacokinetic properties, tumor accumulation, and antitumor effect of prodrug nanoassemblies. DTX conjugated with branched chain fatty alcohols via disulfide bonds (HUA-SS-DTX) significantly improved the antitumor efficiency of DTX and reduced the systematic toxicity. Our study elaborates on the vital role of connecting bonds and modifying chains in the rational design of prodrug nanoassemblies.
Collapse
Affiliation(s)
- Danping Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chaoying Du
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingxiao Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiaxuan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bingjun Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
24
|
Wang S, Song Y, Ma J, Chen X, Guan Y, Peng H, Yan G, Tang R. Dynamic crosslinked polymeric nano-prodrugs for highly selective synergistic chemotherapy. Asian J Pharm Sci 2022; 17:880-891. [PMID: 36600901 PMCID: PMC9800956 DOI: 10.1016/j.ajps.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/07/2023] Open
Abstract
To achieve highly selective synergistic chemotherapy attractive for clinical translation, the precise polymeric nano-prodrugs (PPD-NPs) were successfully constructed via the facile crosslinking reaction between pH-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug (Pt(IV)-1). PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin (DMC). Moreover, PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure, suitable negative potentials and low critical micelle concentration (CMC), improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular pH, promoted efficient disintegration and drug release at tumoural intracellular pH/glutathione, and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2, achieving significant tumour suppression while decreasing the side effects. Thus, the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.
Collapse
Affiliation(s)
- Shi Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yining Song
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical College, Bengbu 233030, China
| | - Jingge Ma
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Xinyang Chen
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yuanhui Guan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Hui Peng
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guoqing Yan
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, Hefei 230601, China,Corresponding authors.
| |
Collapse
|
25
|
Xiang X, Feng X, Lu S, Jiang B, Hao D, Pei Q, Xie Z, Jing X. Indocyanine green potentiated paclitaxel nanoprodrugs for imaging and chemotherapy. EXPLORATION (BEIJING, CHINA) 2022; 2:20220008. [PMID: 37325605 PMCID: PMC10190853 DOI: 10.1002/exp.20220008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Self-assembled prodrug nanoparticles with tumor-responsive capacity have great potential in tumor visualization and treatment. However, the nanoparticle formulas usually contain multiple components, especially polymeric materials, which result in various potential issues. Herein, we report an indocyanine green (ICG)-driven assembly of paclitaxel prodrugs integrating near-infrared fluorescence imaging and tumor-specific chemotherapy. By feat of the hydrophilic merit of ICG, paclitaxel dimer could form more uniformly monodispersed nanoparticles. This two-in-one strategy reinforces the complementary advantages, resulting in superior assembly behavior, robust colloidal stability, enhanced tumor accumulation as well as desirable near-infrared imaging and in vivo feedback of chemotherapy. The in vivo experiments validated the prodrug activation at tumor sites as evidenced by enhanced fluorescence intensity, potent tumor growth suppression, and reduced systemic toxicity compared with commercial Taxol. The universality of ICG potentiated strategy toward photosensitizers and fluorescence dyes was confirmed. This presentation provides deep insight into the feasibility of constructing clinical-close alternatives for improving antitumor efficacy.
Collapse
Affiliation(s)
- Xiujuan Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Xuan Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Bowen Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Dengyuan Hao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
- University of Science and Technology of ChinaHefeiChina
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilinChina
| |
Collapse
|
26
|
Li Y, Li L, Jin Q, Liu T, Sun J, Wang Y, Yang Z, He Z, Sun B. Impact of the amount of PEG on prodrug nanoassemblies for efficient cancer therapy. Asian J Pharm Sci 2022; 17:241-252. [PMID: 35582643 PMCID: PMC9091774 DOI: 10.1016/j.ajps.2022.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
PEGylation has been widely used to improve the pharmacokinetic properties of prodrug self-assembled nanoparticles (prodrug-SANPs). However, the impacts of the amount of PEG on the self-assemble stability, cellular uptake, pharmacokinetics, and antitumor efficacy of prodrug-SANPs are still unknown. Herein, selenoether bond bridged docetaxel dimeric prodrug was synthesized as the model prodrug. Five prodrug-SANPs were designed by using different mass ratios of prodrugs to PEG (Wprodrug/WDSPE-mPEG2000 = 10:0, 9:1, 8:2, 7:3 and 6:4), and defined as Pure drug NPs, 9:1NPs, 8:2NPs, 7:3 NPs and 6:4 NPs, respectively. Interestingly, 8:2 NPs formed the most compact nanostructure, thus improving the self-assemble stability and pharmacokinetics behavior. In addition, the difference of these prodrug-SANPs in cellular uptake was investigated, and the influence of PEG on cytotoxicity and antitumor efficacy was also clarified in details. The 8:2 NPs exhibited much better antitumor efficacy than other prodrug-SANPs and even commercial product. Our findings demonstrated the pivotal role of the amount of PEG on prodrug-SANPs.
Collapse
|
27
|
Li G, Sun B, Zheng S, Xu L, Tao W, Zhao D, Yu J, Fu S, Zhang X, Zhang H, Zhai Y, Luo C, Ding H, He Z, Sun J. Zwitterion-Driven Shape Program of Prodrug Nanoassemblies with High Stability, High Tumor Accumulation, and High Antitumor Activity. Adv Healthc Mater 2021; 10:e2101407. [PMID: 34601824 DOI: 10.1002/adhm.202101407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Prodrug nanoassemblies have emerged as a promising platform for the delivery of anticancer drugs. PEGylation is a "gold standard" to improve colloidal stability and pharmacokinetics of nanomedicines. However, the clinical application of PEG materials is challenged by in vivo oxidative degradation and immunogenicity. Rational design of advanced biomaterials for the surface modification of nanomedicines is the hot spot of research. Here, a zwitterionic sulfobetaine surfactant is constructed as a novel surface modifier to coassemble with 10-hydroxycamptothecin-linoleic acid conjugate, with the classical PEGylated material as control. Interestingly, both the type and ratio of surfactants have profound impacts on the molecular mechanisms of the assembly of prodrugs, thereby affecting the pharmaceutical properties. Compared with PEGylated spherical prodrug nanoassemblies, zwitterion-modified prodrug nanoassemblies have distinct rod shape and superhydrophilic surface, and exhibit potent antitumor activity due to the combination of multiple advantages in terms of colloidal stability, cellular uptake, and pharmacokinetics. The findings illustrate the crucial role of zwitterionic surfactants as the surface modifier in the determination of in vivo fate of the prodrug nanoassemblies, and pave the way for the development of advanced nanomedicines.
Collapse
Affiliation(s)
- Guanting Li
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Bingjun Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Shunzhe Zheng
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Lu Xu
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Wenhui Tao
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Dongyang Zhao
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Jiang Yu
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Shuwen Fu
- School of Pharmacy Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Haotian Zhang
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Yinglei Zhai
- School of Medical Device Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Cong Luo
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Huaiwei Ding
- School of Pharmaceutical and Engineering Shenyang Pharmaceutical University Shenyang Liaoning 110016 P. R. China
| | - Zhonggui He
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| | - Jin Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 China
| |
Collapse
|
28
|
Lu S, Xia R, Wang J, Pei Q, Xie Z, Jing X. Engineering Paclitaxel Prodrug Nanoparticles via Redox-Activatable Linkage and Effective Carriers for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46291-46302. [PMID: 34558902 DOI: 10.1021/acsami.1c12353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The current clinical performance of chemotherapy is far from satisfactory, greatly limited by insufficient delivery efficacy and serious systemic side effects. Dimeric prodrug systems are emerging as valuable strategies for boosting the antitumor outcome. Here, dimeric paclitaxel prodrugs were synthesized with different bridged linkers, and the formed prodrug nanoparticles possessed excellent colloidal stability and ultrahigh drug content. The diselenide bond containing paclitaxel prodrugs could respond to a redox-heterogeneous intracellular microenvironment for on-demand drug release and subsequently show a selective cytotoxicity toward tumor cells against normal cells. Furthermore, the optimal carrier materials were screened out according to their contribution on stability, endocytosis, cytotoxicity, biodistribution, and antitumor efficacy. Compared with DSPE-PEG, human serum albumin, and Fe-tannic acid-based complex, F127 anchored dimeric paclitaxel nanoformulations exhibited preferential tumor accumulation and potent anticancer effect. Our present work provides deep insight into the development of advanced nanoformulations with comprehensive advantages for enhancing cancer therapy.
Collapse
Affiliation(s)
- Shaojin Lu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jian Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
29
|
Wang X, Yang B, Li L, Liu T, Zuo S, Chi D, He Z, Sun B, Sun J. Probing the fluorination effect on the self-assembly characteristics, in vivo fate and antitumor efficacy of paclitaxel prodrug nanoassemblies. Am J Cancer Res 2021; 11:7896-7910. [PMID: 34335971 PMCID: PMC8315070 DOI: 10.7150/thno.61337] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
Rationale: Small-molecule prodrug nanoassembly is emerging as an efficient platform for chemotherapy. The self-assembly stability plays a vital role on the drug delivery efficiency of prodrug nanoassembly. It is reported that fluoroalkylation could improve the self-assembly stability of amphiphilic polymers by utilizing the unique fluorination effect. But the application of fluoroalkylation on small-molecule prodrug nanoassembly has never been reported. Methods: Here, fluoro-modified prodrug was developed by conjugating paclitaxel with perfluorooctanol (F8-SS-PTX), and the paclitaxel-octanol prodrug (C8-SS-PTX) was used as control. The fluoro-mediated self-assembly mechanisms were illustrated using molecular dynamics simulation. In addition, the impacts of fluoroalkylation on the pharmacy characters, in vivo fate and antitumor effect of small-molecule prodrug nanoassembly were investigated in details. Results: Fluoroalkylation significantly improved the self-assembly stability of F8-SS-PTX NPs both in vitro and in vivo, which could be attributed to the fluoro-mediated hydrophobic force and halogen bonds. The AUC0-24h and tumor accumulation of F8-SS-PTX NPs was 6-fold and 2-fold higher than that of C8-SS-PTX NPs, respectively. As a result, F8-SS-PTX NPs exhibited much better antitumor effect than C8-SS-PTX NPs and Abraxane. Conclusion: Fluoroalkylation could improve the self-assembly stability, in vivo fate, and antitumor efficacy of small-molecule prodrug nanoassemblies, which could be an effective strategy for the rational design of advanced nanomedicines.
Collapse
|