1
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
2
|
Turner BRH, Jenkinson PI, Huttman M, Mullish BH. Inflammation, oxidative stress and gut microbiome perturbation: A narrative review of mechanisms and treatment of the alcohol hangover. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:1451-1465. [PMID: 38965644 DOI: 10.1111/acer.15396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Alcohol is the most widely abused substance in the world, the leading source of mortality in 15-49-year-olds, and a major risk factor for heart disease, liver disease, diabetes, and cancer. Despite this, alcohol is regularly misused in wider society. Consumers of excess alcohol often note a constellation of negative symptoms, known as the alcohol hangover. However, the alcohol hangover is not considered to have long-term clinical significance by clinicians or consumers. We undertook a critical review of the literature to demonstrate the pathophysiological mechanisms of the alcohol hangover. Hereafter, the alcohol hangover is re-defined as a manifestation of sickness behavior secondary to alcohol-induced inflammation, using the Bradford-Hill criteria to demonstrate causation above correlation. Alcohol causes inflammation through oxidative stress and endotoxemia. Alcohol metabolism is oxidative and increased intake causes relative tissue hypoxia and increased free radical generation. Tissue damage ensues through lipid peroxidation and the formation of DNA/protein adducts. Byproducts of alcohol metabolism such as acetaldehyde and congeners, sleep deprivation, and the activation of nonspecific inducible CYP2E1 in alcohol-exposed tissues exacerbate free radical generation. Tissue damage and cell death lead to inflammation, but in the intestine loss of epithelial cells leads to intestinal permeability, allowing the translocation of pathogenic bacteria to the systemic circulation (endotoxemia). This leads to a well-characterized cascade of systemic inflammation, additionally activating toll-like receptor 4 to induce sickness behavior. Considering the evidence, it is suggested that hangover frequency and severity may be predictors of the development of later alcohol-related diseases, meriting formal confirmation in prospective studies. In light of the mechanisms of alcohol-mediated inflammation, research into gut permeability and the gut microbiome may be an exciting future therapeutic avenue to prevent alcohol hangover and other alcohol-related diseases.
Collapse
Affiliation(s)
| | - Poppy I Jenkinson
- Department of Anaesthetics, Royal Surrey County Hospital, Surrey, UK
| | - Marc Huttman
- Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - Benjamin H Mullish
- Division of Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Hepatology, St Mary's Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
3
|
Rui W, Zhong S, Li X, Shen C, Cao X, Yang J. Alcohol in Baijiu Contributes to the Increased Probability of Host Infection by Clostridioides difficile Spores. Foodborne Pathog Dis 2024. [PMID: 39049788 DOI: 10.1089/fpd.2023.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024] Open
Abstract
Clostridioides difficile and its endospores possess the characteristics of a foodborne pathogen and have been detected at several stages in the food chain. In the presence of an imbalance in host intestinal ecology, C. difficile can proliferate and cause intestinal infections. Multiple food source factors can substantially alter the host's gut ecosystem, including the consumption of baijiu. However, it remains to be known whether the gut ecological changes induced by the consumption of baijiu increase the risk of C. difficile invasion and infection. In this study, C. difficile cells were exposed to two commercially available baijiu to evaluate the effect of baijiu on C. difficile cells and to verify through a mouse model. The results showed that baijiu effectively inhibited the growth and biofilm production of C. difficile, downregulated the expression levels of tcdA and tcdB virulence genes but upregulated the expression level of spore-producing genes Spo0A, enhanced the spore production, as well as increased C. difficile cell adhesion to Caco-2 cells. The mouse model showed that the intake of baijiu promoted the invasion and infection of C. difficile spores, causing damage to the cecum tissue, accompanied by an increase in the gut lipid carrier protein-2 (Lcn-2) and TcdA toxin protein levels. Simultaneously, cholic acid was elevated, whereas deoxycholic acid was decreased. This study is the first to find a possible link between baijiu intake and C. difficile spore invasion and infection.
Collapse
Affiliation(s)
- Wen Rui
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Saiwei Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoqian Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Caihong Shen
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Xiaonian Cao
- National Engineering Research Center of Solid-State Brewing, Luzhou, China
| | - Jingpeng Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
4
|
Sosnowski K, Przybyłkowski A. Ethanol-induced changes to the gut microbiome compromise the intestinal homeostasis: a review. Gut Microbes 2024; 16:2393272. [PMID: 39224006 PMCID: PMC11376419 DOI: 10.1080/19490976.2024.2393272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The intestine is the largest organ in terms of surface area in the human body. It is responsible not only for absorbing nutrients but also for protection against the external world. The gut microbiota is essential in maintaining a properly functioning intestinal barrier, primarily through producing its metabolites: short-chain fatty acids, bile acids, and tryptophan derivatives. Ethanol overconsumption poses a significant threat to intestinal health. Not only does it damage the intestinal epithelium, but, maybe foremostly, it changes the gut microbiome. Those ethanol-driven changes shift its metabolome, depriving the host of the protective effect the physiological gut microbiota has. This literature review discusses the impact of ethanol consumption on the gut, the gut microbiota, and its metabolome, providing a comprehensive overview of the mechanisms through which ethanol disrupts intestinal homeostasis and discussing potential avenues for new therapeutic intervention.
Collapse
Affiliation(s)
- Konrad Sosnowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Deng H, Jia Q, Ming X, Sun Y, Lu Y, Liu L, Zhou J. Hippo pathway in intestinal diseases: focusing on ferroptosis. Front Cell Dev Biol 2023; 11:1291686. [PMID: 38130953 PMCID: PMC10734691 DOI: 10.3389/fcell.2023.1291686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The incidence of intestinal diseases, such as inflammatory bowel disease, gastric cancer, and colorectal cancer, has steadily increased over the past decades. The Hippo pathway is involved in cell proliferation, tissue and organ damage, energy metabolism, tumor formation, and other physiologic processes. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron and lipid peroxides. The Hippo pathway and ferroptosis are associated with various intestinal diseases; however, the crosstalk between them is unclear. This review elaborates on the current research on the Hippo pathway and ferroptosis in the context of intestinal diseases. We summarized the connection between the Hippo pathway and ferroptosis to elucidate the underlying mechanism by which these pathways influence intestinal diseases. We speculate that a mutual regulatory mechanism exists between the Hippo pathway and ferroptosis and these two pathways interact in several ways to regulate intestinal diseases.
Collapse
Affiliation(s)
- Hongwei Deng
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Qiuting Jia
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Xin Ming
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yuxin Sun
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yuxuan Lu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
| | - Li Liu
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jun Zhou
- Department of Anesthesiology, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Luzhou, China
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Saucedo R, Ortega-Camarillo C, Ferreira-Hermosillo A, Díaz-Velázquez MF, Meixueiro-Calderón C, Valencia-Ortega J. Role of Oxidative Stress and Inflammation in Gestational Diabetes Mellitus. Antioxidants (Basel) 2023; 12:1812. [PMID: 37891891 PMCID: PMC10604289 DOI: 10.3390/antiox12101812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is one of the most common pregnancy complications. It is related to several gestational and fetal adverse outcomes. Moreover, women with GDM and their infants have a high risk of developing type 2 diabetes in the future. The pathogenesis of GDM is not completely understood; nevertheless, two factors that contribute to its development are oxidative stress and inflammation. Oxidative stress and inflammation are related; reactive oxygen species (ROS) production can activate inflammatory cells and enhance the production of inflammatory mediators. Inflammation, in turn, leads to an increased ROS release, causing a vicious circle to ensue. Inflammatory responses can be achieved via the activation of the NF-κB signaling pathway. Herein, we review the English literature regarding oxidative stress and inflammation evaluated simultaneously in the same population, attempting to identify mechanisms through which these factors contribute to the development of GDM. Furthermore, the modulation of oxidative stress and inflammation by different therapies used in women with GDM and in cell models of GDM is included in the review. Probiotics and nutrient supplementations have been shown to reduce biomarkers of inflammation and oxidative stress in vitro and in women with GDM.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Clara Ortega-Camarillo
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | | | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico
| |
Collapse
|
7
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
8
|
Chayanupatkul M, Somanawat K, Chuaypen N, Klaikeaw N, Wanpiyarat N, Siriviriyakul P, Tumwasorn S, Werawatganon D. Probiotics and their beneficial effects on alcohol-induced liver injury in a rat model: the role of fecal microbiota. BMC Complement Med Ther 2022; 22:168. [PMID: 35733194 PMCID: PMC9215017 DOI: 10.1186/s12906-022-03643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Current therapies for alcohol-induced liver injury are of limited efficacy and associated with significant side effects. With the proposed pathophysiology of alcohol-induced liver injury to be related to deranged gut microbiota, we hypothesized that probiotics would have beneficial effects in attenuating alcohol-induced liver injury.
Methods
Twenty-four male Sprague-Dawley rats were divided into 4 groups: control group, alcohol group, Lactobacillus plantarum group, and mixed-strain probiotics group. After 4 weeks, all rats were sacrificed, and blood samples were analyzed for ALT, lipopolysaccharide level (LPS), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Liver tissues were processed for histopathology, malondialdehyde (MDA) level and immunohistochemistry for toll-like receptors 4 (TLR-4). Stool samples were collected, and 16S rRNA sequencing was used to analyze the fecal microbiota.
Results
Liver histopathology showed the presence of significant hepatocyte ballooning in the alcohol group as compared with the control group, and the treatment with L. plantarum or mixed-strain probiotics alleviated these changes. Significant elevation of serum ALT, LPS, IL-6, and TNF-α, hepatic MDA levels, and hepatic TLR-4 expression were observed in alcohol-fed rats as compared with control rats. The administration of L. plantarum or mixed-strain probiotics restored these changes to the levels of control rats. The relative abundance of fecal bacteria at genus level showed a significant reduction in Allobaculum, Romboutsia, Bifidobacterium, and Akkermansia in the alcohol group as compared with the control group. In probiotics-treated rats, significant increases in Allobaculum and Bifidobacterium were observed, while the relative abundance of Romboutsia and Akkermansia was unchanged compared to the alcohol group. A reduction in alpha diversity was observed in alcohol-treated rats, whereas the improvement was noted after probiotic treatment.
Conclusions
The treatment with Lactobacillus, whether as single-, or mixed-strain probiotics, was beneficial in reducing the severity of alcohol-induced liver injury likely through the increase in beneficial bacteria, and the reduction of inflammatory responses, and oxidative stress.
Collapse
|
9
|
Anand SK, Ahmad MH, Sahu MR, Subba R, Mondal AC. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 2022:10.1007/s10571-022-01308-2. [DOI: 10.1007/s10571-022-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
|
10
|
Jiao M, Yan S, Shi Q, Liu Y, Li Y, Lv J, Ding S, Li A. Alcohol-Related Elevation of Liver Transaminase Is Associated With Gut Microbiota in Male. Front Med (Lausanne) 2022; 9:823898. [PMID: 35280887 PMCID: PMC8904186 DOI: 10.3389/fmed.2022.823898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Alcoholic liver damage has become a widespread health problem as alcohol consumption increases and is usually identified by elevated liver transaminase. We conducted this study to investigate the role of the gut microbiome in the individual susceptibility to alcoholic liver injury. We divided the participants into four groups based on alcohol consumption and liver transaminase elevation, which were drinking case group, drinking control group, non-drinking case group, and non-drinking control group. The drinking case group meant participants who were alcohol consumers with elevated liver transaminase. We found that alpha and beta diversities of the drinking case group differed from the other three groups. Species Faecalibacterium prausnitzii and Roseburia hominis were significantly in lower abundance in the drinking case group and were proved the protective effect against inflammatory liver damage in the former study. Ruminococcus gnavus exhibited the most positive association to alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and contributed to liver inflammation.
Collapse
Affiliation(s)
- Mengfan Jiao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaoguang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Lv
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Green Silver Nanoparticles Promote Inflammation Shutdown in Human Leukemic Monocytes. MATERIALS 2022; 15:ma15030775. [PMID: 35160720 PMCID: PMC8836503 DOI: 10.3390/ma15030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
The use of silver nanoparticles (Ag NPs) in the biomedical field deserves a mindful analysis of the possible inflammatory response which could limit their use in the clinic. Despite the anti-cancer properties of Ag NPs having been widely demonstrated, there are still few studies concerning their involvement in the activation of specific inflammatory pathways. The inflammatory outcome depends on the synthetic route used in the NPs production, in which toxic reagents are employed. In this work, we compared two types of Ag NPs, obtained by two different chemical routes: conventional synthesis using sodium citrate and a green protocol based on leaf extracts as a source of reduction and capping agents. A careful physicochemical characterization was carried out showing spherical and stable Ag NPs with an average size between 20 nm and 35 nm for conventional and green Ag NPs respectively. Then, we evaluated their ability to induce the activation of inflammation in Human Leukemic Monocytes (THP-1) differentiated into M0 macrophages using 1 µM and 2 µM NPs concentrations (corresponded to 0.1 µg/mL and 0.2 µg/mL respectively) and two-time points (24 h and 48 h). Our results showed a clear difference in Nuclear Factor κB (NF-κb) activation, Interleukins 6–8 (IL-6, IL-8) secretion, Tumor Necrosis Factor-α (TNF-α) and Cyclooxygenase-2 (COX-2) expression exerted by the two kinds of Ag NPs. Green Ag NPs were definitely tolerated by macrophages compared to conventional Ag NPs which induced the activation of all the factors mentioned above. Subsequently, the exposure of breast cancer cell line (MCF-7) to the green Ag NPs showed that they exhibited antitumor activity like the conventional ones, but surprisingly, using the MCF-10A line (not tumoral breast cells) the green Ag NPs did not cause a significant decrease in cell viability.
Collapse
|
12
|
de Mendonça ELSS, Fragoso MBT, de Oliveira JM, Xavier JA, Goulart MOF, de Oliveira ACM. Gestational Diabetes Mellitus: The Crosslink among Inflammation, Nitroxidative Stress, Intestinal Microbiota and Alternative Therapies. Antioxidants (Basel) 2022; 11:129. [PMID: 35052633 PMCID: PMC8773111 DOI: 10.3390/antiox11010129] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/09/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by a set of metabolic complications arising from adaptive failures to the pregnancy period. Estimates point to a prevalence of 3 to 15% of pregnancies. Its etiology includes intrinsic and extrinsic aspects of the progenitress, which may contribute to the pathophysiogenesis of GDM. Recently, researchers have identified that inflammation, oxidative stress, and the gut microbiota participate in the development of the disease, with potentially harmful effects on the health of the maternal-fetal binomial, in the short and long terms. In this context, alternative therapies were investigated from two perspectives: the modulation of the intestinal microbiota, with probiotics and prebiotics, and the use of natural products with antioxidant and anti-inflammatory properties, which may mitigate the endogenous processes of the GDM, favoring the health of the mother and her offspring, and in a future perspective, alleviating this critical public health problem.
Collapse
Affiliation(s)
- Elaine Luiza Santos Soares de Mendonça
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Marilene Brandão Tenório Fragoso
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Jerusa Maria de Oliveira
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Jadriane Almeida Xavier
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | - Marília Oliveira Fonseca Goulart
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceio 57072-970, Alagoas, Brazil; (E.L.S.S.d.M.); (M.B.T.F.); (J.M.d.O.); (J.A.X.)
| | | |
Collapse
|
13
|
Prophylactic Treatment of Probiotic and Metformin Mitigates Ethanol-Induced Intestinal Barrier Injury: In Vitro, In Vivo, and In Silico Approaches. Mediators Inflamm 2021; 2021:5245197. [PMID: 34616233 PMCID: PMC8490080 DOI: 10.1155/2021/5245197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023] Open
Abstract
Ethanol depletes intestinal integrity and promotes gut dysbiosis. Studies have suggested the individual role of probiotics and metformin Met in protecting intestinal barrier function from injuries induced by ethanol. The objective of the current study is to investigate the potential mechanism by which coadministration of probiotic Visbiome® (V) and Met blocks the ethanol-induced intestinal barrier dysfunction/gut leakiness utilizing Caco-2 monolayers, a rat model with chronic ethanol injury, and in silico docking interaction models. In Caco-2 monolayers, exposure to ethanol significantly disrupted tight junction (TJ) localization, elevated monolayer permeability, and oxidative stress compared with controls. However, cotreatment with probiotic V and Met largely ameliorated the ethanol-induced mucosal barrier dysfunction, TJ disruption, and gut oxidative stress compared with ethanol-exposed monolayers and individual treatment of either agent. Rats fed with ethanol-containing Lieber-DeCarli liquid diet showed decreased expression of TJ proteins, and increased intestinal barrier injury resulting in pro-inflammatory response and oxidative stress in the colon. We found that co-administration of probiotic V and Met improved the expression of intestinal TJ proteins (ZO-1 and occludin) and upregulated the anti-inflammatory response, leading to reduced ER stress. Moreover, co-administration of probiotic V and Met inhibited the CYP2E1 and NOX gene expression, and increase the translocation of Nrf-2 as well as anti-oxidative genes (SOD, catalase, Gpx, and HO-1), leading to reduced colonic ROS content and malondialdehyde levels. The combined treatment of probiotic V and Met also improved their binding affinities towards HO-1, Nrf-2, SLC5A8, and GPR109A, which could be attributed to their synergistic effect. Our findings based on in-vitro, in-vivo, and in-silico analyses suggest that the combination of probiotic V and Met potentially acts in synergism, attributable to their property of inhibition of inflammation and oxidative stress against ethanol-induced intestinal barrier injury.
Collapse
|
14
|
Johnson CH, Golla JP, Dioletis E, Singh S, Ishii M, Charkoftaki G, Thompson DC, Vasiliou V. Molecular Mechanisms of Alcohol-Induced Colorectal Carcinogenesis. Cancers (Basel) 2021; 13:4404. [PMID: 34503214 PMCID: PMC8431530 DOI: 10.3390/cancers13174404] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
The etiology of colorectal cancer (CRC) is complex. Approximately, 10% of individuals with CRC have predisposing germline mutations that lead to familial cancer syndromes, whereas most CRC patients have sporadic cancer resulting from a combination of environmental and genetic risk factors. It has become increasingly clear that chronic alcohol consumption is associated with the development of sporadic CRC; however, the exact mechanisms by which alcohol contributes to colorectal carcinogenesis are largely unknown. Several proposed mechanisms from studies in CRC models suggest that alcohol metabolites and/or enzymes associated with alcohol metabolism alter cellular redox balance, cause DNA damage, and epigenetic dysregulation. In addition, alcohol metabolites can cause a dysbiotic colorectal microbiome and intestinal permeability, resulting in bacterial translocation, inflammation, and immunosuppression. All of these effects can increase the risk of developing CRC. This review aims to outline some of the most significant and recent findings on the mechanisms of alcohol in colorectal carcinogenesis. We examine the effect of alcohol on the generation of reactive oxygen species, the development of genotoxic stress, modulation of one-carbon metabolism, disruption of the microbiome, and immunosuppression.
Collapse
Affiliation(s)
- Caroline H. Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Jaya Prakash Golla
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Evangelos Dioletis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Surendra Singh
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Momoko Ishii
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| | - David C. Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
- Department of Clinical Pharmacy, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT 06520, USA; (C.H.J.); (J.P.G.); (E.D.); (S.S.); (M.I.); (G.C.); (D.C.T.)
| |
Collapse
|
15
|
Al-Sadi R, Engers J, Haque M, King S, Al-Omari D, Ma TY. Matrix Metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLoS One 2021; 16:e0249544. [PMID: 33826658 PMCID: PMC8026081 DOI: 10.1371/journal.pone.0249544] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflammation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intestinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intestinal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability is an important pathogenic factor contributing to the development of intestinal inflammation in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intestinal barrier function remain unclear. AIMS The main aim of this study was to further elucidate the molecular mechanisms involved in MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as an in-vitro model system. RESULTS MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cytoplasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA transfection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin light chain kinase (MLCK) protein expression, and subsequently prevented the increase in Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ barrier function was not mediated by apoptosis or necrosis. CONCLUSION Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier function is regulated by NF-κB pathway activation of MLCK.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Jessica Engers
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Mohammad Haque
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Steven King
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Deemah Al-Omari
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Thomas Y. Ma
- Department of Medicine, Penn State University College of Medicine, Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| |
Collapse
|
16
|
Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020; 26:2426-2437. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gonzalez
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
17
|
Litwinowicz K, Choroszy M, Waszczuk E. Changes in the composition of the human intestinal microbiome in alcohol use disorder: a systematic review. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 46:4-12. [DOI: 10.1080/00952990.2019.1669629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kamil Litwinowicz
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, Wroclaw, Poland
| | - Ewa Waszczuk
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Lowe PP, Gyongyosi B, Satishchandran A, Iracheta-Vellve A, Cho Y, Ambade A, Szabo G. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J Neuroinflammation 2018; 15:298. [PMID: 30368255 PMCID: PMC6203993 DOI: 10.1186/s12974-018-1328-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Background The end-organ effects of alcohol span throughout the entire body, from the gastrointestinal tract to the central nervous system (CNS). In the intestine, alcohol use changes the microbiome composition and increases gut permeability allowing translocation of microbial components into the circulation. Gut-derived pathogen-associated signals initiate inflammatory responses in the liver and possibly elsewhere in the body. Because previous studies showed that the gut microbiome contributes to alcohol-induced liver disease, we hypothesized that antibiotic administration to reduce the gut microbiome would attenuate alcohol-induced inflammation in the brain and small intestine (SI). Methods Six- to 8-week-old C57BL/6J female mice were fed alcohol in a liquid diet or a calorie-matched control diet for 10 days with an acute alcohol binge or sugar on the final day (acute-on-chronic alcohol administration). Some mice were treated with oral antibiotics daily to diminish the gut microbiome. We compared serum levels of TNFα, IL-6, and IL-1β by ELISA; expression of cytokines Tnfα, Mcp1, Hmgb1, Il-17, Il-23, Il-6, and Cox2; and inflammasome components Il-1β, Il-18, Casp1, Asc, and Nlrp3 in the CNS and SI by qRT-PCR. Microglial morphology was analyzed using immunohistochemical IBA1 staining in the cortex and hippocampus. Results Antibiotics dramatically reduced the gut microbiome load in both alcohol- and pair-fed mice. Alcohol-induced neuroinflammation and increase in SI cytokine expression were attenuated in mice with antibiotic treatment. Acute-on-chronic alcohol did not induce serum TNFα, IL-6, and IL-1β. Alcohol feeding significantly increased the expression of proinflammatory cytokines such as Tnfα, Mcp1, Hmgb1, Il-17, and Il-23 in the brain and intestine. Reduction in the gut bacterial load, as a result of antibiotic treatment, attenuated the expression of all of these alcohol-induced proinflammatory cytokines in both the brain and SI. Alcohol feeding resulted in microglia activation and morphologic changes in the cortex and hippocampus characterized by a reactive phenotype. These alcohol-induced changes were abrogated following an antibiotic-induced reduction in the gut microbiome. Unexpectedly, antibiotic treatment increased the mRNA expression of some inflammasome components in both the brain and intestine. Conclusions Our data show for the first time that the acute-on-chronic alcohol administration in mice induces both neuroinflammation and intestinal inflammation and that reduction in the intestinal bacterial load can attenuate alcohol-associated CNS and gut inflammation. Gut microbiome-derived signals contribute to neuroinflammation in acute-on-chronic alcohol exposure.
Collapse
Affiliation(s)
- Patrick P Lowe
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA, 01605, USA.
| |
Collapse
|
19
|
Morel KL, Ormsby RJ, Solly EL, Tran LNK, Sweeney CJ, Klebe S, Cordes N, Sykes PJ. Chronic low dose ethanol induces an aggressive metastatic phenotype in TRAMP mice, which is counteracted by parthenolide. Clin Exp Metastasis 2018; 35:649-661. [PMID: 29936575 DOI: 10.1007/s10585-018-9915-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/18/2018] [Indexed: 11/29/2022]
Abstract
Despite advances in prostate cancer therapy, dissemination and growth of metastases results in shortened survival. Here we examined the potential anti-cancer effect of the NF-κB inhibitor parthenolide (PTL) and its water soluble analogue dimethylaminoparthenolide (DMAPT) on tumour progression and metastasis in the TRansgenic Adenocarcinoma of the Mouse Prostate (TRAMP) model of prostate cancer. Six-week-old male TRAMP mice received PTL (40 mg/kg in 10% ethanol/saline), DMAPT (100 mg/kg in sterile water), or vehicle controls by oral gavage thrice weekly until palpable tumour formation. DMAPT treatment slowed normal tumour development in TRAMP mice, extending the time-to-palpable prostate tumour by 20%. PTL did not slow overall tumour development, while the ethanol/saline vehicle used to administer PTL unexpectedly induced an aggressive metastatic tumour phenotype. Chronic ethanol/saline vehicle upregulated expression of NF-κB, MMP2, integrin β1, collagen IV, and laminin, and induced vascular basement membrane degradation in primary prostate tumours, as well as increased metastatic spread to the lung and liver. All of these changes were largely prevented by co-administration with PTL. DMAPT (in water) reduced metastasis to below that of water-control. These data suggest that DMAPT has the potential to be used as a cancer preventive and anti-metastatic therapy for prostate cancer. Although low levels of ethanol consumption have not been shown to strongly correlate with prostate cancer epidemiology, these results would support a potential effect of chronic low dose ethanol on metastasis and the TRAMP model provides a useful system in which to further explore the mechanisms involved.
Collapse
Affiliation(s)
- Katherine L Morel
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia.
| | - Rebecca J Ormsby
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Emma L Solly
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | - Linh N K Tran
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| | | | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University and SA Pathology at Flinders Medical Centre, Bedford Park, SA, Australia
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pamela J Sykes
- Molecular Medicine and Pathology, Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, SA, Australia
| |
Collapse
|
20
|
Davis BT, Voigt RM, Shaikh M, Forsyth CB, Keshavarzian A. CREB Protein Mediates Alcohol-Induced Circadian Disruption and Intestinal Permeability. Alcohol Clin Exp Res 2017; 41:2007-2014. [PMID: 28960346 DOI: 10.1111/acer.13513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is commonly associated with intestinal permeability. An unanswered question is why only a subset of heavy alcohol drinkers develop endotoxemia. Recent studies suggest that circadian disruption is the susceptibility factor for alcohol-induced gut leakiness to endotoxins. The circadian protein PER2 is increased after exposure to alcohol and siRNA knockdown of PER2 in vitro blocks alcohol-induced intestinal barrier dysfunction. We have shown that blocking CYP2E1 (i.e., important for alcohol metabolism) with siRNA inhibits the alcohol-induced increase in PER2 and suggesting that oxidative stress may mediate alcohol-induced increase in PER2 in intestinal epithelial cells. The aim of this study was to elucidate whether a mechanism incited by alcohol-derived oxidative stress mediates the transcriptional induction of PER2 and subsequent intestinal hyperpermeability. METHODS Caco-2 cells were exposed to 0.2% alcohol with or without pretreatment with modulators of oxidative stress or PKA activity. Permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance. Protein expression was measured by Western blot and mRNA with real-time polymerase chain reaction. Wild-type C57BL/6J mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. Western blot was used to analyze PER2 expression in mouse proximal colon tissue. RESULTS Alcohol increased oxidative stress, caused Caco-2 cell monolayer dysfunction, and increased levels of the circadian clock proteins PER2 and CLOCK. These effects were mitigated by pretreatment of Caco-2 cells with an antioxidant scavenger. Alcohol-derived oxidative stress activated cAMP response element-binding (CREB) via the PKA pathway and increased PER2 mRNA and protein. Inhibiting CREB prevented the increase in PER2 and Caco-2 cell monolayer hyperpermeability. CONCLUSIONS Taken together, these data suggest that strategies to reduce alcohol-induced oxidative stress may alleviate alcohol-mediated circadian disruption and intestinal leakiness, critical drivers of ALD.
Collapse
Affiliation(s)
| | | | | | | | - Ali Keshavarzian
- Division of Digestive Disease and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
21
|
A role for the peripheral immune system in the development of alcohol use disorders? Neuropharmacology 2017; 122:148-160. [DOI: 10.1016/j.neuropharm.2017.04.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/06/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023]
|
22
|
The link between inflammation, bugs, the intestine and the brain in alcohol dependence. Transl Psychiatry 2017; 7:e1048. [PMID: 28244981 PMCID: PMC5545644 DOI: 10.1038/tp.2017.15] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/08/2023] Open
Abstract
In recent years, some new processes have been proposed to explain how alcohol may influence behavior, psychological symptoms and alcohol seeking in alcohol-dependent subjects. In addition to its important effect on brain and neurotransmitters equilibrium, alcohol abuse also affects peripheral organs including the gut. By yet incompletely understood mechanisms, chronic alcohol abuse increases intestinal permeability and alters the composition of the gut microbiota, allowing bacterial components from the gut lumen to reach the systemic circulation. These gut-derived bacterial products are recognized by immune cells circulating in the blood or residing in target organs, which consequently synthesize and release pro-inflammatory cytokines. Circulating cytokines are considered important mediators of the gut-brain communication, as they can reach the central nervous system and induce neuroinflammation that is associated with change in mood, cognition and drinking behavior. These observations support the possibility that targeting the gut microbiota, by the use of probiotics or prebiotics, could restore the gut barrier function, reduce systemic inflammation and may have beneficial effect in treating alcohol dependence and in reducing alcohol relapse.
Collapse
|
23
|
Wooster TJ, Moore SC, Chen W, Andrews H, Addepalli R, Seymour RB, Osborne SA. Biological fate of food nanoemulsions and the nutrients they carry – internalisation, transport and cytotoxicity of edible nanoemulsions in Caco-2 intestinal cells. RSC Adv 2017. [DOI: 10.1039/c7ra07804h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Internalisation of edible food nanoemulsions by CaCo-2 intestinal cells. The structure of edible nanoemulsions increases five times upon incorporation of reactive/ROS producing nutrients/APIs.
Collapse
Affiliation(s)
| | | | - Wei Chen
- CSIRO Agriculture and Food
- Queensland Bioscience Precinct
- St Lucia
- Australia
| | | | - Rama Addepalli
- CSIRO Agriculture and Food
- Queensland Bioscience Precinct
- St Lucia
- Australia
| | - Robert B. Seymour
- CSIRO Agriculture and Food
- Queensland Bioscience Precinct
- St Lucia
- Australia
| | - Simone A. Osborne
- CSIRO Agriculture and Food
- Queensland Bioscience Precinct
- St Lucia
- Australia
| |
Collapse
|
24
|
Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W. Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress. Nutrients 2016; 8:E783. [PMID: 27918411 PMCID: PMC5188438 DOI: 10.3390/nu8120783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 11/18/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023] Open
Abstract
Aluminum (Al) is a ubiquitous metal that can seriously harm the health of animals and humans. In our previous study, we demonstrated that Lactobacillus plantarum CCFM639 can decrease Al burden in the tissues of mice by inhibiting intestinal Al absorption. The main aim of the present research was to investigate whether the protection by the strain is also associated with enhancement of the intestinal barrier, alleviation of oxidative stress and modulation of the inflammatory response. In an in vitro cell model, two protection modes (intervention and therapy) were examined and the results indicated that L. plantarum CCFM639 alleviated Al-induced cytotoxicity. In a mouse model, L. plantarum CCFM639 treatment was found to significantly alleviate oxidative stress in the intestinal tract, regulate the function of the intestinal mucosal immune system, restore the integrity of tight junction proteins and maintain intestinal permeability. These results suggest that in addition to Al sequestration, L. plantarum CCFM639 can also inhibit Al absorption by protecting the intestinal barrier, alleviating Al-induced oxidative stress and inflammatory response. Therefore, L. plantarum CCFM639 has the potential to be a dietary supplement ingredient that provides protection against Al-induced gut injury.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
| | - Arjan Narbad
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, UK.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
- UK-China Joint Centre on Probiotic Bacteria, Norwich NR4 7UA, UK.
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Park B, Lee HR, Lee YJ. Alcoholic liver disease: focus on prodromal gut health. J Dig Dis 2016; 17:493-500. [PMID: 27356233 DOI: 10.1111/1751-2980.12375] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/19/2016] [Indexed: 12/11/2022]
Abstract
Alcoholic liver disease (ALD) is implicated in gut disturbances, both functionally and structurally. It has been noticed that the gut-liver interaction is an important feature in the prevention of systemic inflammation as well as liver health. The optimal functioning of the gut-liver axis depends on gut health. Therefore, gut problems may be important for estimating liver inflammation, while our knowledge of ALD could also provide an insight into gut health. Gut problems accompanied by ALD include gut motility and absorption problems, mucosal damage and the dysbiosis of gut microbiota and gastrointestinal carcinogenesis. Moreover, there is emerging evidence that besides direct inflammatory injury caused by alcohol, gut problems related to ALD play a crucial role in the pathogenesis of cardiovascular and immunological disorders. In this regard, we should consider ALD in relation to both gut health and chronic systemic low-grade inflammation. Accordingly, integrative therapeutic strategies are warranted for treating and preventing ALD and systemic inflammation as well as alcohol-related gut problems.
Collapse
Affiliation(s)
- Byoungjin Park
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hye-Ree Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Jae Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
26
|
Epidermal Growth Factor and Intestinal Barrier Function. Mediators Inflamm 2016; 2016:1927348. [PMID: 27524860 PMCID: PMC4976184 DOI: 10.1155/2016/1927348] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/26/2016] [Indexed: 02/08/2023] Open
Abstract
Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health.
Collapse
|
27
|
Liu XD, Chen ZY, Yang P, Huang WG, Jiang CF. Splenectomy attenuates severe thermal trauma-induced intestinal barrier breakdown in rats. ACTA ACUST UNITED AC 2015; 35:868-873. [PMID: 26670438 DOI: 10.1007/s11596-015-1520-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/23/2015] [Indexed: 01/24/2023]
Abstract
The severe local thermal trauma activates a number of systemic inflammatory mediators, such as TNF-α, NF-κB, resulting in a disruption of gut barrier. The gastrointestinal tight junction (TJ) is highly regulated by membrane-associated proteins including zonula occludens protein-1 (ZO-1) and occludin, which can be modulated by inflammatory cytokines. As splenectomy has been shown to reduce secretion of cytokines, we hypothesized that (1) severe scald injury up-regulates TNF-α and NF-κB, meanwhile down-regulates expression of ZO-1 and occludin, leading to the increased intestinal permeability, and (2) splenectomy can prevent the burn-induced decrease in ZO-1 and occludin expression, resulting in improved intestinal barrier. Wistar rats undergoing a 30% total body surface area (TBSA) thermal trauma were randomized to receive an accessorial splenectomy meanwhile or not. Intestinal injury was assessed by histological morphological analysis, and serum endotoxin levels, TNF-α, NF-κB, ZO-1 and occludin levels were detected by Western blotting in the terminal ileum mucosal tissue. 30% TBSA burn caused a significant increase in serum endotoxin levels, but NF-κB, and TNF-α, and the average intestinal villus height and mucosal thickness were decreased significantly. Burn injury could also markedly decrease the levels of ZO-1 and occludin in terminal ileum mucosal tissue (all P<0.01). Splenectomy at 7th day after burn significantly reversed the burn-induced breakdown of ZO-1 and occludin (all P<0.01). The results of this study suggest that severe thermal injury damages the intestinal mucosal barrier. Splenectomy may provide a therapeutic benefit in restoring burn-induced intestinal barrier by decreasing the release of inflammatory cytokines and recovering TJ proteins.
Collapse
Affiliation(s)
- Xiang-Dong Liu
- Department of Plastic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, 200233, China
| | - Zhen-Yong Chen
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Yang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wen-Guang Huang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun-Fang Jiang
- Department of General Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
28
|
Alcohol and the Intestine. Biomolecules 2015; 5:2573-88. [PMID: 26501334 PMCID: PMC4693248 DOI: 10.3390/biom5042573] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/24/2015] [Accepted: 10/05/2015] [Indexed: 02/07/2023] Open
Abstract
Alcohol abuse is a significant contributor to the global burden of disease and can lead to tissue damage and organ dysfunction in a subset of alcoholics. However, a subset of alcoholics without any of these predisposing factors can develop alcohol-mediated organ injury. The gastrointestinal tract (GI) could be an important source of inflammation in alcohol-mediated organ damage. The purpose of review was to evaluate mechanisms of alcohol-induced endotoxemia (including dysbiosis and gut leakiness), and highlight the predisposing factors for alcohol-induced dysbiosis and gut leakiness to endotoxins. Barriers, including immunologic, physical, and biochemical can regulate the passage of toxins into the portal and systemic circulation. In addition, a host of environmental interactions including those influenced by circadian rhythms can impact alcohol-induced organ pathology. There appears to be a role for therapeutic measures to mitigate alcohol-induced organ damage by normalizing intestinal dysbiosis and/or improving intestinal barrier integrity. Ultimately, the inflammatory process that drives progression into organ damage from alcohol appears to be multifactorial. Understanding the role of the intestine in the pathogenesis of alcoholic liver disease can pose further avenues for pathogenic and treatment approaches.
Collapse
|
29
|
Tang Y, Zhang L, Forsyth CB, Shaikh M, Song S, Keshavarzian A. The Role of miR-212 and iNOS in Alcohol-Induced Intestinal Barrier Dysfunction and Steatohepatitis. Alcohol Clin Exp Res 2015. [PMID: 26207424 DOI: 10.1111/acer.12813] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Alcoholic liver disease is commonly associated with intestinal barrier dysfunction. Alcohol-induced dysregulation of intestinal tight junction proteins, such as Zonula Occludens-1 (ZO-1), plays an important role in alcohol-induced gut leakiness. However, the mechanism of alcohol-induced disruption of tight junction proteins is not well established. The goal of this study was to elucidate this mechanism by studying the role of microRNA 212 (miR-212) and inducible nitric oxide synthase (iNOS) in alcohol-induced gut leakiness. METHODS The permeability of the Caco-2 monolayer was assessed by transepithelial electrical resistance and flux of fluorescein sulfonic acid. miR-212 was measured by real-time polymerase chain reaction. The wild-type, iNOS knockout, and miR-212 knockdown mice were fed with alcohol diet (29% of total calories, 4.5% v/v) for 8 weeks. The LNA-anti-miR-212 was used to inhibit miR-212 expression in mice. The alcohol-induced intestinal permeability, miR-212 expression, and liver injuries in mice were measured. RESULTS Our in vitro monolayer and in vivo mice studies showed that: (i) alcohol-induced overexpression of the intestinal miR-212 and intestinal hyperpermeability is prevented using miR-212 knockdown techniques; and (ii) iNOS is up-regulated in the intestine by alcohol and that iNOS signaling is required for alcohol-induced miR-212 overexpression, ZO-1 disruption, gut leakiness, and steatohepatitis. CONCLUSIONS These studies thus support a novel miR-212 mechanism for alcohol-induced gut leakiness and a potential target that could be exploited for therapeutic intervention to prevent leaky gut and liver injury in alcoholics.
Collapse
Affiliation(s)
- Yueming Tang
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Lijuan Zhang
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Christopher B Forsyth
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Maliha Shaikh
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Shiwen Song
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| | - Ali Keshavarzian
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
30
|
Thomes PG, Osna NA, Bligh SM, Tuma DJ, Kharbanda KK. Role of defective methylation reactions in ethanol-induced dysregulation of intestinal barrier integrity. Biochem Pharmacol 2015; 96:30-8. [PMID: 25931143 DOI: 10.1016/j.bcp.2015.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/23/2015] [Indexed: 02/05/2023]
Abstract
Alcoholic liver disease (ALD) is a major healthcare challenge worldwide. Emerging evidence reveals that ethanol administration disrupts the intestinal epithelial tight junction (TJ) complex; this defect allows for the paracellular translocation of gut-derived pathogenic molecules to reach the liver to cause inflammation and progressive liver injury. We have previously demonstrated a causative role of impairments in liver transmethylation reactions in the pathogenesis of ALD. We have further shown that treatment with betaine, a methylation agent that normalizes liver methylation potential, can attenuate ethanol-induced liver injury. Herein, we explored whether alterations in methylation reactions play a causative role in disrupting intestinal mucosal barrier function by employing an intestinal epithelial cell line. Monolayers of Caco-2 cells were exposed to ethanol or a-pan methylation reaction inhibitor, tubercidin, in the presence and absence of betaine. The structural and functional integrity of intestinal epithelial barrier was then examined. We observed that exposure to either ethanol or tubercidin disrupted TJ integrity and function by decreasing the localization of TJ protein occludin-1 to the intracellular junctions, reducing transepithelial electrical resistance and increasing dextran influx. All these detrimental effects of ethanol and tubercidin were attenuated by co-treatment with betaine. We further show that the mechanism of betaine protection was through BHMT-mediated catalysis. Collectively, our data suggest a novel mechanism for alcohol-induced gut leakiness and identifies the importance of normal methylation reactions in maintaining TJ integrity. We also propose betaine as a potential therapeutic option for leaky gut in alcohol-consuming patients who are at the risk of developing ALD.
Collapse
Affiliation(s)
- Paul G Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sarah M Bligh
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dean J Tuma
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
31
|
Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A. Circadian rhythms, alcohol and gut interactions. Alcohol 2015; 49:389-98. [PMID: 25499101 DOI: 10.1016/j.alcohol.2014.07.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022]
Abstract
The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20-30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyperpermeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in Clock(▵19) mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our data support circadian mechanisms for alcohol-induced gut leakiness that could provide new therapeutic targets for ALD.
Collapse
Affiliation(s)
- Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Helen J Burgess
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL USA
| | - Garth R Swanson
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA; Department of Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
32
|
Malaguarnera G, Giordano M, Nunnari G, Bertino G, Malaguarnera M. Gut microbiota in alcoholic liver disease: Pathogenetic role and therapeutic perspectives. World J Gastroenterol 2014; 20:16639-16648. [PMID: 25469033 PMCID: PMC4248208 DOI: 10.3748/wjg.v20.i44.16639] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/04/2014] [Accepted: 07/11/2014] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is the commonest cause of cirrhosis in many Western countries and it has a high rate of morbidity and mortality. The pathogenesis is characterized by complex interactions between metabolic intermediates of alcohol. Bacterial intestinal flora is itself responsible for production of endogenous ethanol through the fermentation of carbohydrates. The intestinal metabolism of alcohol produces a high concentration of toxic acetaldehyde that modifies gut permeability and microbiota equilibrium. Furthermore it causes direct hepatocyte damage. In patients who consume alcohol over a long period, there is a modification of gut microbiota and, in particular, an increment of Gram negative bacteria. This causes endotoxemia and hyperactivation of the immune system. Endotoxin is a constituent of Gram negative bacteria cell walls. Two types of receptors, cluster of differentiation 14 and Toll-like receptors-4, present on Kupffer cells, recognize endotoxins. Several studies have demonstrated the importance of gut-liver axis and new treatments have been studied in recent years to reduce progression of ALD modifying gut microbiota. It has focused attention on antibiotics, prebiotics, probiotics and synbiotics.
Collapse
|
33
|
Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc Natl Acad Sci U S A 2014; 111:E4485-93. [PMID: 25288760 DOI: 10.1073/pnas.1415174111] [Citation(s) in RCA: 661] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Alcohol dependence has traditionally been considered a brain disorder. Alteration in the composition of the gut microbiota has recently been shown to be present in psychiatric disorders, which suggests the possibility of gut-to-brain interactions in the development of alcohol dependence. The aim of the present study was to explore whether changes in gut permeability are linked to gut-microbiota composition and activity in alcohol-dependent subjects. We also investigated whether gut dysfunction is associated with the psychological symptoms of alcohol dependence. Finally, we tested the reversibility of the biological and behavioral parameters after a short-term detoxification program. We found that some, but not all, alcohol-dependent subjects developed gut leakiness, which was associated with higher scores of depression, anxiety, and alcohol craving after 3 wk of abstinence, which may be important psychological factors of relapse. Moreover, subjects with increased gut permeability also had altered composition and activity of the gut microbiota. These results suggest the existence of a gut-brain axis in alcohol dependence, which implicates the gut microbiota as an actor in the gut barrier and in behavioral disorders. Thus, the gut microbiota seems to be a previously unidentified target in the management of alcohol dependence.
Collapse
|
34
|
Hu WG, Lu QP. Impact of oxidative stress on the cytoskeleton of pancreatic epithelial cells. Exp Ther Med 2014; 8:1438-1442. [PMID: 25289036 PMCID: PMC4186494 DOI: 10.3892/etm.2014.1979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/29/2014] [Indexed: 01/08/2023] Open
Abstract
In the present study the effect of reactive oxygen species on the morphological changes of pancreatic epithelial cells in a three-dimensional culture system was investigated. In addition, the expression of signaling molecules during this process was determined. Matrigel™ was used to construct a three-dimensional culture model of pancreatic epithelial and cancer cells. The cultured cells were stimulated with 1 or 200 μmol/l H2O2 (a typical reactive oxygen species), and the morphological changes were then evaluated after 15 min, 1 h and 4 h. The cytoskeleton of the cells was observed using laser scanning confocal microscopy with immunofluorescence staining. In addition, the nuclear content of nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) was detected using ELISA. The results demonstrated that treatment with 200 μmol/l H2O2 induced cell contraction after 15 min, and cell morphology recovered after 1 h; however, cell size was reduced after 4 h. Consequently, intracellular actin and microtubules were rapidly lost following H2O2 treatment, and the cytoskeleton became indistinct and eventually disintegrated after 4 h. Similar observations were noted for the normal pancreatic epithelial and cancer cells. By contrast, treatment with 1 μmol/l H2O2 did not affect the morphology and cytoskeleton of pancreatic epithelial cells. In addition, 200 μmol/l H2O2 treatment increased the activity of NF-κB gradually, while 1 μmol/l H2O2 treatment was found to have little impact on the activity of NF-κB. Therefore, it was demonstrated that oxidative stress can induce the early onset of reversible cell contraction and cytoskeleton depolarization in pancreatic epithelial cells, and can increase NF-κB expression.
Collapse
Affiliation(s)
- Wei-Guo Hu
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| | - Qi-Ping Lu
- Department of General Surgery, Wuhan General Hospital of Guangzhou Military Command, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
35
|
Elamin E, Masclee A, Troost F, Dekker J, Jonkers D. Cytotoxicity and metabolic stress induced by acetaldehyde in human intestinal LS174T goblet-like cells. Am J Physiol Gastrointest Liver Physiol 2014; 307:G286-94. [PMID: 24904079 DOI: 10.1152/ajpgi.00103.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is compelling evidence indicating that ethanol and its oxidative metabolite acetaldehyde can disrupt intestinal barrier function. Apart from the tight junctions, mucins secreted by goblet cells provide an effective barrier. Ethanol has been shown to induce goblet cell injury associated with alterations in mucin glycosylation. However, effects of its most injurious metabolite acetaldehyde remain largely unknown. This study aimed to assess short-term effects of acetaldehyde (0, 25, 50, 75, 100 μM) on functional characteristics of intestinal goblet-like cells (LS174T). Oxidative stress, mitochondrial function, ATP, and intramitochondrial calcium (Ca(2+)) were assessed by dichlorofluorescein, methyltetrazolium, and bioluminescence, MitoTracker green and rhod-2 double-labeling. Membrane integrity and apoptosis were evaluated by measuring lactate dehydrogenase (LDH), caspase 3/7, and cleavage of cytokeratin 18 (CK18). Expression of mucin 2 (MUC2) was determined by cell-based ELISA. Acetaldehyde significantly increased reactive oxygen species generation and decreased mitochondrial function compared with negative controls (P < 0.05). In addition, acetaldehyde dose-dependently decreased ATP levels and induced intramitochondrial Ca(2+) accumulation compared with negative controls (P < 0.05). Furthermore, acetaldehyde induced LDH release and increased caspase3/7 activity and percentage of cells expressing cleaved CK18 and increased MUC2 protein expression compared with negative controls (P < 0.0001). ATP depletion and LDH release could be largely prevented by the antioxidant N-acetylcysteine, suggesting a pivotal role for oxidative stress. Our data demonstrate that acetaldehyde has distinct oxidant-dependent metabolic and cytotoxic effects on LS174T cells that can lead to induction of cellular apoptosis. These effects may contribute to acetaldehyde-induced intestinal barrier dysfunction and subsequently to liver injury.
Collapse
Affiliation(s)
- Elhaseen Elamin
- Top Institute Food and Nutrition, Wageningen, the Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism of Maastricht University Medical Center, Maastricht, the Netherlands; and
| | - Ad Masclee
- Top Institute Food and Nutrition, Wageningen, the Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism of Maastricht University Medical Center, Maastricht, the Netherlands; and
| | - Freddy Troost
- Top Institute Food and Nutrition, Wageningen, the Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism of Maastricht University Medical Center, Maastricht, the Netherlands; and
| | - Jan Dekker
- Top Institute Food and Nutrition, Wageningen, the Netherlands; Department of Animal Sciences, Wageningen UR, Wageningen, the Netherlands
| | - Daisy Jonkers
- Top Institute Food and Nutrition, Wageningen, the Netherlands; Division of Gastroenterology-Hepatology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; School for Nutrition, Toxicology and Metabolism of Maastricht University Medical Center, Maastricht, the Netherlands; and
| |
Collapse
|
36
|
Wang B, Wu G, Zhou Z, Dai Z, Sun Y, Ji Y, Li W, Wang W, Liu C, Han F, Wu Z. Glutamine and intestinal barrier function. Amino Acids 2014; 47:2143-54. [PMID: 24965526 DOI: 10.1007/s00726-014-1773-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The intestinal barrier integrity is essential for the absorption of nutrients and health in humans and animals. Dysfunction of the mucosal barrier is associated with increased gut permeability and development of multiple gastrointestinal diseases. Recent studies highlighted a critical role for glutamine, which had been traditionally considered as a nutritionally non-essential amino acid, in activating the mammalian target of rapamycin cell signaling in enterocytes. In addition, glutamine has been reported to enhance intestinal and whole-body growth, to promote enterocyte proliferation and survival, and to regulate intestinal barrier function in injury, infection, weaning stress, and other catabolic conditions. Mechanistically, these effects were mediated by maintaining the intracellular redox status and regulating expression of genes associated with various signaling pathways. Furthermore, glutamine stimulates growth of the small intestinal mucosa in young animals and also enhances ion transport by the gut in neonates and adults. Growing evidence supports the notion that glutamine is a nutritionally essential amino acid for neonates and a conditionally essential amino acid for adults. Thus, as a functional amino acid with multiple key physiological roles, glutamine holds great promise in protecting the gut from atrophy and injury under various stress conditions in mammals and other animals.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.,Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Zhigang Zhou
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuli Sun
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yun Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Weiwei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chuang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Feng Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
37
|
Wang Y, Tong J, Chang B, Wang B, Zhang D, Wang B. Effects of alcohol on intestinal epithelial barrier permeability and expression of tight junction-associated proteins. Mol Med Rep 2014; 9:2352-6. [PMID: 24718485 DOI: 10.3892/mmr.2014.2126] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/27/2014] [Indexed: 12/24/2022] Open
Abstract
The present study aimed to investigate the effects of alcohol on intestinal epithelial barrier permeability and expression of the tight junction-associated proteins, zonula occludens-1 (ZO-1) and claudin-1. An alcohol-treated Caco-2 intestinal epithelial cell monolayer in vitro model was used to investigate whether alcohol is able to induce intestinal barrier dysfunction and decrease expression of ZO-1 and claudin-1. MTT assay results revealed unaltered cell viability at alcohol concentrations of <5%. Caco-2 cells in the 5% alcohol-treated groups exhibited a significant time-dependent decrease in transepithelial electrical resistance (TEER) and an increase in fluorescent yellow flux rate compared with the control cells. ZO‑l expression exhibited a progressive decline following 20 min of incubation, reached its minimum levels at 60 min and then showed an increasing trend following 60 min of incubation. In addition, claudin-1 expression exhibited a progressive increase following 60 min of incubation, reached its maximum levels at 60 min and then showed an increasing trend following 60 min of incubation. Alterations in the expression of the ZO-l and claudin-1 proteins revealed trends consistent with changes in the TEER value and the fluorescent yellow transmittance rate in the Caco-2 cells. The results of this study indicate that alcohol is able to increase the intestinal epithelial barrier permeability in a dose- and time-dependent manner. Alcohol induces a change in the expression of the tight junction-associated proteins, ZO-1 and claudin-1, which are two major sites of alcohol action, thus increasing intestinal epithelial barrier permeability.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jing Tong
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Baifang Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Dai Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Bingyuan Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
38
|
Roth B, Bengtsson M, Ohlsson B. Diarrhoea is not the only symptom that needs to be treated in patients with microscopic colitis. Eur J Intern Med 2013; 24:573-8. [PMID: 23561634 DOI: 10.1016/j.ejim.2013.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/21/2013] [Accepted: 02/11/2013] [Indexed: 12/30/2022]
Abstract
BACKGROUND Many patients with microscopic colitis (MC) also suffer from symptoms of irritable bowel syndrome (IBS), but the only treatment given is corticosteroids for the diarrhoea. The aim of this study was to examine how social factors, life style factors and drug treatment affect symptoms and well-being in patients suffering from MC. METHODS Women, over the age of 73years, with biopsy-verified MC, at any Departments of Gastroenterology, Skåne, between 2002 and 2010 were invited. The questionnaires Gastrointestinal Symptom Rating Scale (GSRS) and Psychological General Well-being Index (PGWB) were sent by mail, along with questions about social and life style factors, and medical history. RESULTS Of 240 invited, 158 patients (66%) were included (median age 63years, range 27-73years). Only 26% had never smoked. Smoking and concomitant IBS were associated with both impaired gastrointestinal symptoms (OR=3.96, 95% CI=1.47-10.66 and OR=4.40, 95% CI=2.09-9.26, respectively) and impaired psychological well-being (OR=2.77, 95% CI=1.04-7.34 and OR=3.82, 95% CI=1.83-7.99, respectively). Treatment with proton pump inhibitors (PPI) was associated with increased gastrointestinal symptoms (OR=3.44, 95% CI=1.45-8.16). Age, social factors, and corticosteroids had no effect on symptoms or well-being. Smoking was the only risk factor associated with IBS (OR=2.68, 95% CI=1.115-6.26). CONCLUSION Smoking and IBS are associated with impaired gastrointestinal symptoms and psychological well-being in MC patients. PPI is associated with impaired gastrointestinal symptoms.
Collapse
Affiliation(s)
- Bodil Roth
- Department of Clinical Sciences, Division of Gastroenterology, Skåne University Hospital, Malmö, Lund University, Lund, Sweden
| | | | | |
Collapse
|
39
|
Elamin EE, Masclee AA, Dekker J, Jonkers DM. Ethanol metabolism and its effects on the intestinal epithelial barrier. Nutr Rev 2013; 71:483-99. [PMID: 23815146 DOI: 10.1111/nure.12027] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol is widely consumed and is associated with an increasing global health burden. Several reviews have addressed the effects of ethanol and its oxidative metabolite, acetaldehyde, on the gastrointestinal (GI) tract, focusing on carcinogenic effects or alcoholic liver disease. However, both the oxidative and the nonoxidative metabolites of ethanol can affect the epithelial barrier of the small and large intestines, thereby contributing to GI and liver diseases. This review outlines the possible mechanisms of ethanol metabolism as well as the effects of ethanol and its metabolites on the intestinal barrier. Limited studies in humans and supporting in vitro data have indicated that ethanol as well as mainly acetaldehyde can increase small intestinal permeability. Limited evidence also points to increased colon permeability following exposure to ethanol or acetaldehyde. In vitro studies have provided several mechanisms for disruption of the epithelial barrier, including activation of different cell-signaling pathways, oxidative stress, and remodeling of the cytoskeleton. Modulation via intestinal microbiota, however, should also be considered. In conclusion, ethanol and its metabolites may act additively or even synergistically in vivo. Therefore, in vivo studies investigating the effects of ethanol and its byproducts on permeability of the small and large intestines are warranted.
Collapse
Affiliation(s)
- Elhaseen E Elamin
- Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | | | | | | |
Collapse
|
40
|
Imani Fooladi AA, Mahmoodzadeh Hosseini H, Nourani MR, Khani S, Alavian SM. Probiotic as a novel treatment strategy against liver disease. HEPATITIS MONTHLY 2013; 13:e7521. [PMID: 23610585 PMCID: PMC3631524 DOI: 10.5812/hepatmon.7521] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 02/07/2023]
Abstract
CONTEXT A symbiotic relationship between the liver and intestinal tract enables the healthy status of both organs. Microflora resident in intestinal lumen plays a significant role in hepatocytes function. Alterations to the type and amount of microorganisms that live in the intestinal tract can result in serious and harmful liver dysfunctions such as cirrhosis, nonalcoholic fatty liver disease, alcoholic liver disease, and hepatic encephalopathy. An increased number of pathogens, especially enterobacteriaceae, enterococci, and streptococci species causes the elevation of intestinal permeability and bacterial translocation. The presence of high levels of lipopolysaccharide (LPS) and bacterial substances in the blood result in a portal hypertension and ensuing hepatocytes damage. Several methods including the usage of antibiotics, prebiotics, and probiotics can be used to prevent the overgrowth of pathogens. Compared to prebiotic and antibiotic therapy, probiotics strains are a safer and less expensive therapy. Probiotics are "live microorganisms (according to the FAO/WHO) which when administered in adequate amounts confer a health benefit on the host". EVIDENCE ACQUISITIONS Data from numerous preclinical and clinical trials allows for control of the flora bacteria quantity, decreases in compounds derived from bacteria, and lowers proinflammatory production such as TNF-α, IL-6 and IFN-γ via down-regulation of the nuclear factor kappa B (NF-κ B). RESULTS On the other hand, probiotic can reduce the urease activity of bacterial microflora. Furthermore, probiotic decreases fecal pH value and reduces ammonia adsorption. In addition, the serum level of liver enzymes and other substances synthesized by the liver are modulated subsequent to probiotic consumption. CONCLUSIONS According to our knowledge, Probiotic therapy as a safe, inexpensive and a noninvasive strategy can reduce pathophysiological symptoms and improve different types of liver diseases without side effects.
Collapse
Affiliation(s)
- Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Abbas Ali Imani Fooladi, Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel.: +98-2188068924, Fax: +98-2188068924, E-mail:
| | | | - Mohammad Reza Nourani
- Tissue Engineering Division, Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| | - Soghra Khani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, IR Iran
| | - Seyed Moayed Alavian
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
41
|
Suzuki T. Regulation of intestinal epithelial permeability by tight junctions. Cell Mol Life Sci 2013; 70:631-59. [PMID: 22782113 PMCID: PMC11113843 DOI: 10.1007/s00018-012-1070-x] [Citation(s) in RCA: 932] [Impact Index Per Article: 77.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 12/13/2022]
Abstract
The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
Collapse
Affiliation(s)
- Takuya Suzuki
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
42
|
Cucurbitacin E exhibits anti-inflammatory effect in RAW 264.7 cells via suppression of NF-κB nuclear translocation. Inflamm Res 2013; 62:461-9. [DOI: 10.1007/s00011-013-0598-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/31/2012] [Accepted: 01/16/2013] [Indexed: 02/01/2023] Open
|
43
|
Microbial translocation in chronic liver diseases. Int J Microbiol 2012; 2012:694629. [PMID: 22848224 PMCID: PMC3405644 DOI: 10.1155/2012/694629] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/18/2012] [Indexed: 02/08/2023] Open
Abstract
The intestinal microflora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microflora may lead to microbial translocation, defined as the passage of viable microorganisms or bacterial products (i.e., LPS, lipopeptides) from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. The most recent evidence suggests that microbial translocation (MT) may occur not only in cirrhosis, but also in the early stage of several liver diseases, including alcoholic hepatopathy and nonalcoholic fatty liver disease. Different mechanisms, such as small intestinal bacterial overgrowth, increased permeability of intestinal mucosa, and impaired immunity, may favor MT. Furthermore, MT has been implicated in the pathogenesis of the complications of cirrhosis, which are a significant cause of morbidity and mortality in cirrhotic subjects. Therapeutic strategies aiming at modulating the gut microflora and reducing MT have focused on antibiotic-based options, such as selective intestinal decontamination, and nonantibiotic-based options, such as prokinetics and probiotics. In particular, probiotics may represent an attractive strategy, even though the promising results of experimental models and limited clinical studies need to be confirmed in larger randomized trials.
Collapse
|
44
|
He F, Peng J, Deng XL, Yang LF, Camara AD, Omran A, Wang GL, Wu LW, Zhang CL, Yin F. Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier. Cytokine 2012; 59:264-72. [PMID: 22583690 DOI: 10.1016/j.cyto.2012.04.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/22/2011] [Accepted: 04/11/2012] [Indexed: 01/30/2023]
Abstract
PURPOSE The aim of this study was to investigate the signaling mechanisms surrounding changes in tight junction (TJ) and the permeability of human intestinal epithelial cell induced by tumor necrosis factor-alpha (TNF-α). METHODS To confirm that TNF-α induces epithelial barrier hyperpermeability by disrupting tight junction, Caco-2 cells were exposed to TNF-α, and changes in epithelial permeability (via TER assay), F-actin dynamics (via Rhodamine-phalloidin staining) and tight junction protein expression (via western blot) were monitored. Moreover, to ensure that NF-κB participated in the regulatory mechanisms, Caco-2 cells were transfected with DNMu-IκBα or control plasmids, the above experiments were repeated and the activation effect of TNF-α on NF-κB was detected by luciferase reporter assays. Lastly, we took dominant negative plasmid and knockdown approaches to investigate the potential importance of the NF-κB/myosin light chain kinase (MLCK)/myosin light chain phosphorylation (pMLC) pathways in TNF-a-mediated damage. RESULT TNF-α could cause NF-κB activation, F-actin rearrangement, tight junction disruption and barrier dysfunction. These effects were alleviated by inhibiting NF-κB. TNF-α induced increase of MLCK transcription and MLC phosphorylation act later than NF-κB activation, which could be suppressed both by inactivating and deleting NF-κB. CONCLUSIONS TNF-α induces intestinal epithelial cell hyperpermeability by disrupting TJs, in part through MLCK upregulation, in which NF-κB is the positive upstream regulator for MLCK.
Collapse
Affiliation(s)
- Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 41008, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li P, Yu Q, Ye X, Wang Z, Yang Q. Lactobacillus S-layer protein inhibition of Salmonella-induced reorganization of the cytoskeleton and activation of MAPK signalling pathways in Caco-2 cells. Microbiology (Reading) 2011; 157:2639-2646. [DOI: 10.1099/mic.0.049148-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Surface layer (S-layer) proteins are crystalline arrays of proteinaceous subunits that are present as the outermost component of the cell wall in several Lactobacillus species. The S-layer proteins have been shown to play a role in the antimicrobial activity of certain lactobacilli. However, it is not fully understood how the S-layer proteins exert this biological function. The aim of this study was to test the hypothesis that Lactobacillus acidophilus S-layer proteins antagonize Salmonella Typhimurium (S. Typhimurium) infection by protecting against F-actin cytoskeleton rearrangements and the activation of mitogen-activated protein kinase (MAPK) signalling pathways. Monolayer transepithelial electrical resistance (TER) was measured after S. Typhimurium infection in Caco-2 cultured human intestinal cells with L. acidophilus S-layer proteins. F-actin rearrangement and MAPK activation were also assessed by immunofluorescence staining or Western blotting. The results showed that when S. Typhimurium was co-incubated with S-layer proteins, the S. Typhimurium-induced Caco-2 cell F-actin rearrangement was reduced, and the S. Typhimurium-induced TER decrease and interleukin 8 (IL-8) secretion were attenuated. Additionally, L. acidophilus S-layer proteins could inhibit S. Typhimurium-induced phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinase (JNK) and p38. This study indicates that L. acidophilus S-layer proteins are able to inhibit S. Typhimurium infection through blocking S. Typhimurium-induced F-actin rearrangements and S. Typhimurium-induced ERK1/2, JNK and p38 activation in Caco-2 cells. These data provide a rationale for the use of lactobacillus S-layer proteins as therapeutic and preventative agents, at least in infectious diarrhoea.
Collapse
Affiliation(s)
- Pengcheng Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qinghua Yu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Xiaolan Ye
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Zhisheng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
46
|
He F, Peng J, Deng XL, Yang LF, Wu LW, Zhang CL, Yin F. RhoA and NF-κB are involved in lipopolysaccharide-induced brain microvascular cell line hyperpermeability. Neuroscience 2011; 188:35-47. [DOI: 10.1016/j.neuroscience.2011.04.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 03/08/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
47
|
Forsyth CB, Tang Y, Shaikh M, Zhang L, Keshavarzian A. Role of snail activation in alcohol-induced iNOS-mediated disruption of intestinal epithelial cell permeability. Alcohol Clin Exp Res 2011; 35:1635-43. [PMID: 21535025 DOI: 10.1111/j.1530-0277.2011.01510.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic alcohol use results in many pathological effects including alcoholic liver disease (ALD). ALD pathogenesis requires endotoxemia. Our previous studies showed that increased intestinal permeability is the major cause of endotoxemia, and that this gut leakiness is dependent on alcohol stimulation of inducible nitric oxide synthase (iNOS) in both alcoholic subjects and rodent models of alcoholic steatohepatitis. The mechanism of the alcohol-induced, iNOS-mediated disruption of the intestinal barrier function is not known. We have recently shown that alcohol stimulates activation of the transcription factor Snail and biomarkers of epithelial mesenchymal transition. As activated Snail disrupts tight junctional proteins, we hypothesized that activation of Snail by iNOS might be one of the key signaling pathways mediating alcohol-stimulated intestinal epithelial cell hyperpermeability. METHODS We measured intestinal permeability in alcohol-fed C57BL/6 control and iNOS knockout (KO) mice, and measured Snail protein expression in the intestines of these mice. We then examined intestinal epithelial permeability using the Caco-2 cell model of the intestinal barrier ± small interfering RNA (siRNA) inhibition of Snail. We assessed Snail activation by alcohol in Caco-2 cells ± inhibition of iNOS with L-NIL or siRNA. Finally, we assessed Snail activation by alcohol ± inhibition with siRNA for p21-activated kinase (PAK1). RESULTS Our data show that chronic alcohol feeding promotes intestinal hyperpermeability in wild-type BL/6, but not in iNOS KO mice. Snail protein expression was increased in the intestines of alcohol-treated wild-type mice, but not in iNOS KO mice. siRNA inhibition of Snail significantly inhibited alcohol-induced hyperpermeability in Caco-2 cell monolayers. Alcohol stimulation of Snail(pS246) activation was blocked by inhibition of iNOS with L-NIL or with siRNA. siRNA inhibition of PAK1 significantly inhibited alcohol-mediated activation of Snail in Caco-2 cells. CONCLUSIONS Our data confirmed our prior results and further demonstrated that alcohol-induced gut leakiness in rodents and intestinal epithelial cell monolayers is iNOS dependent. Our data also support a novel role for Snail activation in alcohol-induced, iNOS-mediated intestinal hyperpermeability and that PAK1 is responsible for activation of Snail at Ser246 with alcohol stimulation. Identification of these mechanisms for alcohol-induced intestinal hyperpermeability may provide new therapeutic targets for prevention and treatment of alcohol-induced leaky gut, endotoxemia, and endotoxin-associated complications of alcoholism such as ALD.
Collapse
Affiliation(s)
- Christopher B Forsyth
- Department of Internal Medicine, Section of Gastroenterology, Rush University Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | |
Collapse
|
48
|
Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, Keshavarzian A. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res 2011; 35:1305-14. [PMID: 21463335 DOI: 10.1111/j.1530-0277.2011.01466.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have indicated that endotoxemia is the required co-factor for alcoholic steatohepatitis (ASH) that is seen in only about 30% of alcoholics. Recent studies have shown that gut leakiness that occurs in a subset of alcoholics is the primary cause of endotoxemia in ASH. The reasons for this differential susceptibility are not known. Since disruption of circadian rhythms occurs in some alcoholics and circadian genes control the expression of several genes that are involved in regulation of intestinal permeability, we hypothesized that alcohol induces intestinal hyperpermeability by stimulating expression of circadian clock gene proteins in the intestinal epithelial cells. METHODS We used Caco-2 monolayers grown on culture inserts as an in vitro model of intestinal permeability and performed Western blotting, permeability, and siRNA inhibition studies to examine the role of Clock and Per2 circadian genes in alcohol-induced hyperpermeability. We also measured PER2 protein levels in intestinal mucosa of alcohol-fed rats with intestinal hyperpermeability. RESULTS Alcohol, as low as 0.2%, induced time dependent increases in both Caco-2 cell monolayer permeability and in CLOCK and PER2 proteins. SiRNA specific inhibition of either Clock or Per2 significantly inhibited alcohol-induced monolayer hyperpermeability. Alcohol-fed rats with increased total gut permeability, assessed by urinary sucralose, also had significantly higher levels of PER2 protein in their duodenum and proximal colon than control rats. CONCLUSIONS Our studies: (i) demonstrate a novel mechanism for alcohol-induced intestinal hyperpermeability through stimulation of intestinal circadian clock gene expression, and (ii) provide direct evidence for a central role of circadian genes in regulation of intestinal permeability.
Collapse
Affiliation(s)
- Garth Swanson
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, 1725 W. Harrison, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Ethanol impairs the assembly and disassembly of actin cytoskeleton and cell adhesion via the RhoA signaling pathway, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini. Biochem Biophys Res Commun 2011; 405:558-63. [PMID: 21262198 DOI: 10.1016/j.bbrc.2011.01.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2011] [Accepted: 01/19/2011] [Indexed: 11/23/2022]
Abstract
The purpose of the present study was to evaluate the effects of EtOH on RhoA, actin cytoskeleton, catenin p120 and E-cadherin and their interactions in CCK-stimulated rat pancreatic acini. In isolated rat pancreatic acinar cells, CCK stimulation enhanced protein expression and association of RhoA, G(α13), Vav-2, catenin p120 and E-cadherin. CCK induced translocation and activation of RhoA and actin-filamentous assembly and disassembly. RhoA was diffusely localized throughout the acinar cell in the resting state and redistributed to the apical site in response to submaximal CCK stimulation and to a lesser extent in response to supramaximal CCK stimulation. Ethanol and subsequent submaximal CCK stimulation mimicked the effect of supramaximal CCK stimulation in terms of amylase secretion and morphologic effects. However, inhibition of RhoA translocation and activation were observed only with ethanol pretreatment. Ethanol followed by supramaximal CCK stimulation disrupted the well-defined localization of catenin p120 and E-cadherin around the lateral plasma membrane. These data suggest that ethanol impaired the assembly and disassembly of actin cytoskeleton and impaired cell-cell adhesion via the RhoA signaling pathways, catenin p120 and E-cadherin in CCK-stimulated pancreatic acini.
Collapse
|
50
|
Ahrne S, Hagslatt MLJ. Effect of lactobacilli on paracellular permeability in the gut. Nutrients 2011; 3:104-17. [PMID: 22254077 PMCID: PMC3257727 DOI: 10.3390/nu3010104] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 12/28/2010] [Accepted: 01/11/2011] [Indexed: 11/17/2022] Open
Abstract
Paracellular permeability is determined by the complex structures of junctions that are located between the epithelial cells. Already in 1996, it was shown that the human probiotic strain Lactobacillus plantarum 299v and the rat-originating strain Lactobacillus reuteri R2LC could reduce this permeability in a methotrexate-induced colitis model in the rat. Subsequently, many animal models and cell culture systems have shown indications that lactobacilli are able to counteract increased paracellular permeability evoked by cytokines, chemicals, infections, or stress. There have been few human studies focusing on the effect of lactobacilli on intestinal paracellular permeability but recently it has been shown that they could influence the tight junctions. More precisely, short-term administration of L. plantarum WCSF1 to healthy volunteers increased the relocation of occludin and ZO-1 into the tight junction area between duodenal epithelial cells.
Collapse
Affiliation(s)
- Siv Ahrne
- Division of Applied Nutrition, Department of Food Technology, Engineering and Nutrition, Lund University, SE-22100 Lund, Sweden.
| | | |
Collapse
|