1
|
Matthews DB, Kerr E. Interaction of age and sex as factors in understanding the anxiolytic effects of alcohol: Unasked questions limiting the understanding of a critical health issue. Pharmacol Biochem Behav 2024; 245:173881. [PMID: 39278601 DOI: 10.1016/j.pbb.2024.173881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Understanding the reasons why people consume alcohol is a critical health issue. Alcohol produces a variety of effects, including a reduction in stress or negative emotional states termed an anxiolytic effect. The anxiolytic effect of alcohol is an often-reported reason for why people begin consuming the drug. However, several factors concerning the stress-reducing effect of alcohol need to be investigated. For example, research has demonstrated that both age and sex are factors that impact alcohol's anxiolytic effect producing differential outcomes in aged female rats compared to aged male rats. In light of these findings, the current commentary highlights critical questions in need of research with the goal of better understanding how age and sex interact to influence the anxiolytic effect of alcohol. For example, the central nucleus of the amygdala has been identified as a critical brain region mediating the anxiolytic effect of drugs, but additional research is needed to understand how aging alters the neurological functioning of the central nucleus of the amygdala in both females and males. Furthermore, specific receptor isoforms, such as GABAA receptor α2, have been shown to be critical for anxiolysis and understanding how aging and sex alter receptor isoform expression by brain region is needed. Finally, age and sex interact to alter allopregnanolone levels in brain and differential neurosteroid levels may mediate alcohol's unique anxiolytic effect in aged female rats compared to aged male rats. Given the increasing age of the population in most countries and the increasing alcohol consumption levels in females compared to males, investigating the interaction of sex and age on alcohol's anxiolytic effect has great promise to discover critical answers to what are currently unasked questions.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| | - Emily Kerr
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| |
Collapse
|
2
|
Wen W, Li H, Lauffer M, Hu D, Zhang Z, Lin H, Wang Y, Leidinger M, Luo J. Sex-specific effects of alcohol on neurobehavioral performance and endoplasmic reticulum stress: an analysis using neuron-specific MANF deficient mice. Front Pharmacol 2024; 15:1407576. [PMID: 39130640 PMCID: PMC11310019 DOI: 10.3389/fphar.2024.1407576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
Excessive alcohol exposure can cause neurobehavioral deficits and structural alterations in the brain. Emerging research evidence suggests that endoplasmic reticulum (ER) stress plays an important role in alcohol-induced neurotoxicity. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress inducible protein and is responsible to maintain ER homeostasis. MANF is highly expressed in both the developing and mature brain. We have previously shown that MANF deficiency exacerbated alcohol induced neurodegeneration and ER stress in the developing brain. However, little is known regarding the role of MANF in alcohol induced neuronal damage in the adult brain. In this study, we used a neuron-specific MANF knockout (KO) mouse model to investigate the effect of MANF deficiency on acute binge alcohol exposure-induced neurobehavioral deficits and ER stress. Adult male and female MANF KO mice and littermate controls received daily alcohol gavage (5 g/kg) for 10 days and then subjected to a battery of neurobehavioral tests including rotarods, balance beam, DigiGait, open field, elevated plus maze, Barnes maze, and three-chamber sociability task. Female MANF KO animals were more susceptible to alcohol-induced body weight loss. Alcohol exposure did not affect motor function, however female but not male MANF KO mice exhibited an increased locomotor activity in open field test. Learning and memory was not significantly impaired, but it was altered by MANF deficiency in females while it was affected by alcohol treatment in males. Both alcohol-exposed male and female MANF KO mice displayed increased sociability. Alcohol induced the expression of ER chaperones GRP78 and GRP94 and altered the levels of several unfolded protein response (UPR) and neuroinflammation markers in MANF KO mice in a sex-specific manner. The expression of MANF interacting proteins neuroplastin, PDIA1, and PDIA6 was increased in MANF KO mice, and was further induced by alcohol. In conclusion, alcohol exposure and neuronal MANF deficiency interacted to alter neurobehavioral outcomes, ER homeostasis and neuroinflammation in a sex-specific manner.
Collapse
Affiliation(s)
- Wen Wen
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hui Li
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Marisol Lauffer
- Neural Circuits and Behavior Core, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Di Hu
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Zuohui Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Hong Lin
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Yongchao Wang
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mariah Leidinger
- Comparative Pathology Laboratory, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jia Luo
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
- Iowa City VA Health Care System, Iowa City, IA, United States
| |
Collapse
|
3
|
Matthews DB, Rossmann G, Matthews SJ, Zank A, Shult C, Turunen A, Sharma P. Increased anxiolytic effect in aged female rats and increased motoric behavior in aged male rats to acute alcohol administration: Comparison to younger animals. Pharmacol Biochem Behav 2024; 239:173770. [PMID: 38636813 DOI: 10.1016/j.pbb.2024.173770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The population of most countries in the world is increasing and understanding risk factors that can influence the health of the older population is critical. Older adults consume alcohol often in a risky, binge manner. Previous work has demonstrated that aged rats are more sensitive to many of the effects of acute ethanol. In the current project aged, adult, and adolescent female and male rats were tested on the elevated plus maze and open field following either a 1.0 g/kg alcohol injection or a saline injection. We report sex- and age-dependent effects whereas aged female rats, but not aged male rats, showed an increased anxiolytic effect of alcohol in the elevated plus maze while aged male rats, but not aged female rats, showed increased stimulatory movement in the open field. In addition, significant age effects were found for both female and male rats. It is proposed that the sex- and age-dependent effects reported in the current studies may be due to differential levels of alcohol-induced allopregnanolone for the anxiolytic effects and differential levels of alcohol-induced dopamine for the stimulatory effects. The current work provides insights into factors influencing alcohol consumption in older adults.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Sadie J Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Aeda Zank
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Carolyn Shult
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Alicia Turunen
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Pravesh Sharma
- Department of Psychiatry and Psychology, Mayo Clinic Health System, Eau Claire, WI 54703, United States of America
| |
Collapse
|
4
|
Konar-Nié M, Guzman-Castillo A, Armijo-Weingart L, Aguayo LG. Aging in nucleus accumbens and its impact on alcohol use disorders. Alcohol 2023; 107:73-90. [PMID: 36087859 DOI: 10.1016/j.alcohol.2022.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 02/06/2023]
Abstract
Ethanol is one of the most widely consumed drugs in the world and prolonged excessive ethanol intake might lead to alcohol use disorders (AUDs), which are characterized by neuroadaptations in different brain regions, such as in the reward circuitry. In addition, the global population is aging, and it appears that they are increasing their ethanol consumption. Although research involving the effects of alcohol in aging subjects is limited, differential effects have been described. For example, studies in human subjects show that older adults perform worse in tests assessing working memory, attention, and cognition as compared to younger adults. Interestingly, in the field of the neurobiological basis of ethanol actions, there is a significant dichotomy between what we know about the effects of ethanol on neurochemical targets in young animals and how it might affect them in the aging brain. To be able to understand the distinct effects of ethanol in the aging brain, the following questions need to be answered: (1) How does physiological aging impact the function of an ethanol-relevant region (e.g., the nucleus accumbens)? and (2) How does ethanol affect these neurobiological systems in the aged brain? This review discusses the available data to try to understand how aging affects the nucleus accumbens (nAc) and its neurochemical response to alcohol. The data show that there is little information on the effects of ethanol in aged mice and rats, and that many studies had considered 2-3-month-old mice as adults, which needs to be reconsidered since more recent literature defines 6 months as young adults and >18 months as an older mouse. Considering the actual relevance of an aged worldwide population and that this segment is drinking more frequently, it appears at least reasonable to explore how ethanol affects the brain in adult and aged models.
Collapse
Affiliation(s)
- Macarena Konar-Nié
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile.
| | - Alejandra Guzman-Castillo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Lorena Armijo-Weingart
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| | - Luis Gerardo Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepcion, Concepcion, Chile; Programa en Neurociencia, Psiquiatría y Salud Mental, Universidad de Concepción, Concepcion, Chile.
| |
Collapse
|
5
|
Matthews DB, Rossmann G. Using animal models to identify clinical risk factors in the older population due to alcohol use and misuse. Alcohol 2023; 107:38-43. [PMID: 35659578 DOI: 10.1016/j.alcohol.2022.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 01/21/2023]
Abstract
The number of people over the age of 65 years old is increasing and understanding health risks associated with the aged population is important. Recent research has revealed that alcohol (ethanol) consumption levels in older demographics remains elevated and often occurs in a dangerous binge pattern. Given ethical constraints on investigating high level or binge pattern alcohol consumption in humans, animal models are often used to study the effects of ethanol. The current review highlights ongoing work revealing that aged rats are often more sensitive to the effects of acute ethanol compared to younger rats. Specifically, aged rats are more sensitive to the motor impairing, hypnotic, hypothermic, and often the cognitive effects of ethanol compared to younger rats. In addition, the development of ethanol tolerance following chronic exposure may have a different temporal pattern in aged rats compared to younger rats. However, the neurobiological mechanisms that cause the increased sensitivity to ethanol in aged animals have yet to be identified. Furthermore, the differential age effects of ethanol highlight clinical risk factors for alcohol misuse in the older human population. Future work is needed to determine underlying CNS mechanisms producing altered effects of ethanol in aged subjects and also the development of educational material concerning ethanol's effects across ages for health care providers working with the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States.
| | - Gillian Rossmann
- Department of Psychology, University of Wisconsin, Eau Claire, WI 54701, United States
| |
Collapse
|
6
|
Ho AMC, Peyton MP, Scaletty SJ, Trapp S, Schreiber A, Madden BJ, Choi DS, Matthews DB. Chronic Intermittent Ethanol Exposure Alters Behavioral Flexibility in Aged Rats Compared to Adult Rats and Modifies Protein and Protein Pathways Related to Alzheimer's Disease. ACS OMEGA 2022; 7:46260-46276. [PMID: 36570296 PMCID: PMC9774340 DOI: 10.1021/acsomega.2c04528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Repeated excessive alcohol consumption increases the risk of developing cognitive decline and dementia. Hazardous drinking among older adults further increases such vulnerabilities. To investigate whether alcohol induces cognitive deficits in older adults, we performed a chronic intermittent ethanol exposure paradigm (ethanol or water gavage every other day 10 times) in 8-week-old young adult and 70-week-old aged rats. While spatial memory retrieval ascertained by probe trials in the Morris water maze was not significantly different between ethanol-treated and water-treated rats in both age groups after the fifth and tenth gavages, behavioral flexibility was impaired in ethanol-treated rats compared to water-treated rats in the aged group but not in the young adult group. We then examined ethanol-treatment-associated hippocampal proteomic and phosphoproteomic differences distinct in the aged rats. We identified several ethanol-treatment-related proteins, including the upregulations of the Prkcd protein level, several of its phosphosites, and its kinase activity and downregulation in the Camk2a protein level. Our bioinformatic analysis revealed notable changes in pathways involved in neurotransmission regulation, synaptic plasticity, neuronal apoptosis, and insulin receptor signaling. In conclusion, our behavioral and proteomic results identified several candidate proteins and pathways potentially associated with alcohol-induced cognitive decline in aged adults.
Collapse
Affiliation(s)
- Ada Man-Choi Ho
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Mina P. Peyton
- Bioinformatics
and Computational Biology Program, University
of Minnesota, Minneapolis, Minnesota55455, United States
| | - Samantha J. Scaletty
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Sarah Trapp
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Areonna Schreiber
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| | - Benjamin J. Madden
- Mayo
Clinic Proteomics Core, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Doo-Sup Choi
- Department
of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota55905, United States
- Department
of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota55905, United States
| | - Douglas B. Matthews
- Department
of Psychology, University of Wisconsin—Eau
Claire, Eau Claire, Wisconsin54701, United States
| |
Collapse
|
7
|
Chronic Intermittent Ethanol Administration during Adolescence Produces Sex Dependent Impairments in Behavioral Flexibility and Survivability. Brain Sci 2022; 12:brainsci12050606. [PMID: 35624993 PMCID: PMC9139058 DOI: 10.3390/brainsci12050606] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Chronic intermittent ethanol exposure during adolescence produces behavioral impairments and neurobiological changes that can last into young adulthood. One such behavioral impairment is reduced behavioral flexibility, a behavioral impairment that has been correlated with the risk for increased ethanol intake. In the current study, we investigated if chronic intermittent ethanol exposure during adolescence alters cognition, including behavioral flexibility, over a 22-month testing period. Female and male rats were treated with either 3.0 g/kg or 5.0 g/kg ethanol via gavage in a chronic intermittent fashion during adolescence and then tested every 4 to 5 months on a series of cognitive measures in the Morris water maze. Chronic intermittent ethanol selectively impaired behavioral flexibility in both female and male rats, although the pattern of results was different as a function of sex. In addition, female, but not male, rats were impaired in a short-term relearning test. Finally, male rats administered ethanol during adolescence were significantly more likely to not survive the 22-month experiment compared to female rats administered ethanol during adolescence. The current results demonstrate that adolescence is a unique period of development where chronic intermittent ethanol exposure produces long-lasting, selective cognitive impairments across the lifespan.
Collapse
|
8
|
Anjos PAR, Marchette RCN, Kremer R, Granzotto N, Alves TM, Fadanni GP, Mazur FG, Anton EL, da Silva-Santos JE, Linder ÁE, Izídio GS. The influence of chromosome 4 on high ethanol consumption and blood pressure. Alcohol 2022; 102:1-10. [PMID: 35500756 DOI: 10.1016/j.alcohol.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022]
Abstract
The Spontaneously Hypertensive Rats (SHR) strain was developed through selective breeding for high systolic blood pressure. In our laboratory, we established a congenic rat strain named SHR.Lewis-Anxrr16 (SLA16). The SLA16 rat strain is genetically identical to the SHR except for the inserted Anxrr16 region in chromosome 4. Our objective was to evaluate the influence of this genomic region on ethanol consumption and blood pressure. First, we exposed SHR and SLA16 male and female rats to ethanol consumption. Results showed that, regardless of strain, females consumed more ethanol than males during forced (10% v/v) and spontaneous ethanol consumption (SEC; 2.5-20% v/v). Then, females from both strains were used to evaluate sensitivity to ethanol. No strain differences in the loss of righting reflex were observed after ethanol treatment (3 g/kg, 20% w/v, intraperitoneal [i.p.]). But, in the triple test, female SHR rats presented lower sensitivity to the ethanol (1.2 g/kg, 14% w/v, i.p.). Surprisingly, female SHR rats also presented higher blood pressure after SEC (10% v/v). Finally, losartan treatment was effective in decreasing the blood pressure of female rats of both strains, but had specific effects on SHR ethanol consumption. Our data suggest that SLA16 female rats consume less ethanol (10%), are more sensitive to its effects, and present lower blood pressure than SHR female rats. We demonstrated that the Anxrr16 locus in chromosome 4 is a genetic candidate to explain high ethanol consumption and blood pressure, at least in females.
Collapse
Affiliation(s)
| | - Renata Cristina Nunes Marchette
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Neurobiology of Addiction Section, Integrative Neuroscience Branch, National Institute on Drug Abuse Intramural Program, Baltimore, MD, United States
| | - Rafael Kremer
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Medicine - Federal University of Fronteira Sul, Passo Fundo, Rio Grande do Sul, Brazil
| | - Natalli Granzotto
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Thalita Mello Alves
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Guilherme Pasetto Fadanni
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernando Gabriel Mazur
- Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elaine Leocádia Anton
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Áurea Elizabeth Linder
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Geison Souza Izídio
- Department of Pharmacology - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil; Department of Cellular Biology, Embryology, and Genetics - Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
9
|
Matthews DB, Imhoff BM. Age modifies the effect of ethanol on behavior: Investigations in adolescent, adult and aged rats. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 161:251-275. [PMID: 34801171 DOI: 10.1016/bs.irn.2021.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of older people is increasing in most if not all countries in the world. In addition, the amount of alcohol consumption in the aged population is increasing and the consumption pattern is often in a binge fashion. However, little is known if the effects of alcohol, either acute or chronic exposure, vary in the older population compared to younger populations. The current mini-review will provide an overview of the effects of acute and chronic ethanol exposure at three different periods of development: adolescent, adult and aged on multiple different commonly studied behaviors. The overall conclusion is that biological age of the subject is a critical factor in understanding the effects of ethanol across the lifespan.
Collapse
Affiliation(s)
- D B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States.
| | - B M Imhoff
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
10
|
Smiley CE, Saleh HK, Nimchuk KE, Garcia-Keller C, Gass JT. Adolescent exposure to delta-9-tetrahydrocannabinol and ethanol heightens sensitivity to fear stimuli. Behav Brain Res 2021; 415:113517. [PMID: 34389427 PMCID: PMC8404161 DOI: 10.1016/j.bbr.2021.113517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/05/2023]
Abstract
Cannabis use disorder (CUD) has doubled in prevalence over the past decade as a nation-wide trend toward legalization allows for increased drug accessibility. As a result, marijuana has become the most commonly used illicit drug in the United States particularly among the adolescent population. This is especially concerning since there is greater risk for the harmful side effects of drug use during this developmental period due to ongoing brain maturation. Increasing evidence indicates that CUD often occurs along with other debilitating conditions including both alcohol use disorder (AUD) and anxiety disorders such post-traumatic stress disorder (PTSD). Additionally, exposure to cannabis, alcohol, and stress can induce alterations in glutamate regulation and homeostasis in the prefrontal cortex (PFC) that may lead to impairments in neuronal functioning and cognition. Therefore, in order to study the relationship between drug exposure and the development of PTSD, these studies utilized rodent models to determine the impact of adolescent exposure to delta-9-tetrahydrocannabinol (THC) and ethanol on responses to fear stimuli during fear conditioning and used calcium imaging to measure glutamate activity in the prelimbic cortex during this behavioral paradigm. The results from these experiments indicate that adolescent exposure to THC and ethanol leads to enhanced sensitivity to fear stimuli both behaviorally and neuronally. Additionally, these effects were attenuated when animals were treated with the glutamatergic modulator N-acetylcysteine (NAC). In summary, these studies support the hypothesis that adolescent exposure to THC and ethanol leads to alterations in fear stimuli processing through glutamatergic reliant modifications in PFC signaling.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Neuroscience, Medical University of South Carolina, Basic Science Building, 173 Ashley Avenue, Room 403, Charleston, SC, 29425, United States.
| | - Heyam K Saleh
- Department of Neuroscience, Medical University of South Carolina, Basic Science Building, 173 Ashley Avenue, Room 403, Charleston, SC, 29425, United States
| | - Katherine E Nimchuk
- Department of Neuroscience, Medical University of South Carolina, Basic Science Building, 173 Ashley Avenue, Room 403, Charleston, SC, 29425, United States
| | - Constanza Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Basic Science Building, 173 Ashley Avenue, Room 403, Charleston, SC, 29425, United States
| | - Justin T Gass
- Department of Neuroscience, Medical University of South Carolina, Basic Science Building, 173 Ashley Avenue, Room 403, Charleston, SC, 29425, United States
| |
Collapse
|
11
|
Cortez I, Rodgers SP, Kosten TA, Leasure JL. Sex and Age Effects on Neurobehavioral Toxicity Induced by Binge Alcohol. Brain Plast 2020; 6:5-25. [PMID: 33680843 PMCID: PMC7902983 DOI: 10.3233/bpl-190094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.
Collapse
Affiliation(s)
- Ibdanelo Cortez
- Department of Psychology, University of Houston, Houston, TX, USA
| | | | | | - J. Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, USA
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
12
|
Vásquez PA, San Martín L, Argel Y, Riquelme C, Torres J, Vidal F, Cayuman F, Castro P, Fuentealba J, Moraga-Cid G, Yevenes G, Jin C, Jiménez VA, Guzmán L. Stereospecific Inhibition of Ethanol Potentiation on Glycine Receptor by M554 Stereoisomers. J Chem Inf Model 2020; 60:6634-6641. [PMID: 33259207 DOI: 10.1021/acs.jcim.0c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Blocking the interaction between the Gβγ protein and the glycine receptor (GlyR) has emerged as a promising pharmacological strategy to treat acute alcohol intoxication by inhibiting ethanol potentiation on GlyR. M554 is a recently discovered small molecule capable of binding to Gβγ with potent in vitro and in vivo inhibitory activity. This compound has been tested as a mixture of diastereomers, and no information is available concerning the stereospecific activity of each species, which is critical to pursue efforts on lead optimization and drug development. In this work, we explored the differential activity of four M554 stereoisomers by in silico molecular dynamics simulations and electrophysiological experiments. Our results revealed that the (R,R)-M554 stereoisomer is a promising lead compound that inhibits ethanol potentiation of GlyR.
Collapse
Affiliation(s)
- Pilar A Vásquez
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Loreto San Martín
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Yenifer Argel
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Camila Riquelme
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Josefa Torres
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Felipe Vidal
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Francisca Cayuman
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Patricio Castro
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Jorge Fuentealba
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Gustavo Moraga-Cid
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Gonzalo Yevenes
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| | - Chunyang Jin
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, North Carolina 27709, United States
| | - Verónica A Jiménez
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Sede Concepción, Autopista Concepción-Talcahuano 7100, Talcahuano, Región del Bio Bio 4300866, Chile
| | - Leonardo Guzmán
- Departamento de Fisiología, Edificio Arco de Ciencias Biológicas, Universidad de Concepción, Victor Lamas 1290, Concepción, Región del Bio Bio 4030000, Chile
| |
Collapse
|
13
|
Matthews DB, Scaletty S, Schreiber A, Trapp S. Acute ethanol administration produces larger spatial and nonspatial memory impairments in 29-33 month old rats compared to adult and 18-24 month old rats. Pharmacol Biochem Behav 2020; 199:173074. [PMID: 33212145 DOI: 10.1016/j.pbb.2020.173074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/11/2023]
Abstract
The average age of the population in many countries is continuing to increase. Older people continue to consume alcohol, often in a binge like fashion. Previous research has demonstrated that older human subjects and aged animal subjects have an increased sensitivity to the effects of ethanol on a variety of behaviors. However, it has yet to be determined if acute ethanol exposure impairs spatial and/or nonspatial memory to a greater extent in aged rats compared to adult rats. In the current studies we trained male rats ranging in age from young adult (2 months of age) to aged rats (29-33 months of age) in the standard nonspatial task followed by the standard spatial task in the Morris water maze. Only animals deemed "cognitively-spared", that is aged animals that learn as well as young animals, were administered one of two doses of moderate ethanol and had their memory tested 30 min later. Acute ethanol administration produced similar performance impairments in spatial and nonspatial memory in all cognitively-spared animals except for the 29-33 month old animals which showed a significantly greater cognitive impairment in both tasks. In addition, blood ethanol levels were similar across all ages. The present work adds to the growing literature on the selective effects of acute ethanol exposure in aged animals.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America.
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Areonna Schreiber
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| | - Sarah Trapp
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States of America
| |
Collapse
|
14
|
Watson MR, James K, Mittleman G, Matthews DB. Impact of acute ethanol exposure on body temperatures in aged, adult and adolescent male rats. Alcohol 2020; 82:81-89. [PMID: 31408671 DOI: 10.1016/j.alcohol.2019.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
The mean population age of the United States continues to increase, and data suggest that by the year 2060 the population of people over the age of 65 will more than double, providing a potentially massive strain on health care systems. Research demonstrates individuals 65 and older continue to consume ethanol, often at high levels. However, preclinical animal models are still being developed to understand how ethanol might interact with the aged population. The current experiments investigated differential body temperature responses in aged rats compared to adult rats and adolescent rats. Aged (19 months of age), adult (70 days of age), or adolescent (30 days of age) male Sprague Dawley rats were administered 1.0 g/kg, 2.0 g/kg, or 3.0 g/kg ethanol, intraperitoneally (i.p.), in a balanced Latin square design. Prior to ethanol administration, a core body temperature via an anal probe was obtained, and then repeatedly determined every 60 min following ethanol exposure for a total of 360 min. In addition, a blood sample was obtained from a tail nick 60, 180, and 300 min following the ethanol injection to investigate the relationship of ethanol levels and body temperature in the same animals. Aged rats had significantly greater reductions in body temperature compared to either adult or adolescent rats following both the 2.0 g/kg and 3.0 g/kg ethanol injection. Additionally, adolescent rats cleared ethanol significantly faster than aged or adult animals. These experiments suggest body temperature regulation in aged rats might be more sensitive to acute ethanol compared to adult rats or adolescent rats. Future studies are needed to identify the neurobiological effects underlying the differential sensitivity in aged rats to ethanol.
Collapse
Affiliation(s)
- Meredith R Watson
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| | - Kimberly James
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN 47306, United States
| | - Douglas B Matthews
- Department of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI 54701, United States.
| |
Collapse
|
15
|
Gong WK, Ni J, Yu LF, Wang L, Huang ZL. Temporal dynamics of Arc/Arg3.1 expression in the dorsal striatum during acquisition and consolidation of a motor skill in mice. Neurobiol Learn Mem 2020; 168:107156. [PMID: 31904548 DOI: 10.1016/j.nlm.2019.107156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/15/2019] [Accepted: 12/31/2019] [Indexed: 12/20/2022]
Abstract
Region- and pathway-specific plasticity within striatal circuits is critically involved in the acquisition and long-term retention of a new motor skill as it becomes automatized. However, the molecular substrates contributing to this plasticity remain unclear. Here, we examined the expression of the activity-regulated cytoskeleton-associated protein (Arc) in the associative or dorsomedial striatum (DMS) and the sensorimotor or dorsolateral striatum (DLS), as well as in striatonigral and striatopallidal neurons, during different skill learning phases in the accelerating rotarod task. We found that Arc was mainly expressed in the DMS during early motor learning and progressively increased in the DLS during gradual motor skill consolidation. Moreover, Arc was preferentially expressed in striatopallidal neurons early in training and gradually increased in striatonigral neurons later in training. These data demonstrate that in the dorsal striatum, the expression of Arc exhibits a region- and cell-specific transfer during the learning of a motor skill, suggesting a link between striatal Arc expression and motor skill learning in mice.
Collapse
Affiliation(s)
- Wan-Kun Gong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jian Ni
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lan-Fang Yu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Zhi-Li Huang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
16
|
Matthews DB, Schneider A, Kastner A, Scaletty S, Szenay R. I can't drink what I used to: The interaction between ethanol and the aging brain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:79-99. [PMID: 31733668 DOI: 10.1016/bs.irn.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The population of most countries is increasing and the United Nations predicts that by the year 2050 those over the age of 60 years old will increase from 900 million individuals to approximately 2.1 billion individuals (United Nations, 2015). The increase in the number of older individuals will place a strain on many national health care systems making it important to investigate behaviors in the aged that may negatively impact general health in this demographic. Recent work has shown that older adults consume alcohol, often at levels that exceed the legal limit of intoxication. Unfortunately, consumption of high levels of ethanol in the older population is associated with many health consequences and may negatively impact the brain. Given ethical constraints found in many biomedical studies, animal models are needed to investigate the possible negative impact of high ethanol use in aged populations. However, few studies have investigated the effect of ethanol exposure in aged animals compared to ethanol exposure in younger animals and consequently the impact of ethanol in the aged population is not well understood. The current review summarizes initial work establishing the impact of ethanol in aged animals. The reviewed research studies support the working hypothesis that ethanol exposure produces significantly greater effects in aged animals compared to younger animals on many, if not all, behavioral tasks. In addition, the review proposes several initial, promising avenues of research to explore the neurobiological mechanisms that underly greater effects on ethanol-induced ataxia, cognition and sleep time. It is hoped that this effort will not only lead to a better understanding of behaviors impacted by ethanol in aged animals, but also improve the understanding brain mechanisms of the reported increased sensitivity to ethanol in the aged population.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States.
| | - Amelia Schneider
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Abigail Kastner
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Samantha Scaletty
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| | - Rachel Szenay
- Department of Psychology, University of Wisconsin-Eau Claire, Eau Claire, WI, United States
| |
Collapse
|
17
|
Perkins AE, Varlinskaya EI, Deak T. From adolescence to late aging: A comprehensive review of social behavior, alcohol, and neuroinflammation across the lifespan. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:231-303. [PMID: 31733665 DOI: 10.1016/bs.irn.2019.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The passage of time dictates the pace at which humans and other organisms age but falls short of providing a complete portrait of how environmental, lifestyle and underlying biological processes contribute to senescence. Two fundamental features of the human experience that change dramatically across the lifespan include social interactions and, for many, patterns of alcohol consumption. Rodent models show great utility for understanding complex interactions among aging, social behavior and alcohol use and abuse, yet little is known about the neural changes in late aging that contribute to the natural decline in social behavior. Here, we posit that aging-related neuroinflammation contributes to the insipid loss of social motivation across the lifespan, an effect that is exacerbated by patterns of repeated alcohol consumption observed in many individuals. We provide a comprehensive review of (i) neural substrates crucial for the expression of social behavior under non-pathological conditions; (ii) unique developmental/lifespan vulnerabilities that may contribute to the divergent effects of low-and high-dose alcohol exposure; and (iii) aging-associated changes in neuroinflammation that may sit at the intersection between social processes and alcohol exposure. In doing so, we provide an overview of correspondence between lifespan/developmental periods between common rodent models and humans, give careful consideration to model systems used to aptly probe social behavior, identify points of coherence between human and animal models, and point toward a multitude of unresolved issues that should be addressed in future studies. Together, the combination of low-dose and high-dose alcohol effects serve to disrupt the normal development and maintenance of social relationships, which are critical for both healthy aging and quality of life across the lifespan. Thus, a more complete understanding of neural systems-including neuroinflammatory processes-which contribute to alcohol-induced changes in social behavior will provide novel opportunities and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States
| | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, United States.
| |
Collapse
|
18
|
Matthews DB, Watson MR, James K, Kastner A, Schneider A, Mittleman G. The impact of low to moderate chronic intermittent ethanol exposure on behavioral endpoints in aged, adult, and adolescent rats. Alcohol 2019; 78:33-42. [PMID: 30472308 DOI: 10.1016/j.alcohol.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/02/2023]
Abstract
The average age of the population in the United States and other countries is increasing. Understanding the health consequences in the aged population is critical. Elderly individuals consume ethanol, often at elevated rates, and in some cases in a binge episode. The present study sought to investigate whether binge-like ethanol exposure in aged male rats produced differential health and behavioral effects compared to adult male and adolescent male rats. Subjects were exposed to either 1.0 g/kg or 2.0 g/kg ethanol every other day via intraperitoneal injection for 20 days, and tested on a variety of behavioral measures and body weight. Binge-like ethanol exposure produced differential effects on body weight between aged and adolescent and adult rats. In addition, aged rats had a significantly longer loss of righting reflex and demonstrated a trend toward tolerance following the 2.0-g/kg exposure. No significant effects on anxiety-like behavior as measured by open arm entries, depressive-like symptoms as measured by immobility in the forced swim test, or cognitive performance as measured by latency and path length in the Morris water maze were found. These results demonstrate that aged animals are differentially sensitive to the impact of chronic intermittent ethanol exposure in some, but not all behaviors. Future research is needed to understand the mechanisms of these differential effects.
Collapse
|
19
|
Zhu J, Zhao W, Zhang C, Wang H, Cheng W, Li Z, Qian Y, Li X, Yu Y. Disrupted topological organization of the motor execution network in alcohol dependence. Psychiatry Res Neuroimaging 2018; 280:1-8. [PMID: 30121335 DOI: 10.1016/j.pscychresns.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/16/2022]
Abstract
Motor function damage is one of the most common symptoms in patients with alcohol dependence (AD). However, relatively little is known about the neuropathology of the motor impairments in AD. The aim of this study was to identify changes in the topological organization of the motor execution network in AD. Here, a total of 39 male individuals, including 19 AD patients and 20 age-matched healthy controls, underwent resting-state functional magnetic resonance imaging (fMRI). The motor execution network was constructed and analyzed using graph theoretical approaches. Topological properties (including global, nodal and edge measures) were compared between the two groups. At the global level, AD patients exhibited increased local specialization (indexed by increased clustering coefficient and local efficiency) relative to healthy controls, indicating that the motor execution network of AD patients shifts toward regularization. At the node level, nodal degree was higher in AD patients in the cerebellum. At the edge level, we observed a cerebello-thalamo-striato-cortical circuit with altered functional connectivity strength in AD patients. These findings suggest that topological architecture of the motor execution network is disrupted in AD patients, which may provide important insights into the neurobiology of the AD-related motor impairments.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Haibao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Wenwen Cheng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Zipeng Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei 230022, China.
| |
Collapse
|
20
|
Perkins AE, Vore AS, Lovelock D, Varlinskaya E, Deak T. Late aging alters behavioral sensitivity to ethanol in a sex-specific manner in Fischer 344 rats. Pharmacol Biochem Behav 2018; 175:1-9. [PMID: 30171932 DOI: 10.1016/j.pbb.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/27/2022]
Abstract
Responsiveness to ethanol (EtOH) differs as a function of age. Adolescent rodents are less sensitive than adults to the sedative effects of EtOH, whereas they show enhanced sensitivity to EtOH-induced social facilitation. Late aging is associated with a natural decline in social behavior and aging-related peculiarities in sensitivity to EtOH have been largely unexplored. Whether there are sex differences in the behavioral response to EtOH during late aging remains unknown. Thus, behavioral responses to EtOH in male and female Fischer (F) 344 rats aged 4-5 months (adult) and 19-20 months (aging) were examined. First, the effects of saline and EtOH (0.5 and 0.75 g/kg) on social interaction were assessed. Social investigation and contact behavior were lower in aging animals and higher in females. Interestingly, in aged females, social contact behavior was increased following a 0.5 g/kg EtOH dose, whereas the same dose suppressed social contact in aged males. Behavioral sensitivity to the sedative effects of 3.0 and 3.5 g/kg EtOH was assessed with the loss of righting reflex (LORR) test. Although latency to LORR did not differ as a function of age or sex, aged rats showed significantly greater LORR duration and significantly lower blood ethanol concentrations (BECs) at regaining of the righting reflex relative to adults. In addition, females had a lower LORR duration, regardless of age; no sex differences were evident in BECs at awakening. In a second experiment, blood ethanol concentrations (BECs) over time were assessed following 0.75, 1.5, and 3.0 g/kg EtOH in 3-, 12-, and 18-month-old male and female F344 rats. Aged rats had higher peak BECs following 3.0 g/kg EtOH, whereas few age or sex differences were apparent at lower doses. Taken together, these data indicate that late aging is associated with altered sensitivity to the social facilitating effects and sedative effects of EtOH.
Collapse
Affiliation(s)
- Amy E Perkins
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Andrew S Vore
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Dennis Lovelock
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Elena Varlinskaya
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America
| | - Terrence Deak
- Developmental Exposure to Alcohol Research Center (DEARC), Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States of America.
| |
Collapse
|
21
|
Westbrook SR, Kang M, Sherrill LK, O'Hearn D, Krishnamani T, Gulley JM. Sex differences in adolescent ethanol drinking to behavioral intoxication. J Exp Anal Behav 2018; 110:54-62. [PMID: 29781150 PMCID: PMC6064645 DOI: 10.1002/jeab.440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/02/2018] [Indexed: 01/27/2023]
Abstract
Rodent models have been especially useful for investigating adolescent ethanol exposure. However, there is a paucity of studies examining sex differences in behavioral intoxication from adolescent ethanol drinking. Here, we used an ethanol drinking model to investigate if adolescent rats of both sexes readily drink ethanol to measurable behavioral intoxication, indicated by increased impulsive action and motor incoordination. Beginning on postnatal day (P) 28, male and female Long-Evans rats were given 30-min access to a solution of sucrose (20%) or sweetened ethanol (20% sucrose +15% ethanol) every other day until P60 and once after 2 weeks of forced abstinence (on P75). On alternate (nondrinking) days, rats were reinforced with a food pellet for making a cued nosepoke response. Beginning on P56, rats were tested in this task after drinking sessions to assess ethanol-induced changes in impulsive action, defined as premature responding prior to cue presentation. Motor coordination was assessed before and after drinking sessions using an incline plane test. Adolescent male and female rats readily consumed ethanol to behavioral intoxication, measured as reduced motor coordination. Following forced abstinence, females displayed greater ethanol-induced impulsive action. These studies provide evidence for sex differences in behavioral intoxication following adolescent ethanol drinking.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Minsu Kang
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Luke K Sherrill
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Dylan O'Hearn
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Tanya Krishnamani
- Department of Psychology, University of Illinois at Urbana-Champaign
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
22
|
Winkler MC, Greager EM, Stafford J, Bachtell RK. Methamphetamine self-administration reduces alcohol consumption and preference in alcohol-preferring P rats. Addict Biol 2018; 23:90-101. [PMID: 27860181 PMCID: PMC5811924 DOI: 10.1111/adb.12476] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Subclinical levels of polysubstance use are a prevalent and understudied phenomenon. Alcohol is a substance commonly co‐used with other substances of other drug classes. These studies sought to determine the consumption effects of combining alcohol drinking and methamphetamine (MA) self‐administration. Male alcohol‐preferring P rats had continuous access to a two‐bottle alcohol drinking procedure in the home cage. Control rats remained alcohol naïve. Rats were also surgically implanted with intra‐jugular catheters and trained to self‐administer saline (control) or MA in daily 2‐hour sessions. We first measured the acquisition and maintenance of MA intake in alcohol‐consuming or control rats. MA intake was initially enhanced by alcohol consumption on a fixed ratio 1 schedule of reinforcement, but this effect did not prevail as the difficulty of the schedule (FR5 and progressive ratio) was increased. We next measured both alcohol consumption and preference before, during and after MA (or saline) self‐administration. MA self‐administration significantly reduced alcohol intake and preference ratios, a robust effect that persisted across several experimental variations. Interestingly, alcohol consumption rebounded following the cessation of MA self‐administration. The effects of MA self‐administration were specific to alcohol intake because it did not alter total fluid consumption or consumption of sucrose. MA self‐administration did not impact blood‐alcohol concentrations or alcohol‐induced loss of righting reflex suggesting no effect of MA intake on the alcohol metabolism or sensitivity. Together, the results suggest that MA intake disrupts alcohol consumption and preferences but not the reverse in alcohol‐preferring P rats.
Collapse
Affiliation(s)
- Madeline C. Winkler
- Department of Psychology and Neuroscience and Center for Neuroscience; University of Colorado Boulder; Boulder CO USA
| | - Emilee M. Greager
- Department of Psychology and Neuroscience and Center for Neuroscience; University of Colorado Boulder; Boulder CO USA
| | - Jacob Stafford
- Department of Psychology and Neuroscience and Center for Neuroscience; University of Colorado Boulder; Boulder CO USA
| | - Ryan K. Bachtell
- Department of Psychology and Neuroscience and Center for Neuroscience; University of Colorado Boulder; Boulder CO USA
| |
Collapse
|
23
|
|
24
|
Matthews DB, Mittleman G. Age-dependent effects of chronic intermittent ethanol treatment: Gross motor behavior and body weight in aged, adult and adolescent rats. Neurosci Lett 2017; 657:146-150. [PMID: 28789984 DOI: 10.1016/j.neulet.2017.08.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 11/29/2022]
Abstract
The proportion of people in the population who are elderly is rapidly increasing. In addition, dangerous alcohol consumption in this demographic is rising. Approximately 33% of all people with an alcohol use disorder are diagnosed with late onset alcoholism. However, few suitable animal models for late onset alcoholism exist, making it difficult to investigate the impact of alcoholism later in life. The current study investigated if chronic intermittent ethanol exposure via intraperitoneal injections every other day for 20days in aged, adult and adolescent male rats differentially alters body weight and impairs gross motor behavior as measured by the aerial righting reflex. The body weight of aged and adult rats were significantly decreased by chronic intermittent ethanol exposure while the body weight of adolescent rats was not impacted. In addition, the aerial righting reflex of aged rats was significantly more impaired by alcohol exposure than the aerial righting reflex of adult or adolescent animals. Chronic intermittent ethanol exposure did not produce tolerance in the aerial righting reflex for any of the three age groups. The differential age sensitivity in the aerial righting reflex was not due to differential blood ethanol concentrations. The current work demonstrates the risk factors of chronic alcohol use in the elderly and highlights the need for additional study in this vulnerable demographic.
Collapse
Affiliation(s)
- Douglas B Matthews
- Department of Psychology, University of Wisconsin-Eau Claire, United States.
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, United States
| |
Collapse
|
25
|
Gano A, Doremus-Fitzwater TL, Deak T. A cross-sectional comparison of ethanol-related cytokine expression in the hippocampus of young and aged Fischer 344 rats. Neurobiol Aging 2017; 54:40-53. [PMID: 28319836 PMCID: PMC5401774 DOI: 10.1016/j.neurobiolaging.2017.01.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/02/2017] [Accepted: 01/23/2017] [Indexed: 12/22/2022]
Abstract
Our work in Sprague Dawley rats has shown rapid alterations in neuroimmune gene expression (RANGE) in the hippocampus and paraventricular nucleus of the hypothalamus (PVN). These manifest as increased interleukin (IL)-6 and IκBα, and suppressed IL-1β and tumor necrosis factor alpha during acute ethanol intoxication. The present studies tested these effects across the lifespan (young adulthood at 2-3 months; senescence at 18 and 24 months), as well as across strain (Fischer 344) and sex. The hippocampus revealed age-dependent shifts in cytokine expression (IL-6, IL-1β, and monocyte chemoattractant protein 1), but no changes were observed in the PVN at baseline or following ethanol. RANGE in adults was similar across sex and comparable with effects seen in Sprague Dawley rats. Plasma corticosterone levels increased with age, whereas the blood ethanol concentrations and loss of righting reflex were similar in all groups older than 2 months. These findings indicate that the RANGE effect is largely conserved across strain and is durable across age, even in the face of a shifting neuroimmune profile that emerges during immunosenescence.
Collapse
Affiliation(s)
- Anny Gano
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA
| | | | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY, USA.
| |
Collapse
|
26
|
Impact of adolescent alcohol use across the lifespan: Long-lasting tolerance to high-dose alcohol coupled with potentiated spatial memory impairments to moderate-dose alcohol. Alcohol 2017; 61:33-42. [PMID: 28479015 DOI: 10.1016/j.alcohol.2017.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/05/2017] [Accepted: 01/21/2017] [Indexed: 12/18/2022]
Abstract
Understanding how alcohol exposure during adolescence affects aging is a critical but understudied area. In the present study, male rats were exposed to either alcohol or saline during adolescence, then tested every 4 months following either an ethanol or saline challenge; animals were tested until postnatal day (PD) 532. It was found that long-lasting tolerance to high-dose ethanol exists through the test period, as measured by loss of righting reflex, while tolerance to lower doses of ethanol is not found. In addition, alcohol exposure during adolescence facilitated spatial memory impairments to acute ethanol challenges later in life. The current work demonstrates that exposure to ethanol during adolescent development can produce long-lasting detrimental impairments.
Collapse
|
27
|
Houlé K, Abdi M, Clabough EBD. Acute ethanol exposure during late mouse neurodevelopment results in long-term deficits in memory retrieval, but not in social responsiveness. Brain Behav 2017; 7:e00636. [PMID: 28413697 PMCID: PMC5390829 DOI: 10.1002/brb3.636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/30/2016] [Accepted: 11/03/2016] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Prenatal alcohol exposure can result in neurological changes in affected individuals and may result in the emergence of a broad spectrum of neurobehavioral abnormalities termed fetal alcohol spectrum disorders (FASD). The effects of ethanol exposure during development are both time and dose dependent. Although many animal models of FASD use more chronic ethanol exposure, acute developmental alcohol exposure may also cause long-lasting neuronal changes. Our research employed behavioral measures to assess the effects of a single early postnatal ethanol intoxication event in mice. MATERIALS AND METHODS Mice were dosed at postnatal day 6 (a 2.5 g/kg dose of ethanol or a saline control administered twice, 2 hr apart) as a model of third trimester binge drinking in humans. This exposure was followed by behavioral assessment in male mice at 1 month (1M) and at 4 months of age (4M), using the Barnes maze (for learning/memory retrieval), exploratory behavior, and a social responsiveness task. RESULTS Ethanol-exposed mice appeared to be less motivated to complete the Barnes maze at 1M, but were able to successfully learn the maze. However, deficits in long-term spatial memory retrieval were observed in ethanol-exposed mice when the Barnes maze recall was measured at 4M. No significant differences were found in open field behavior or social responsiveness at 1M or 4M of age. CONCLUSIONS Acute ethanol exposure at P6 in mice leads to mild but long-lasting deficits in long-term spatial memory. Results suggest that even brief acute exposure to high ethanol levels during the third trimester equivalent of human pregnancy may have a permanent negative impact on the neurological functioning of the offspring.
Collapse
Affiliation(s)
- Katherine Houlé
- Division of Pulmonary and Critical Care Medicine Medical College of South Carolina Charleston SC USA.,Department of Biology Randolph-Macon College Ashland VA USA
| | - Myshake Abdi
- Department of Biology Hampden-Sydney College Farmville VA USA
| | | |
Collapse
|
28
|
Novier A, Diaz-Granados JL, Matthews DB. Alcohol use across the lifespan: An analysis of adolescent and aged rodents and humans. Pharmacol Biochem Behav 2015; 133:65-82. [PMID: 25842258 DOI: 10.1016/j.pbb.2015.03.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 01/26/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
Adolescence and old age are unique periods of the lifespan characterized by differential sensitivity to the effects of alcohol. Adolescents and the elderly appear to be more vulnerable to many of alcohol's physiological and behavioral effects compared to adults. The current review explores the differential effects of acute alcohol, predominantly in terms of motor function and cognition, in adolescent and aged humans and rodents. Adolescents are less sensitive to the sedative-hypnotic, anxiolytic, and motor-impairing effects of acute alcohol, but research results are less consistent as it relates to alcohol's effects on cognition. Specifically, previous research has shown adolescents to be more, less, and similarly sensitive to alcohol-induced cognitive deficits compared to adults. These equivocal findings suggest that learning acquisition may be differentially affected by ethanol compared to memory, or that ethanol-induced cognitive deficits are task-dependent. Older rodents appear to be particularly vulnerable to the motor- and cognitive-impairing effects of acute alcohol relative to younger adults. Given that alcohol consumption and abuse is prevalent throughout the lifespan, it is important to recognize age-related differences in response to acute and long-term alcohol. Unfortunately, diagnostic measures and treatment options for alcohol dependence are rarely dedicated to adolescent and aging populations. As discussed, although much scientific advancement has been made regarding the differential effects of alcohol between adolescents and adults, research with the aged is underrepresented. Future researchers should be aware that adolescents and the aged are uniquely affected by alcohol and should continue to investigate alcohol's effects at different stages of maturation.
Collapse
Affiliation(s)
- Adelle Novier
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Jaime L Diaz-Granados
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States
| | - Douglas B Matthews
- Baylor University, Department of Psychology and Neuroscience, One Bear Place #97334, Waco, TX 76798, United States; University of Wisconsin - Eau Claire, Department of Psychology, HHH 273, Eau Claire, WI 54702, United States.
| |
Collapse
|