1
|
Karimi K, Weis D, Aukrust I, Hsieh TC, Horackova M, Paulsen J, Mendoza Londono R, Dupuis L, Dickson M, Lesman H, Lau T, Murphy D, Hama Salih K, Al-Musawi BMS, Al-Obaidi RGY, Rydzanicz M, Biela M, Santos MS, Aldeeri A, Gazda HT, Pais L, Shril S, Døllner H, Bartakke S, Laccone F, Soltysova A, Kitzler T, Soliman NA, Relator R, Levy MA, Kerkhof J, Rzasa J, Houlden H, Pilshofer GV, Jobst-Schwan T, Hildebrandt F, Sousa SB, Maroofian R, Yu TW, Krawitz P, Sadikovic B, Douzgou Houge S. Epigenomic and phenotypic characterization of DEGCAGS syndrome. Eur J Hum Genet 2024; 32:1574-1582. [PMID: 39424669 DOI: 10.1038/s41431-024-01702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/16/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
Developmental Delay with Gastrointestinal, Cardiovascular, Genitourinary, and Skeletal Abnormalities syndrome (DEGCAGS, MIM #619488) is caused by biallelic, loss-of-function (LoF) ZNF699 variants, and is characterized by variable neurodevelopmental disability, discordant organ anomalies among full siblings and infant mortality. ZNF699 encodes a KRAB zinc finger protein of unknown function. We aimed to investigate the genotype-phenotype spectrum of DEGCAGS and the possibility of a diagnostic DNA methylation episignature, to facilitate the diagnosis of a highly variable condition lacking pathognomonic clinical findings. We collected data on 30 affected individuals (12 new). GestaltMatcher analyzed fifty-three facial photographs from five individuals. In nine individuals, methylation profiling of blood-DNA was performed, and a classification model was constructed to differentiate DEGCAGS from controls. We expand the ZNF699-related molecular spectrum and show that biallelic, LoF, ZNF699 variants cause unique clinical findings with age-related presentation and a similar facial gestalt. We also identified a robust episignature for DEGCAGS syndrome. DEGCAGS syndrome is a clinically variable recessive syndrome even among siblings with a distinct methylation episignature which can be used as a screening, diagnostic and classification tool for ZNF699 variants. Analysis of differentially methylated regions suggested an effect on genes potentially implicated in the syndrome's pathogenesis.
Collapse
Affiliation(s)
- Karim Karimi
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Denisa Weis
- Department of Medical Genetics, Med Campus IV, Kepler University Hospital, Johannes Kepler, University, Linz, Austria
| | - Ingvild Aukrust
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Marie Horackova
- Department of Medical Genetics, Med Campus IV, Kepler University Hospital, Johannes Kepler, University, Linz, Austria
| | - Julie Paulsen
- Department of Medical Genetics, St. Olav's hospital, Trondheim University Hospital, Trondheim, Norway
| | - Roberto Mendoza Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Megan Dickson
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hellen Lesman
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Tracy Lau
- Institute of Neurology, University College London, London, UK
| | - David Murphy
- Institute of Neurology, University College London, London, UK
| | - Khalid Hama Salih
- Department of Pediatrics, College of Medicine, Sulaimani University, Sulaymaniyah, 46001, Iraq
| | | | - Ruqayah G Y Al-Obaidi
- College of Medicine, University of Baghdad, Baghdad, Iraq
- The Teaching Laboratories, Medical city complex, Baghdad, Iraq
| | | | - Mateus Biela
- Department of Pediatrics, Endocrinology, Diabetology and Metabolic Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Mafalda Saraiva Santos
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Abdulrahman Aldeeri
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hanna T Gazda
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Takeda Development Center Americas, Inc., Cambridge, MA, USA
| | - Lynn Pais
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shirlee Shril
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Henrik Døllner
- Department of Medical Genetics, St. Olav's hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandip Bartakke
- Department of Clinical Hematology, Aditya Birla Memorial Hospital, Pune, India
| | - Franco Laccone
- Department of Pediatrics, Hospital of the Sister of Merci, Linz, Austria
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Thomas Kitzler
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Neveen A Soliman
- Department of Pediatrics, Center of Pediatric Nephrology & Transplantation, Cairo University, Egyptian Group for Orphan Renal Diseases, Cairo, Egypt
| | - Raissa Relator
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Michael A Levy
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Jessica Rzasa
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada
| | - Henry Houlden
- Institute of Neurology, University College London, London, UK
| | | | - Tilman Jobst-Schwan
- Harvard Medical School, Boston, MA, USA
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Friedhelm Hildebrandt
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio B Sousa
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- University Clinic of Genetics, Faculty of Medicine, Universidade de Coimbra, Coimbra, Portugal
| | - Reza Maroofian
- Institute of Neurology, University College London, London, UK
| | - Timothy W Yu
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bekim Sadikovic
- Molecular Diagnostics Program, and Verspeeten Clinical Genome Centre, London Health Sciences Centre, London, Ontario, Canada.
- Department of Pathology and Laboratory Medicine, Western University, London, Canada.
| | - Sofia Douzgou Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
2
|
Khalifa A, Palu R, Perkins AE, Volz A. Prenatal alcohol exposure alters expression of genes involved in cell adhesion, immune response, and toxin metabolism in adolescent rat hippocampus. PLoS One 2024; 19:e0293425. [PMID: 38271377 PMCID: PMC10810486 DOI: 10.1371/journal.pone.0293425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024] Open
Abstract
Prenatal alcohol exposure (PAE) can result in mild to severe consequences for children throughout their lives, with this range of symptoms referred to as Fetal Alcohol Spectrum Disorders (FASD). These consequences are thought to be linked to changes in gene expression and transcriptional programming in the brain, but the identity of those changes, and how they persist into adolescence are unclear. In this study, we isolated RNA from the hippocampus of adolescent rats exposed to ethanol during prenatal development and compared gene expression to controls. Briefly, dams were either given free access to standard chow ad libitum (AD), pair-fed a liquid diet (PF) or were given a liquid diet with ethanol (6.7% ethanol, ET) throughout gestation (gestational day (GD) 0-20). All dams were given control diet ad libitum beginning on GD 20 and throughout parturition and lactation. Hippocampal tissue was collected from adolescent male and female offspring (postnatal day (PD) 35-36). Exposure to ethanol caused widespread downregulation of many genes as compared to control rats. Gene ontology analysis demonstrated that affected pathways included cell adhesion, toxin metabolism, and immune responses. Interestingly, these differences were not strongly affected by sex. Furthermore, these changes were consistent when comparing ethanol-exposed rats to pair-fed controls provided with a liquid diet and those fed ad libitum on a standard chow diet. We conclude from this study that changes in genetic architecture and the resulting neuronal connectivity after prenatal exposure to alcohol continue through adolescent development. Further research into the consequences of specific gene expression changes on neural and behavioral changes will be vital to our understanding of the FASD spectrum of diseases.
Collapse
Affiliation(s)
- Amal Khalifa
- Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Amy E. Perkins
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Avery Volz
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
3
|
Boschen KE, Steensen MC, Simon JM, Parnell SE. Short-term transcriptomic changes in the mouse neural tube induced by an acute alcohol exposure. Alcohol 2023; 106:1-9. [PMID: 36202274 PMCID: PMC11096843 DOI: 10.1016/j.alcohol.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 01/28/2023]
Abstract
Alcohol exposure during the formation and closure of the neural tube, or neurulation (embryonic day [E] 8-10 in mice; ∼4th week of human pregnancy), perturbs development of midline brain structures and significantly disrupts gene expression in the rostroventral neural tube (RVNT). Previously, alcohol exposure during neurulation was found to alter gene pathways related to cell proliferation, p53 signaling, ribosome biogenesis, immune signaling, organogenesis, and cell migration 6 or 24 h after administration. Our current study expands upon this work by investigating short-term gene expression changes in the RVNT following a single binge-like alcohol exposure during neurulation. Female C57BL/6J mice were administered a single dose of 2.9 g/kg alcohol or vehicle on E9.0 to target mid-neurulation. The RVNTs of stage-matched embryos were collected 2 or 4 h after exposure and processed for RNA-seq. Functional profiling was performed with g:Profiler, as well as with the CiliaCarta and DisGeNet databases. Two hours following E9.0 alcohol exposure, 650 genes in the RVNT were differentially expressed. Functional enrichment analysis revealed that pathways related to cellular metabolism, gene expression, cell cycle, organogenesis, and Hedgehog signaling were down-regulated, and pathways related to cellular stress response, p53 signaling, and hypoxia were up-regulated by alcohol. Four hours after alcohol exposure, 225 genes were differentially expressed. Biological processes related to metabolism, RNA binding, ribosome biogenesis, and methylation were down-regulated, while protein localization and binding, autophagy, and intracellular signaling pathways were up-regulated. Two hours after alcohol exposure, the differentially expressed genes were associated with disease terms related to eye and craniofacial development and anoxia. These data provide further information regarding the biological functions targeted by alcohol exposure during neurulation in regions of the neural tube that give rise to alcohol-sensitive midline brain structures. Disruption of these gene pathways contributes to the craniofacial and brain malformations associated with prenatal alcohol exposure.
Collapse
Affiliation(s)
- Karen E Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Melina C Steensen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jeremy M Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
4
|
Comparison of
DNA
methylation patterns across tissue types in infants with tetralogy of Fallot. Birth Defects Res 2022; 114:1101-1111. [DOI: 10.1002/bdr2.2090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 11/07/2022]
|
5
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
6
|
Loke YJ, Muggli E, Saffery R, Ryan J, Lewis S, Elliott EJ, Halliday J, Craig JM. Sex- and tissue-specific effects of binge-level prenatal alcohol consumption on DNA methylation at birth. Epigenomics 2021; 13:1921-1938. [PMID: 34841896 DOI: 10.2217/epi-2021-0285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Binge-level prenatal alcohol exposure (PAE) causes developmental abnormalities, which may be mediated in part by epigenetic mechanisms. Despite this, few studies have characterised the association of binge PAE with DNA methylation in offspring. Methods: We investigated the association between binge PAE and genome-wide DNA methylation profiles in a sex-specific manner in neonatal buccal and placental samples. Results: We identified no differentially methylated CpGs or differentially methylated regions (DMRs) at false discovery rate <0.05. However, using a sum-of-ranks approach, we identified a DMR in each tissue of female offspring. The DMR identified in buccal samples is located near regions with previously-reported associations to fetal alcohol spectrum disorder (FASD) and binge PAE. Conclusion: Our findings warrant further replication and highlight a potential epigenetic link between binge PAE and FASD.
Collapse
Affiliation(s)
- Yuk Jing Loke
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Evelyne Muggli
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Victorian Infant Brain Studies, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia
| | - Joanne Ryan
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Biological Neuropsychiatry & Dementia Unit, School of Public Health, Monash University, Victoria, 3004, Australia
| | - Sharon Lewis
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Elizabeth J Elliott
- Specialty of Child & Adolescent Health, Faculty of Medicine & Health, University of Sydney, NSW, 2050, Australia.,The Australian Paediatric Surveillance Unit, Sydney Children's Hospital Network, NSW, 2045, Australia
| | - Jane Halliday
- Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,Reproductive Epidemiology, Murdoch Children's Research Institute, Victoria, 3052, Australia
| | - Jeffrey M Craig
- Molecular Immunity, Murdoch Children's Research Institute, Victoria, 3052, Australia.,Department of Paediatrics, University of Melbourne, Victoria, 3010, Australia.,The Institute of Mental & Physical Health & Clinical Translation, Deakin University, Victoria, 3220, Australia
| |
Collapse
|
7
|
Legault LM, Doiron K, Breton-Larrivée M, Langford-Avelar A, Lemieux A, Caron M, Jerome-Majewska LA, Sinnett D, McGraw S. Pre-implantation alcohol exposure induces lasting sex-specific DNA methylation programming errors in the developing forebrain. Clin Epigenetics 2021; 13:164. [PMID: 34425890 PMCID: PMC8381495 DOI: 10.1186/s13148-021-01151-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Prenatal alcohol exposure is recognized for altering DNA methylation profiles of brain cells during development, and to be part of the molecular basis underpinning Fetal Alcohol Spectrum Disorder (FASD) etiology. However, we have negligible information on the effects of alcohol exposure during pre-implantation, the early embryonic window marked with dynamic DNA methylation reprogramming, and on how this may rewire the brain developmental program. Results Using a pre-clinical in vivo mouse model, we show that a binge-like alcohol exposure during pre-implantation at the 8-cell stage leads to surge in morphological brain defects and adverse developmental outcomes during fetal life. Genome-wide DNA methylation analyses of fetal forebrains uncovered sex-specific alterations, including partial loss of DNA methylation maintenance at imprinting control regions, and abnormal de novo DNA methylation profiles in various biological pathways (e.g., neural/brain development). Conclusion These findings support that alcohol-induced DNA methylation programming deviations during pre-implantation could contribute to the manifestation of neurodevelopmental phenotypes associated with FASD. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01151-0.
Collapse
Affiliation(s)
- L M Legault
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - K Doiron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - M Breton-Larrivée
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Langford-Avelar
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - A Lemieux
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - M Caron
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada
| | - L A Jerome-Majewska
- McGill University Health Centre Glen Site, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada.,Department of Pediatrics, McGill University, 1001 Boulevard Décarie, Montréal, QC, H4A 3J1, Canada
| | - D Sinnett
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada.,Department of Pediatrics, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - S McGraw
- CHU Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montréal, QC, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada. .,Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
8
|
Demiguel V, Laporal S, Quatremere G, Barry Y, Guseva Canu I, Goulet V, Germanaud D, Regnault N. The frequency of severe Fetal Alcohol Spectrum Disorders in the neonatal period using data from the French hospital discharge database between 2006 and 2013. Drug Alcohol Depend 2021; 225:108748. [PMID: 34058539 DOI: 10.1016/j.drugalcdep.2021.108748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUNDS At birth, only complete Fetal Alcohol Syndrome (FAS) can be properly diagnosed. However, other Consequences of prenatal Alcohol Exposure (CAE) can also be recorded. Our objective was to describe the frequency of diagnoses highly suggestive of "potential Fetal Alcohol Syndrome Disorder" (pFASD, i.e., FAS and CAE) among hospitalized neonates, during the neonatal period, in France, between 2006 and 2013. METHODS We used the French national hospital discharge database to identify the Q86.0 (FAS) and P04.3 (CAE) ICD-10 codes in hospital stays occurring in the first 28 days of life. FAS, CAE and pFASD rates were estimated per 1000 live births at the national level for the 2009-2013 period. We compared the 2006-2009 and 2010-2013 rates. The pFASD rates were also estimated at the regional level. RESULTS Overall, 3,207 cases of pFASD were diagnosed during the neonatal period (i.e., 0.48 cases per 1000 live births, including 0.07 cases of FAS per 1000). Between 2006-2009 and 2010-2013, pFASD remained stable, despite a moderate decrease in reported FAS (0.08 vs 0.06 cases per 1000, p < 0.001). At the regional level, pFASD rates varied between 0.13 and 1.22 cases per 1000. CONCLUSIONS This study provides the first national estimate of neonatal diagnosis of FAS, and more broadly pFASD, in France. Although our data certainly underestimate the real prevalence of FASD, they provide a minimal estimate of the burden of alcohol use during pregnancy. Observed variations deserve to be analyzed in the light of concomitant prevention and public information campaigns.
Collapse
Affiliation(s)
- Virginie Demiguel
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France.
| | - Stella Laporal
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France
| | - Guillemette Quatremere
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France
| | - Yaya Barry
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France
| | - Irina Guseva Canu
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France; Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Véronique Goulet
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France
| | - David Germanaud
- Assistance Publique - Hôpitaux de Paris, Hôpital Robert-Debré, Centre d'Excellence InovAND, Service de Neurologie et des Maladies Métaboliques, Paris, France; Université de Paris, Inserm, CEA, UMR1141 NeuroDiderot, équipe InDev, Paris, France; CEA, Institut Juliot, NeuroSpin, UNIACT, Gif-sur-Yvette, France
| | - Nolwenn Regnault
- Santé publique France, French National Public Health Agency, F-94415 Saint-Maurice, France
| |
Collapse
|
9
|
Alves N, Neuparth T, Barros S, Santos MM. The anti-lipidemic drug simvastatin modifies epigenetic biomarkers in the amphipod Gammarus locusta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111849. [PMID: 33387775 DOI: 10.1016/j.ecoenv.2020.111849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
The adverse effects of certain environmental chemicals have been recently associated with the modulation of the epigenome. Although changes in the epigenetic signature have yet to be integrated into hazard and risk assessment, they are interesting candidates to link environmental exposures and altered phenotypes, since these changes may be passed across multiple non-exposed generations. Here, we addressed the effects of simvastatin (SIM), one of the most prescribed pharmaceuticals in the world, on epigenetic regulation using the amphipod Gammarus locusta as a proxy, to support its integration into hazard and environmental risk assessment. SIM is a known modulator of the epigenome in mammalian cell lines and has been reported to impact G. locusta ecological endpoints at environmentally relevant levels. G. locusta juveniles were exposed to three SIM environmentally relevant concentrations (0.32, 1.6 and 8 µg L-1) for 15 days. Gene transcription levels of selected epigenetic regulators, i.e., dnmt1, dmap1, usp7, kat5 and uhrf1 were assessed, along with the quantification of DNA methylation levels and evaluation of key ecological endpoints: survival and growth. Exposure to 0.32 and 8 µg L-1 SIM induced significant downregulation of DNA methyltransferase 1 (dnmt1), concomitant with global DNA hypomethylation and growth impacts. Overall, this work is the first to validate the basal expression of key epigenetic regulators in a keystone marine crustacean, supporting the integration of epigenetic biomarkers into hazard assessment frameworks.
Collapse
Affiliation(s)
- Nélson Alves
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal
| | - Teresa Neuparth
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal.
| | - Susana Barros
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel M Santos
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Endocrine Disruptors and Emerging Contaminants Group, University of Porto, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; FCUP - Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre nº 1021/1055, 4169-007 Porto, Portugal.
| |
Collapse
|
10
|
Jia Z, Wu Q. Clustered Protocadherins Emerge as Novel Susceptibility Loci for Mental Disorders. Front Neurosci 2020; 14:587819. [PMID: 33262685 PMCID: PMC7688460 DOI: 10.3389/fnins.2020.587819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
The clustered protocadherins (cPcdhs) are a subfamily of type I single-pass transmembrane cell adhesion molecules predominantly expressed in the brain. Their stochastic and combinatorial expression patterns encode highly diverse neural identity codes which are central for neuronal self-avoidance and non-self discrimination in brain circuit formation. In this review, we first briefly outline mechanisms for generating a tremendous diversity of cPcdh cell-surface assemblies. We then summarize the biological functions of cPcdhs in a wide variety of neurodevelopmental processes, such as neuronal migration and survival, dendritic arborization and self-avoidance, axonal tiling and even spacing, and synaptogenesis. We focus on genetic, epigenetic, and 3D genomic dysregulations of cPcdhs that are associated with various neuropsychiatric and neurodevelopmental diseases. A deeper understanding of regulatory mechanisms and physiological functions of cPcdhs should provide significant insights into the pathogenesis of mental disorders and facilitate development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Qiang Wu
- Center for Comparative Biomedicine, MOE Key Laboratory of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, School of Life Sciences and Biotechnology, Institute of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Oei JL. Alcohol use in pregnancy and its impact on the mother and child. Addiction 2020; 115:2148-2163. [PMID: 32149441 DOI: 10.1111/add.15036] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/23/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
AIMS To review the impact of prenatal alcohol exposure on the outcomes of the mother and child. DESIGN Narrative review. SETTING Review of literature. PARTICIPANTS Mothers and infants affected by prenatal alcohol use. MEASUREMENTS Outcomes of mothers and children. FINDINGS Prenatal alcohol exposure is one of the most important causes of preventable cognitive impairment in the world. The developing neurological system is exquisitely sensitive to harm from alcohol and there is now also substantial evidence that alcohol-related harm can extend beyond the individual person, leading to epigenetic changes and intergenerational vulnerability and disadvantage. There is no known safe level or timing of drinking for pregnant or lactating women and binge drinking (> four drinks within 2 hours for women) is the most harmful. Alcohol-exposure increases the risk of congenital problems, including Fetal Alcohol Spectrum Disorder (FASD) and its most severe form, Fetal Alcohol Syndrome (FAS). CONCLUSION The impact of FASD and FAS is enduring and life-long with no current treatment or cure. Emerging therapeutic options may mitigate the worst impact of alcohol exposure but significant knowledge gaps remain. This review discusses the history, epidemiology and clinical presentations of prenatal alcohol exposure, focusing on FASD and FAS, and the impact of evidence on future research, practice and policy directions.
Collapse
Affiliation(s)
- Ju Lee Oei
- School of Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia.,Department of Newborn Care, the Royal Hospital for Women, Randwick, NSW, Australia.,Drug and Alcohol Services, Murrumbidgee Local Health District, NSW, Australia
| |
Collapse
|
12
|
Mancilla VJ, Peeri NC, Silzer T, Basha R, Felini M, Jones HP, Phillips N, Tao MH, Thyagarajan S, Vishwanatha JK. Understanding the Interplay Between Health Disparities and Epigenomics. Front Genet 2020; 11:903. [PMID: 32973872 PMCID: PMC7468461 DOI: 10.3389/fgene.2020.00903] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.
Collapse
Affiliation(s)
- Viviana J. Mancilla
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Noah C. Peeri
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Talisa Silzer
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Riyaz Basha
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Martha Felini
- Department of Pediatrics, Texas College of Osteopathic Medicine, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Harlan P. Jones
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nicole Phillips
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Meng-Hua Tao
- Department of Biostatistics and Epidemiology, School of Public Health, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Srikantha Thyagarajan
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jamboor K. Vishwanatha
- Department of Microbiology, Immunology and Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, TX, United States
- Texas Center for Health Disparities, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
13
|
Saito M, Smiley JF, Hui M, Masiello K, Betz J, Ilina M, Saito M, Wilson DA. Neonatal Ethanol Disturbs the Normal Maturation of Parvalbumin Interneurons Surrounded by Subsets of Perineuronal Nets in the Cerebral Cortex: Partial Reversal by Lithium. Cereb Cortex 2020; 29:1383-1397. [PMID: 29462278 DOI: 10.1093/cercor/bhy034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Reduction in parvalbumin-positive (PV+) interneurons is observed in adult mice exposed to ethanol at postnatal day 7 (P7), a late gestation fetal alcohol spectrum disorder model. To evaluate whether PV+ cells are lost, or PV expression is reduced, we quantified PV+ and associated perineuronal net (PNN)+ cell densities in barrel cortex. While PNN+ cell density was not reduced by P7 ethanol, PV cell density decreased by 25% at P90 with no decrease at P14. PNN+ cells in controls were virtually all PV+, whereas more than 20% lacked PV in ethanol-treated adult animals. P7 ethanol caused immediate apoptosis in 10% of GFP+ cells in G42 mice, which express GFP in a subset of PV+ cells, and GFP+ cell density decreased by 60% at P90 without reduction at P14. The ethanol effect on PV+ cell density was attenuated by lithium treatment at P7 or at P14-28. Thus, reduced PV+ cell density may be caused by disrupted cell maturation, in addition to acute apoptosis. This effect may be regionally specific: in the dentate gyrus, P7 ethanol reduced PV+ cell density by 70% at P14 and both PV+ and PNN+ cell densities by 50% at P90, and delayed lithium did not alleviate ethanol's effect.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Psychiatry, NYU School of Medicine, New York, NY, USA
| | - Maria Hui
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Kurt Masiello
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Judith Betz
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Maria Ilina
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Mitsuo Saito
- Department of Psychiatry, NYU School of Medicine, New York, NY, USA.,Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Donald A Wilson
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.,Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| |
Collapse
|
14
|
Prenatal S-Adenosine Methionine (SAMe) Induces Changes in Gene Expression in the Brain of Newborn Mice That Are Prevented by Co-Administration of Valproic Acid (VPA). Int J Mol Sci 2020; 21:ijms21082834. [PMID: 32325788 PMCID: PMC7215397 DOI: 10.3390/ijms21082834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
In previous studies, we produced changes in gene expression in the brain of mice by early postnatal administration of valproic acid (VPA), with distinct differences between genders. The addition of S-adenosine methionine (SAMe) normalized the expression of most genes in both genders, while SAMe alone induced no changes. We treated pregnant dams with a single injection of VPA on day 12.5 of gestation, or with SAMe during gestational days 12–14, or by a combination of VPA and SAMe. In the frontal half of the brain, we studied the expression of 770 genes of the pathways involved in neurophysiology and neuropathology using the NanoString nCounter method. SAMe, but not VPA, induced statistically significant changes in the expression of many genes, with differences between genders. The expression of 112 genes was changed in both sexes, and another 170 genes were changed only in females and 31 only in males. About 30% of the genes were changed by more than 50%. One of the most important pathways changed by SAMe in both sexes was the VEGF (vascular endothelial growth factor) pathway. Pretreatment with VPA prevented almost all the changes in gene expression induced by SAMe. We conclude that large doses of SAMe, if administered prenatally, may induce significant epigenetic changes in the offspring. Hence, SAMe and possibly other methyl donors may be epigenetic teratogens.
Collapse
|
15
|
Cecil CAM, Zhang Y, Nolte T. Childhood maltreatment and DNA methylation: A systematic review. Neurosci Biobehav Rev 2020; 112:392-409. [PMID: 32081689 DOI: 10.1016/j.neubiorev.2020.02.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
DNA methylation (DNAm) - an epigenetic process that regulates gene expression - may represent a mechanism for the biological embedding of early traumatic experiences, including childhood maltreatment. Here, we conducted the first systematic review of human studies linking childhood maltreatment to DNAm. In total, 72 studies were included in the review (2008-2018). The majority of extant studies (i) were based on retrospective data in adults, (ii) employed a candidate gene approach (iii) focused on global maltreatment, (iv) were based on easily accessible peripheral tissues, typically blood; and (v) were cross-sectional. Two-thirds of studies (n = 48) also examined maltreatment-related outcomes, such as stress reactivity and psychiatric symptoms. While findings generally support an association between childhood maltreatment and altered patterns of DNAm, factors such as the lack of longitudinal data, low comparability across studies as well as potential genetic and 'pre-exposure' environmental confounding currently limit the conclusions that can be drawn. Key challenges are discussed and concrete recommendations for future research are provided to move the field forward.
Collapse
Affiliation(s)
- Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands; Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Yuning Zhang
- Centre for Innovation in Mental Health, University of Southampton; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Tobias Nolte
- The Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; Anna Freud National Centre for Children and Families, London, United Kingdom
| |
Collapse
|
16
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
17
|
Amiri S, Davie JR, Rastegar M. Chronic Ethanol Exposure Alters DNA Methylation in Neural Stem Cells: Role of Mouse Strain and Sex. Mol Neurobiol 2020; 57:650-667. [PMID: 31414368 DOI: 10.1007/s12035-019-01728-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Prenatal alcohol exposure (PAE) is considered as a risk factor for the development of fetal alcohol spectrum disorders (FASD). Evidence indicates that PAE affects epigenetic mechanisms (such as DNA methylation) and alters the normal differentiation and development of neural stem cells (NSC) in the fetal brain. However, PAE effects depend on several factors such as sex and strain of the studied subjects. Here, we investigated whether murine sex and strain contribute to the effects of chronic ethanol exposure on DNA methylation machinery of differentiating NSC. Further, the effects of PAE on glial lineage (including both astrocytes and oligodendrocytes) in a sex- and strain-dependent manner have not been studied yet. To examine the effects of chronic ethanol exposure on gliogenesis, we exposed differentiating NSC to glio-inductive culture conditions. Applying a standard in vitro model system, we treated male and female differentiating NSC (obtained from the forebrain of CD1 and C57BL/6 embryos at embryonic day 14.5) with chronic ethanol exposure (70 mM) for 8 days. We show that ethanol induces global DNA hypomethylation, while altering the expression of DNA methylation-related genes in a sex- and strain-specific manner. The observed change in cellular DNA methylation levels was associated with altered expression of glial markers CNPASE, GFAP, and OLIG2 in CD1 (but not C57BL/6) cells. We conclude that the impact of ethanol effect on DNA methylation is dependent on cellular sex and strain. Also, ethanol impact on neural stem cell fate commitment was only detected in cells isolated from CD1 mouse strain, but not in C57BL/6 cells. The results of the current study provide evidence that sex and strain of rodents (C57BL/6 and CD1) during gestation are important factors, which affect alcohol effects on NSC differentiation and DNA methylation. Results of this study may also help in interpreting data on the developmental toxicity of many compounds during the gestational period.
Collapse
Affiliation(s)
- Shayan Amiri
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
- Regenerative Medicine Program, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
18
|
Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology 2019; 44:1579-1588. [PMID: 30737481 PMCID: PMC6785096 DOI: 10.1038/s41386-019-0326-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has shown that developmental alcohol exposure induces central nervous system inflammation and microglia activation, which may contribute to long-term health conditions, such as fetal alcohol spectrum disorders. These studies sought to investigate whether neonatal alcohol exposure during postnatal days (PND) 2-6 in rats (third trimester human equivalent) leads to long-term disruption of the neuroimmune response by microglia. Exposure to neonatal alcohol resulted in acute increases in activation and inflammatory gene expression in hypothalamic microglia including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Adults with neonatal alcohol pre-exposure (alcohol fed; AF) animals showed an exaggerated peripheral stress hormonal response to an immune challenge (lipopolysaccharides; LPS). In addition, there were significantly more microglia present in the hypothalamus of adult AF animals, and their hypothalamic microglia showed more cluster of differentiation molecule 11b (Cd11b) activation, TNF-α expression, and IL-6 expression in response to LPS. Interestingly, blocking microglia activation with minocycline treatment during PND 2-6 alcohol exposure ameliorated the hormonal and microglial hypersensitivity to LPS in AF adult animals. Investigation of possible epigenetic programming mechanisms by alcohol revealed neonatal alcohol decreased several repressive regulators of transcription in hypothalamic microglia, while concomitantly increasing histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter regions. Importantly, adult hypothalamic microglia from AF animals showed enduring increases in H3K9ac enrichment of TNF-α and IL-6 promoters both at baseline and after LPS exposure, suggesting a possible epigenetic mechanism for the long-term immune disruption due to hypothalamic microglial priming.
Collapse
|
19
|
Jarmasz JS, Stirton H, Basalah D, Davie JR, Clarren SK, Astley SJ, Del Bigio MR. Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1145-1162. [PMID: 31074890 PMCID: PMC6593679 DOI: 10.1111/acer.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Background Based upon experimental animal studies, the neurodevelopmental abnormalities associated with prenatal alcohol exposure (PNAE)/fetal alcohol spectrum disorder (FASD) have been attributed, at least in part, to epigenetic modifications. However, there are no direct analyses of human brain tissue. Methods Immunohistochemical detection of global epigenetic markers was performed on temporal lobe samples of autopsied fetuses and infants with documented PNAE. They were compared to age‐, sex‐, and postmortem delay‐matched control cases (18 pairs; 20 to 70.5 weeks postconception). Temporal lobe tissue from a macaque monkey model of PNAE was also studied (5.7 to 6 months of age). We used antibodies targeting 4 DNA cytosine, 4 histone methylation, and 6 histone acetylation modifications and assigned scores based upon the semiquantitatively graded intensity and proportion of positively labeled nuclei in the ventricular and subventricular zones, ependyma, temporal cortex, temporal white matter, dentate gyrus (DG), and CA1 pyramidal layer. Results Temporal changes were identified for almost all marks according to the state of maturation in the human brain. In the DG (and 3 other brain regions), a statistically significant increase in H3K9ac was associated with PNAE. Statistically significant decreases were seen among 5mC, H3K4me3, H3K9ac, H3K27ac, H4K12ac, and H4K16ac in select regions. In the macaques, H3K36me3 decreased in the DG, and the ependyma showed decreases in 5fC and H3K36me3. Conclusions In human brain, global intranuclear epigenetic modifications are brain region and maturation state‐specific. These exploratory results support the general hypothesis that PNAE is associated with a global decrease in DNA methylation, a global decrease in histone methylation, and a global increase in histone acetylation. Although the human and monkey subjects are not directly comparable in terms of brain maturation, considering the rapid temporal changes in global epigenetic modifications during brain development, interspecies comparisons may be extremely difficult.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa Basalah
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sterling K Clarren
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pediatrics, University of British Columbia Faculty of Medicine, Vancouver, British Columbia
| | - Susan J Astley
- Departments of Epidemiology/Pediatrics, University of Washington, Seattle, Washington
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Brown JM, Bland R, Jonsson E, Greenshaw AJ. The Standardization of Diagnostic Criteria for Fetal Alcohol Spectrum Disorder (FASD): Implications for Research, Clinical Practice and Population Health. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:169-176. [PMID: 29788774 PMCID: PMC6405816 DOI: 10.1177/0706743718777398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Fetal Alcohol Spectrum Disorder (FASD) is a preventable disorder caused by maternal alcohol consumption and marked by a range of physical and mental disabilities. Although recognized by the scientific and medical community as a clinical disorder, no internationally standardized diagnostic tool yet exists for FASD. METHODS AND RESULTS This review seeks to analyse the discrepancies in existing diagnostic tools for FASD, and the repercussions these differences have on research, public health, and government policy. CONCLUSIONS Disagreement on the adoption of a standardised tool is reflective of existing gaps in research on the conditions and factors that influence fetal vulnerability to damage from exposure. This discordance has led to variability in research findings, inconsistencies in government messaging, and misdiagnoses or missed diagnoses. The objective measurement of the timing and level of prenatal alcohol exposure is key to bridging these gaps; however, there is conflicting or limited evidence to support the use of existing measures.
Collapse
Affiliation(s)
- Jasmine M. Brown
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Roger Bland
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Egon Jonsson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
21
|
Zebrafish models of epigenetic regulation of CNS functions. Brain Res Bull 2018; 142:344-351. [DOI: 10.1016/j.brainresbull.2018.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
|
22
|
Briffa JF, Wlodek ME, Moritz KM. Transgenerational programming of nephron deficits and hypertension. Semin Cell Dev Biol 2018; 103:94-103. [PMID: 29859996 DOI: 10.1016/j.semcdb.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023]
Abstract
Exposure to a sub-optimal environment in the womb can result in poor fetal growth and impair the normal development of organs. The kidney, specifically the process of nephrogenesis, has been shown to be impacted by many common pregnancy exposures including an inadequate diet, poor placental function, maternal stress as well as maternal smoking and alcohol consumption. This can result in offspring being born with a reduced nephron endowment, which places these individuals at increased risk of hypertension and chronic kidney disease (CKD). Of recent interest is whether this disease risk can be passed on to subsequent generations and, if so, what are the mechanisms and pathways involved. In this review, we highlight the growing body of evidence that a low birth weight and hypertension, which are both major risk factors for cardiovascular and CKD, can be transmitted across generations. However, as yet there is little data as to whether a low nephron endowment contributes to this disease transmission. The emerging data suggests transmission can occur both through both the maternal and paternal lines, which likely involves epigenetic mechanisms such chromatin remodelling (DNA methylation and histone modification) and non-coding RNA modifications. In addition, females who were born small and/or have a low nephron endowment are at an increased risk for pregnancy complications, which can influence the growth and development of the next generation. Future animal studies in this area should include examining nephron endowment across multiple generations and determining adult renal function. Clinically, long term follow-up studies of large birth cohorts need to be undertaken to more clearly determine the impact a sub-optimal environment in one generation has on the health outcomes in the second, and subsequent, generation.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
23
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
24
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
25
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
26
|
Sharp GC, Arathimos R, Reese SE, Page CM, Felix J, Küpers LK, Rifas-Shiman SL, Liu C, Burrows K, Zhao S, Magnus MC, Duijts L, Corpeleijn E, DeMeo DL, Litonjua A, Baccarelli A, Hivert MF, Oken E, Snieder H, Jaddoe V, Nystad W, London SJ, Relton CL, Zuccolo L. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics 2017; 10:27-42. [PMID: 29172695 PMCID: PMC5753623 DOI: 10.2217/epi-2017-0095] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Alcohol consumption during pregnancy is sometimes associated with adverse outcomes in offspring, potentially mediated by epigenetic modifications. We aimed to investigate genome-wide DNA methylation in cord blood of newborns exposed to alcohol in utero. Materials & methods: We meta-analyzed information from six population-based birth cohorts within the Pregnancy and Childhood Epigenetics consortium. Results: We found no strong evidence of association at either individual CpGs or across larger regions of the genome. Conclusion: Our findings suggest no association between maternal alcohol consumption and offspring cord blood DNA methylation. This is in stark contrast to the multiple strong associations previous studies have found for maternal smoking, which is similarly socially patterned. However, it is possible that a combination of a larger sample size, higher doses, different timings of exposure, exploration of a different tissue and a more global assessment of genomic DNA methylation might show evidence of association.
Collapse
Affiliation(s)
- Gemma C Sharp
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK.,School of Oral & Dental Sciences, University of Bristol, Bristol, UK
| | - Ryan Arathimos
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - Sarah E Reese
- Division of Intramural Research, Department of Health & Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Christian M Page
- Division for Mental & Physical Health, Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway.,Oslo Centre for Biostatistics & Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Janine Felix
- The Generation R Study Group, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Leanne K Küpers
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK.,Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Chunyu Liu
- The Framingham Heart Study, Framingham, MA, USA.,The Population Sciences Branch, Division of Intramural Research, National Heart, Lung, & Blood Institute, Bethesda, MD, USA.,Department of Biostatistics, Boston University School of Public Health, 715 Albany St, Boston, MA, USA
| | | | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - Shanshan Zhao
- Division of Intramural Research, Department of Health & Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Maria C Magnus
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK.,Division for Mental & Physical Health, Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Respiratory Medicine & Allergology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Division of Neonatology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Eva Corpeleijn
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Augusto Litonjua
- Channing Division of Network Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea Baccarelli
- Laboratory of Precision Environmental Biosciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA.,Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wenche Nystad
- Division for Mental & Physical Health, Department of Non-Communicable Diseases, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie J London
- Division of Intramural Research, Department of Health & Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Caroline L Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| | - Luisa Zuccolo
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK.,School of Social & Community Medicine, University of Bristol, Bristol, BS8 2BN, UK
| |
Collapse
|
27
|
Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An exposome perspective: Early-life events and immune development in a changing world. J Allergy Clin Immunol 2017; 140:24-40. [DOI: 10.1016/j.jaci.2017.05.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/09/2023]
|
28
|
Wong EL, Stowell RD, Majewska AK. What the Spectrum of Microglial Functions Can Teach us About Fetal Alcohol Spectrum Disorder. Front Synaptic Neurosci 2017; 9:11. [PMID: 28674490 PMCID: PMC5474469 DOI: 10.3389/fnsyn.2017.00011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/29/2017] [Indexed: 12/18/2022] Open
Abstract
Alcohol exposure during gestation can lead to severe defects in brain development and lifelong physical, behavioral and learning deficits that are classified under the umbrella term fetal alcohol spectrum disorder (FASD). Sadly, FASD is diagnosed at an alarmingly high rate, affecting 2%-5% of live births in the United States, making it the most common non-heritable cause of mental disability. Currently, no standard therapies exist that are effective at battling FASD symptoms, highlighting a pressing need to better understand the underlying mechanisms by which alcohol affects the developing brain. While it is clear that sensory and cognitive deficits are driven by inappropriate development and remodeling of the neural circuits that mediate these processes, alcohol's actions acutely and long-term on the brain milieu are diverse and complex. Microglia, the brain's immune cells, have been thought to be a target for alcohol during development because of their exquisite ability to rapidly detect and respond to perturbations affecting the brain. Additionally, our view of these immune cells is rapidly changing, and recent studies have revealed a myriad of microglial physiological functions critical for normal brain development and long-term function. A clear and complete understanding of how microglial roles on this end of the spectrum may be altered in FASD is currently lacking. Such information could provide important insights toward novel therapeutic targets for FASD treatment. Here we review the literature that links microglia to neural circuit remodeling and provide a discussion of the current understanding of how developmental alcohol exposure affects microglial behavior in the context of developing brain circuits.
Collapse
Affiliation(s)
- Elissa L. Wong
- Department of Environmental Medicine, University of Rochester Medical CenterRochester, NY, United States
| | - Rianne D. Stowell
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| | - Ania K. Majewska
- Department of Neuroscience, University of Rochester Medical CenterRochester, NY, United States
| |
Collapse
|
29
|
Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017; 60:1-6. [PMID: 28395929 PMCID: PMC5439216 DOI: 10.1016/j.alcohol.2017.02.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|