1
|
Nolan B, Reznicek TE, Cummings CT, Rowley MJ. The chromatin tapestry as a framework for neurodevelopment. Genome Res 2024; 34:1477-1486. [PMID: 39472026 PMCID: PMC11529992 DOI: 10.1101/gr.278408.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The neuronal nucleus houses a meticulously organized genome. Within this structure, genetic material is not simply compacted but arranged into a precise and functional 3D chromatin landscape essential for cellular regulation. This mini-review highlights the importance of this chromatin landscape in healthy neurodevelopment, as well as the diseases that occur with aberrant chromatin architecture. We discuss insights into the fundamental mechanistic relationship between histone modifications, DNA methylation, and genome organization. We then discuss findings that reveal how these epigenetic features change throughout normal neurodevelopment. Finally, we highlight single-gene neurodevelopmental disorders that illustrate the interdependence of epigenetic features, showing how disruptions in DNA methylation or genome architecture can ripple across the entire epigenome. As such, we emphasize the importance of measuring multiple chromatin architectural aspects, as the disruption of one mechanism can likely impact others in the intricate epigenetic network. This mini-review underscores the vast gaps in our understanding of chromatin structure in neurodevelopmental diseases and the substantial research needed to understand the interplay between chromatin features and neurodevelopment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, Omaha, Nebraska 68198, USA;
| |
Collapse
|
2
|
Dyląg KA, Dumnicka P, Kowalska K, Migas-Majoch A, Przybyszewska K, Drożdż D. Increased incidence of renal and urinary tract anomalies among individuals with fetal alcohol spectrum disorders (FASD). Birth Defects Res 2024; 116:e2259. [PMID: 37828651 DOI: 10.1002/bdr2.2259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 07/24/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Fetal alcohol spectrum disorders (FASD) in a spectrum of neurodevelopmental conditions resulting from prenatal alcohol exposure (PAE). Animal models have confirmed the toxic effects of PAE on the kidneys and urinary tract, yet the evidence from human studies is contradictory. The purpose of this study was to establish the incidence of renal and urinary tract anomalies (RUTA), impaired kidney function, and hypertension among patients with FASD. METHODS Children from the FASD Diagnostic Center with FASD diagnosis (FAS, pFAS, or ARND) were offered participation in the study. The control group consisted of patients from the Gastroenterology Department of the same hospital. The patients underwent renal and urinary tract ultrasound examination. The serum creatinine level was also evaluated and the blood pressure was taken twice. Polish OLAF charts were used to determine the percentiles of blood pressure. RESULTS The incidence of kidney and urinary tract defects in the study group was significantly higher than in the control group (OR: 2.64 [1.60-4.34]). The kidney size among FASD patients was significantly lower (73 mm [60-83] vs. 83 mm [70-96]; p < .001) when compared to the control group. No differences were observed in the estimated glomerular filtration rate. In the study group, significantly lower systolic blood, diastolic blood pressure, percentile of systolic pressure, and diastolic pressure were observed. CONCLUSIONS RUTA occurred more frequently among patients with FASD compared to the control group, and decreased kidney size was also demonstrated among patients with FASD. However, impaired kidney function and the risk of hypertension were not observed.
Collapse
Affiliation(s)
- Katarzyna Anna Dyląg
- Department of Patophysiology, Jagiellonian University Medical College, Kraków, małopolskie, Poland
- St. Louis Children Hospital, Kraków, małopolskie, Poland
| | - Paulina Dumnicka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, małopolskie, Poland
| | | | | | | | - Dorota Drożdż
- Department of Paediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, małopolskie, Poland
| |
Collapse
|
3
|
Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF. Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications. Front Physiol 2022; 13:787617. [PMID: 35360231 PMCID: PMC8961444 DOI: 10.3389/fphys.2022.787617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic–pituitary–adrenal axis regulation of inflammatory response, activation of Th17 cells, renin–angiotensin–aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.
Collapse
Affiliation(s)
- Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlio Cezar De Oliveira
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rita C. Tostes
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Gisele Facholi Bomfim
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- *Correspondence: Gisele Facholi Bomfim,
| |
Collapse
|
4
|
Starzyńska A, Wychowański P, Nowak M, Sobocki BK, Jereczek-Fossa BA, Słupecka-Ziemilska M. Association between Maternal Periodontitis and Development of Systematic Diseases in Offspring. Int J Mol Sci 2022; 23:2473. [PMID: 35269617 PMCID: PMC8910384 DOI: 10.3390/ijms23052473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periodontal disease (PD) is one of the most common oral conditions affecting both youths and adults. There are some research works suggesting a high incidence of PD in pregnant women. As an inflammatory disease of bacterial origin, PD may result in the activation of the pathways affecting the course and the pregnancy outcome. The authors, based on the literature review, try to answer the PICO question: Does maternal periodontitis (exposure) influence the incidence of complications rates in pregnancy and the development of systemic diseases in childhood and adult offspring (outcome) in the humans of any race (population) compared to the offspring of mothers with healthy periodontium (comparison)? The authors try to describe the molecular pathways and mechanisms of these interdependencies. There is some evidence that maternal periodontitis may affect the pregnancy course and outcome, resulting in preeclampsia, preterm delivery, vulvovaginitis and low birth weight. It can be suggested that maternal periodontitis may affect offspring epigenome and result in some health consequences in their adult life.
Collapse
Affiliation(s)
- Anna Starzyńska
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Piotr Wychowański
- Department of Oral Surgery, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
- Specialized Private Implantology Clinic Wychowanski Stomatologia, 9/33 Rakowiecka Street, 02-517 Warsaw, Poland
| | - Maciej Nowak
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 6 Binieckiego Street, 02-097 Warsaw, Poland;
| | - Bartosz Kamil Sobocki
- Department of Oral Surgery, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland;
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, 7 Festa del Perdono Street, 20-112 Milan, Italy;
- Division of Radiotherapy, IEO European Institute of Oncology, IRCCS, 435 Ripamonti Street, 20-141 Milan, Italy
| | - Monika Słupecka-Ziemilska
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, 02-106 Warsaw, Poland;
| |
Collapse
|
5
|
Wilson SL, Wallingford M. Epigenetic regulation of reproduction in human and in animal models. Mol Hum Reprod 2021; 27:6329199. [PMID: 34318322 DOI: 10.1093/molehr/gaab041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/07/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Samantha L Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto Medical Discovery Tower, Toronto, ON, Canada
| | - Mary Wallingford
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.,Division of Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
6
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
Salem NA, Mahnke AH, Konganti K, Hillhouse AE, Miranda RC. Cell-type and fetal-sex-specific targets of prenatal alcohol exposure in developing mouse cerebral cortex. iScience 2021; 24:102439. [PMID: 33997709 PMCID: PMC8105653 DOI: 10.1016/j.isci.2021.102439] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/07/2021] [Accepted: 04/13/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatal alcohol exposure (PAE) results in cerebral cortical dysgenesis. Single-cell RNA sequencing was performed on murine fetal cerebral cortical cells from six timed pregnancies, to decipher persistent cell- and sex-specific effects of an episode of PAE during early neurogenesis. We found, in an analysis of 38 distinct neural subpopulations across 8 lineage subtypes, that PAE altered neural maturation and cell cycle and disrupted gene co-expression networks. Whereas most differentially regulated genes were inhibited, particularly in females, PAE also induced sex-independent neural expression of fetal hemoglobin, a presumptive epigenetic stress adaptation. PAE inhibited Bcl11a, Htt, Ctnnb1, and other upstream regulators of differentially expressed genes and inhibited several autism-linked genes, suggesting that neurodevelopmental disorders share underlying mechanisms. PAE females exhibited neural loss of X-inactivation, with correlated activation of autosomal genes and evidence for spliceosome dysfunction. Thus, episodic PAE persistently alters the developing neural transcriptome, contributing to sex- and cell-type-specific teratology. The neurogenic murine fetal cortex contains about 33 distinct cell subtypes Prenatal Alcohol Exposure (PAE) resulted in sex-specific alterations in developmental trajectory and cell cycle PAE females exhibited neural loss of X-inactivation and spliceosomal dysfunction PAE induced sex-independent neural expression of fetal hemoglobin gene transcripts
Collapse
Affiliation(s)
- Nihal A. Salem
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Amanda H. Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Andrew E. Hillhouse
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843, USA
| | - Rajesh C. Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
- Women's Health in Neuroscience Program, Texas A&M University Health Science Center, Bryan, TX, USA
- Corresponding author
| |
Collapse
|
8
|
Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci Biobehav Rev 2020; 118:654-668. [PMID: 32976915 DOI: 10.1016/j.neubiorev.2020.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
Ethanol exposure during gestation is an early life stressor that profoundly dysregulates structure and functions of the embryonal nervous system, altering the cognitive and behavioral development. Such dysregulation is also achieved by epigenetic mechanisms, which, altering the chromatin structure, redraw the entire pattern of gene expression. In parallel, an oxidative stress response at the cellular level and a global upregulation of neuroendocrine stress response, regulated by the HPA axis, exist and persist in adulthood. This neurobehavioral framework matches those observed in other psychiatric diseases such as mood diseases, depression, autism; those early life stressing events, although probably triggered by specific and different epigenetic mechanisms, give rise to largely overlapping neurobehavioral phenotypes. An early diagnosis of prenatal alcohol exposure, using reliable markers of ethanol intake, together with a deeper understanding of the pathogenic mechanisms, some of them reversible by their nature, can offer a temporal "window" of intervention. Supplementing a mother's diet with protective and antioxidant substances in addition to supportive psychological therapies can protect newborns from being affected.
Collapse
|
9
|
Effects of Maternal Chewing on Prenatal Stress-Induced Cognitive Impairments in the Offspring via Multiple Molecular Pathways. Int J Mol Sci 2020; 21:ijms21165627. [PMID: 32781547 PMCID: PMC7460630 DOI: 10.3390/ijms21165627] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
We aimed to investigate the effects of maternal chewing on prenatal stress-induced cognitive impairments in the offspring and to explore the molecular pathways of maternal chewing in a mice model. Maternal chewing ameliorated spatial learning impairments in the offspring in a Morris water maze test. Immunohistochemistry and Western blot findings revealed that maternal chewing alleviated hippocampal neurogenesis impairment and increased the expression of hippocampal brain-derived neurotrophic factor in the offspring. In addition, maternal chewing increased the expression of glucocorticoid receptor (GR) and 11β-hydroxysteroid dehydrogenase isozyme 2 (11β-HSD2) and decreased the expression of 11β-HSD1 in the placenta, thereby attenuating the increase of glucocorticoid in the offspring. Furthermore, maternal chewing increased the expression of 11β-HSD2, FK506-binding protein 51 (FKBP51) and FKBP52 and decreased the expression of 11β-HSD1, thereby increasing hippocampal nuclear GR level. In addition, maternal chewing attenuated the increase in expression of DNMT1 and DNMT3a and the decrease in expression of histone H3 methylation at lysine 4, 9, 27 and histone H3 acetylation at lysine 9 induced by prenatal stress in the offspring. Our findings suggest that maternal chewing could ameliorate prenatal stress-induced cognitive impairments in the offspring at least in part by protecting placenta barrier function, alleviating hippocampal nuclear GR transport impairment and increasing the hippocampal brain-derived neurotrophic factor (BDNF) level.
Collapse
|
10
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
11
|
Cantacorps L, Montagud-Romero S, Valverde O. Curcumin treatment attenuates alcohol-induced alterations in a mouse model of foetal alcohol spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109899. [PMID: 32109509 DOI: 10.1016/j.pnpbp.2020.109899] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
Alcohol exposure during development produces physical and mental abnormalities in the foetus that result in long-term molecular adjustments in the brain, which could underlie the neurobehavioural deficits observed in individuals suffering from foetal alcohol spectrum disorders. In this study, we assessed the effects of curcumin on cognitive impairments caused by prenatal and lactational alcohol exposure (PLAE). Furthermore, we examined whether curcumin could counteract the molecular alterations that may underlie these behavioural impairments. We focused on inflammatory and epigenetic mechanisms by analysing the expression of pro-inflammatory mediators, such as IL-6, TNF-α, and NF-κB, in the hippocampus and prefrontal cortex, as well as microglia and astrocyte activation in the dentate gyrus. We also assessed the activity of histone acetyltransferase in these brain areas. To model binge alcohol drinking, we exposed pregnant C57BL/6 mice to a 20% v/v alcohol solution during gestation and lactation, with limited access periods. We treated male offspring with curcumin during postnatal days (PD28-35) and then evaluated their behaviour in adulthood (PD60). Our results showed that curcumin treatment during the peri-adolescence period improved the anxiety and memory deficits observed in PLAE mice. At the molecular level, we found enhanced histone acetyltransferase activity in mice subjected to PLAE that curcumin treatment could not reverse to baseline levels. These mice also showed increased expression of pro-inflammatory mediators, which could be rescued by curcumin treatment. They also displayed astrogliosis and microglia activation. Our study provides further evidence to support the use of curcumin as a therapeutic agent for counteracting behavioural and molecular alterations induced by PLAE.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
12
|
Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord 2020; 12:15. [PMID: 32416732 PMCID: PMC7231420 DOI: 10.1186/s11689-020-09316-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, seen in 1–5% of the population in the USA and Canada. Children diagnosed with FASD are not likely to remain with their biological parents, facing early maternal separation and foster placements throughout childhood. Methods We model FASD in mice via prenatal alcohol exposure and further induce early life stress through maternal separation. We use RNA-seq followed by clustering of expression profiles through weighted gene co-expression network analysis (WGCNA) to analyze transcriptomic changes that result from the treatments. We use reverse transcription qPCR to validate these changes in the mouse hippocampus. Results We report an association between adult hippocampal gene expression and prenatal ethanol exposure followed by postnatal separation stress that is related to behavioral changes. Expression profile clustering using WGCNA identifies a set of transcripts, module 19, associated with anxiety-like behavior (r = 0.79, p = 0.002) as well as treatment group (r = 0.68, p = 0.015). Genes in this module are overrepresented by genes involved in transcriptional regulation and other pathways related to neurodevelopment. Interestingly, one member of this module, Polr2a, polymerase (RNA) II (DNA directed) polypeptide A, is downregulated by the combination of prenatal ethanol and postnatal stress in an RNA-Seq experiment and qPCR validation (q = 2e−12, p = 0.004, respectively). Conclusions Together, transcriptional control in the hippocampus is implicated as a potential underlying mechanism leading to anxiety-like behavior via environmental insults. Further research is required to elucidate the mechanism involved and use this insight towards early diagnosis and amelioration strategies involving children born with FASD.
Collapse
Affiliation(s)
- Bonnie L J Alberry
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Christina A Castellani
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Shiva M Singh
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
13
|
Jeremias G, Gonçalves FJM, Pereira JL, Asselman J. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev Camb Philos Soc 2020; 95:822-846. [PMID: 32045110 DOI: 10.1111/brv.12589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/18/2022]
Abstract
Epigenetic mechanisms have gained relevance in human health and environmental studies, due to their pivotal role in disease, gene × environment interactions and adaptation to environmental change and/or contamination. Epigenetic mechanisms are highly responsive to external stimuli and a wide range of chemicals has been shown to determine specific epigenetic patterns in several organisms. Furthermore, the mitotic/meiotic inheritance of such epigenetic marks as well as the resulting changes in gene expression and cell/organismal phenotypes has now been demonstrated. Therefore, epigenetic signatures are interesting candidates for linking environmental exposures to disease as well as informing on past exposures to stressors. Accordingly, epigenetic biomarkers could be useful tools in both prospective and retrospective risk assessment but epigenetic endpoints are currently not yet incorporated into risk assessments. Achieving a better understanding on this apparent impasse, as well as identifying routes to promote the application of epigenetic biomarkers within environmental risk assessment frameworks are the objectives of this review. We first compile evidence from human health studies supporting the use of epigenetic exposure-associated changes as reliable biomarkers of exposure. Then, specifically focusing on environmental science, we examine the potential and challenges of developing epigenetic biomarkers for environmental fields, and discuss useful organisms and appropriate sequencing techniques to foster their development in this context. Finally, we discuss the practical incorporation of epigenetic biomarkers in the environmental risk assessment of chemicals, highlighting critical data gaps and making key recommendations for future research within a regulatory context.
Collapse
Affiliation(s)
- Guilherme Jeremias
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Fernando J M Gonçalves
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana L Pereira
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.,CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jana Asselman
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit - GhEnToxLab, Ghent University, 9000, Gent, Belgium
| |
Collapse
|
14
|
Montagud-Romero S, Cantacorps L, Valverde O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J Psychopharmacol 2019; 33:1573-1587. [PMID: 31294671 DOI: 10.1177/0269881119857208] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol exposure during development has detrimental effects, including a wide range of physical, cognitive and neurobehavioural anomalies known as foetal alcohol spectrum disorders. However, alcohol consumption among pregnant woman is an ongoing latent health problem. AIM In the present study, the effects of trichostatin A (TSA) on emotional and cognitive impairments caused by prenatal and lactational alcohol exposure were assessed. TSA is an inhibitor of class I and II histone deacetylases enzymes (HDAC), and for that, HDAC4 activity was determined. We also evaluated mechanisms underlying the behavioural effects observed, including the expression of brain-derived neurotrophic factor (BDNF) in discrete brain regions and newly differentiated neurons in the dentate gyrus (DG). METHODS C57BL/6 female pregnant mice were used, with limited access to a 20% v/v alcohol solution as a procedure to model binge alcohol drinking during gestation and lactation. Male offspring were treated with TSA during the postnatal days (PD28-35) and behaviourally evaluated (PD36-55). RESULTS Early alcohol exposure mice presented increased anxiogenic-like responses and memory deterioration - effects that were partially reversed with TSA. Early alcohol exposure produces a decrease in BDNF levels in the hippocampus (HPC) and prefrontal cortex, a reduction of neurogenesis in the DG and increased activity levels of the HDAC4 in the HPC. CONCLUSIONS Such findings support the participation of HDAC enzymes in cognitive and emotional alterations induced by binge alcohol consumption during gestation and lactation and would indicate potential benefits of HDAC inhibitors for some aspects of foetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Medical Research Institute, Neurosciences Programme, Barcelona, Spain
| |
Collapse
|
15
|
Cantacorps L, Alfonso-Loeches S, Guerri C, Valverde O. Long-term epigenetic changes in offspring mice exposed to alcohol during gestation and lactation. J Psychopharmacol 2019; 33:1562-1572. [PMID: 31210079 DOI: 10.1177/0269881119856001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol exposure impairs brain development and leads to a range of behavioural and cognitive dysfunctions, termed as foetal alcohol spectrum disorders. Although different mechanisms have been proposed to participate in foetal alcohol spectrum disorders, the molecular insights of such effects are still uncertain. Using a mouse model of foetal alcohol spectrum disorder, we have previously shown that maternal binge-like alcohol drinking causes persistent effects on motor, cognitive and emotional-related behaviours associated with neuroimmune dysfunctions. AIMS In this study, we sought to evaluate whether the long-term behavioural alterations found in offspring with early exposure to alcohol are associated with epigenetic changes in the hippocampus and prefrontal cortex. METHODS Pregnant C57BL/6 female mice underwent a model procedure for binge alcohol drinking throughout both the gestation and lactation periods. Subsequently, adult offspring were assessed for their cognitive function in a reversal learning task and brain areas were extracted for epigenetic analyses. RESULTS The results demonstrated that early binge alcohol exposure induces long-term behavioural effects along with alterations in histone acetylation (histone H4 lysine 5 and histone H4 lysine 12) in the hippocampus and prefrontal cortex. The epigenetic effects were linked with an imbalance in histone acetyltransferase activity that was found to be increased in the prefrontal cortex of mice exposed to alcohol. CONCLUSIONS In conclusion, our results reveal that maternal binge-like alcohol consumption induces persistent epigenetic modifications, effects that might be associated with the long-term cognitive and behavioural impairments observed in foetal alcohol spectrum disorder models.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
16
|
Early life alcohol exposure primes hypothalamic microglia to later-life hypersensitivity to immune stress: possible epigenetic mechanism. Neuropsychopharmacology 2019; 44:1579-1588. [PMID: 30737481 PMCID: PMC6785096 DOI: 10.1038/s41386-019-0326-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/16/2018] [Accepted: 01/11/2019] [Indexed: 12/31/2022]
Abstract
Growing evidence has shown that developmental alcohol exposure induces central nervous system inflammation and microglia activation, which may contribute to long-term health conditions, such as fetal alcohol spectrum disorders. These studies sought to investigate whether neonatal alcohol exposure during postnatal days (PND) 2-6 in rats (third trimester human equivalent) leads to long-term disruption of the neuroimmune response by microglia. Exposure to neonatal alcohol resulted in acute increases in activation and inflammatory gene expression in hypothalamic microglia including tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). Adults with neonatal alcohol pre-exposure (alcohol fed; AF) animals showed an exaggerated peripheral stress hormonal response to an immune challenge (lipopolysaccharides; LPS). In addition, there were significantly more microglia present in the hypothalamus of adult AF animals, and their hypothalamic microglia showed more cluster of differentiation molecule 11b (Cd11b) activation, TNF-α expression, and IL-6 expression in response to LPS. Interestingly, blocking microglia activation with minocycline treatment during PND 2-6 alcohol exposure ameliorated the hormonal and microglial hypersensitivity to LPS in AF adult animals. Investigation of possible epigenetic programming mechanisms by alcohol revealed neonatal alcohol decreased several repressive regulators of transcription in hypothalamic microglia, while concomitantly increasing histone H3 acetyl lysine 9 (H3K9ac) enrichment at TNF-α and IL-6 promoter regions. Importantly, adult hypothalamic microglia from AF animals showed enduring increases in H3K9ac enrichment of TNF-α and IL-6 promoters both at baseline and after LPS exposure, suggesting a possible epigenetic mechanism for the long-term immune disruption due to hypothalamic microglial priming.
Collapse
|
17
|
Reece AS, Hulse GK. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et. al. 'cannabinoid exposure and altered DNA methylation in rat and human sperm' epigenetics 2018; 13: 1208-1221. Epigenetics 2019; 14:1041-1056. [PMID: 31293213 PMCID: PMC6773386 DOI: 10.1080/15592294.2019.1633868] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent data from the Kollins lab (‘Cannabinoid exposure and altered DNA methylation in rat and human sperm’ Epigenetics 2018; 13: 1208–1221) indicated epigenetic effects of cannabis use on sperm in man parallel those in rats and showed substantial shifts in both hypo- and hyper-DNA methylation with the latter predominating. This provides one likely mechanism for the transgenerational transmission of epigenomic instability with sperm as the vector. It therefore contributes important pathophysiological insights into the probable mechanisms underlying the epidemiology of prenatal cannabis exposure potentially explaining diverse features of cannabis-related teratology including effects on the neuraxis, cardiovasculature, immune stimulation, secondary genomic instability and carcinogenesis related to both adult and pediatric cancers. The potentially inheritable and therefore multigenerational nature of these defects needs to be carefully considered in the light of recent teratological and neurobehavioural trends in diverse jurisdictions such as the USA nationally, Hawaii, Colorado, Canada, France and Australia, particularly relating to mental retardation, age-related morbidity and oncogenesis including inheritable cancerogenesis. Increasing demonstrations that the epigenome can respond directly and in real time and retain memories of environmental exposures of many kinds implies that the genome-epigenome is much more sensitive to environmental toxicants than has been generally realized. Issues of long-term multigenerational inheritance amplify these concerns. Further research particularly on the epigenomic toxicology of many cannabinoids is also required.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia , Crawley , Western Australia Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup , Western Australia , Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia , Crawley , Western Australia Australia.,School of Medical and Health Sciences, Edith Cowan University , Joondalup , Western Australia , Australia
| |
Collapse
|
18
|
Craniofacial malformations and their association with brain development: the importance of a multidisciplinary approach for treatment. Odontology 2019; 108:1-15. [PMID: 31172336 DOI: 10.1007/s10266-019-00433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
The craniofacial complex develops mainly in the first trimester of pregnancy, but its final shaping and the development of the teeth extend into the second and third trimesters. It is intimately connected with the development of the brain because of the crucial role the cranial neural crest cells play and the fact that many signals which control craniofacial development originate in the brain and vice versa. As a result, malformations of one organ may affect the development of the other. Similarly, there are developmental connections between the craniofacial complex and the teeth. Craniofacial anomalies are either isolated, resulting from abnormal development of the first two embryonic pharyngeal arches, or part of multiple malformation syndromes affecting many other organs. They may stem from gene mutations, chromosomal aberrations or from environmental causes induced by teratogens. The craniofacial morphologic changes are generally cosmetic, but they often interfere with important functions such as chewing, swallowing and respiration. In addition, they may cause hearing or visual impairment. In this review we discussed only a small number of craniofacial malformations and barely touched upon related anomalies of dentition. Following a brief description of the craniofacial development, we discussed oral clefts, craniofacial microsomia, teratogens that may interfere with craniofacial development resulting in different malformations, the genetically determined craniosynostoses syndromes and few other relatively common syndromes that, in addition to the craniofacial complex, also affect other organs. The understanding of these malformations is important in dentistry as dentists play an integral role in their diagnosis and multidisciplinary treatment.
Collapse
|
19
|
Jarmasz JS, Stirton H, Basalah D, Davie JR, Clarren SK, Astley SJ, Del Bigio MR. Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2019; 43:1145-1162. [PMID: 31074890 PMCID: PMC6593679 DOI: 10.1111/acer.14052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/26/2019] [Accepted: 03/25/2019] [Indexed: 12/21/2022]
Abstract
Background Based upon experimental animal studies, the neurodevelopmental abnormalities associated with prenatal alcohol exposure (PNAE)/fetal alcohol spectrum disorder (FASD) have been attributed, at least in part, to epigenetic modifications. However, there are no direct analyses of human brain tissue. Methods Immunohistochemical detection of global epigenetic markers was performed on temporal lobe samples of autopsied fetuses and infants with documented PNAE. They were compared to age‐, sex‐, and postmortem delay‐matched control cases (18 pairs; 20 to 70.5 weeks postconception). Temporal lobe tissue from a macaque monkey model of PNAE was also studied (5.7 to 6 months of age). We used antibodies targeting 4 DNA cytosine, 4 histone methylation, and 6 histone acetylation modifications and assigned scores based upon the semiquantitatively graded intensity and proportion of positively labeled nuclei in the ventricular and subventricular zones, ependyma, temporal cortex, temporal white matter, dentate gyrus (DG), and CA1 pyramidal layer. Results Temporal changes were identified for almost all marks according to the state of maturation in the human brain. In the DG (and 3 other brain regions), a statistically significant increase in H3K9ac was associated with PNAE. Statistically significant decreases were seen among 5mC, H3K4me3, H3K9ac, H3K27ac, H4K12ac, and H4K16ac in select regions. In the macaques, H3K36me3 decreased in the DG, and the ependyma showed decreases in 5fC and H3K36me3. Conclusions In human brain, global intranuclear epigenetic modifications are brain region and maturation state‐specific. These exploratory results support the general hypothesis that PNAE is associated with a global decrease in DNA methylation, a global decrease in histone methylation, and a global increase in histone acetylation. Although the human and monkey subjects are not directly comparable in terms of brain maturation, considering the rapid temporal changes in global epigenetic modifications during brain development, interspecies comparisons may be extremely difficult.
Collapse
Affiliation(s)
- Jessica S Jarmasz
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hannah Stirton
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Duaa Basalah
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sterling K Clarren
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Pediatrics, University of British Columbia Faculty of Medicine, Vancouver, British Columbia
| | - Susan J Astley
- Departments of Epidemiology/Pediatrics, University of Washington, Seattle, Washington
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
20
|
Brown JM, Bland R, Jonsson E, Greenshaw AJ. The Standardization of Diagnostic Criteria for Fetal Alcohol Spectrum Disorder (FASD): Implications for Research, Clinical Practice and Population Health. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:169-176. [PMID: 29788774 PMCID: PMC6405816 DOI: 10.1177/0706743718777398] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Fetal Alcohol Spectrum Disorder (FASD) is a preventable disorder caused by maternal alcohol consumption and marked by a range of physical and mental disabilities. Although recognized by the scientific and medical community as a clinical disorder, no internationally standardized diagnostic tool yet exists for FASD. METHODS AND RESULTS This review seeks to analyse the discrepancies in existing diagnostic tools for FASD, and the repercussions these differences have on research, public health, and government policy. CONCLUSIONS Disagreement on the adoption of a standardised tool is reflective of existing gaps in research on the conditions and factors that influence fetal vulnerability to damage from exposure. This discordance has led to variability in research findings, inconsistencies in government messaging, and misdiagnoses or missed diagnoses. The objective measurement of the timing and level of prenatal alcohol exposure is key to bridging these gaps; however, there is conflicting or limited evidence to support the use of existing measures.
Collapse
Affiliation(s)
- Jasmine M. Brown
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Roger Bland
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Egon Jonsson
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
21
|
Petrelli B, Bendelac L, Hicks GG, Fainsod A. Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis 2019; 57:e23278. [DOI: 10.1002/dvg.23278] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Berardino Petrelli
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Liat Bendelac
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| | - Geoffrey G. Hicks
- Regenerative Medicine Program and the Department of Biochemistry & Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health SciencesUniversity of Manitoba Winnipeg Manitoba Canada
| | - Abraham Fainsod
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel‐CanadaFaculty of Medicine, Hebrew University Jerusalem Israel
| |
Collapse
|
22
|
Gretzinger TL, Tyagi M, Fontaine CJ, Cheema MS, González-Perez M, Freeman ME, Christie BR, Ausió J. Fetal alcohol spectrum disorder (FASD) affects the hippocampal levels of histone variant H2A.Z-2. Biochem Cell Biol 2019; 97:431-436. [PMID: 30605356 DOI: 10.1139/bcb-2018-0240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is caused by prenatal exposure to ethanol and has been linked to neurodevelopmental impairments. Alcohol has the potential to alter some of the epigenetic components that play a critical role during development. Previous studies have provided evidence that prenatal exposure to ethanol results in abnormal epigenetic patterns (i.e., hypomethylation) of the genome. The aim of this study was to determine how prenatal exposure to ethanol in rats affects the hippocampal levels of expression of two important brain epigenetic transcriptional regulators involved in synaptic plasticity and memory consolidation: methyl CpG-binding protein 2 (MeCP2) and histone variant H2A.Z. Unexpectedly, under the conditions used in this work we were not able to detect any changes in MeCP2. Interestingly, however, we observed a significant decrease in H2A.Z, accompanied by its chromatin redistribution in both female and male FASD rat pups. Moreover, the data from reverse-transcription qPCR later confirmed that this decrease in H2A.Z is mainly due to down-regulation of its H2A.Z-2 isoform gene expression. Altogether, these data provide strong evidence that prenatal exposure to ethanol alters histone variant H2A.Z during neurogenesis of rat hippocampus.
Collapse
Affiliation(s)
- Taylor L Gretzinger
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Monica Tyagi
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Christine J Fontaine
- b Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Manjinder S Cheema
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - María González-Perez
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Melissa E Freeman
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| | - Brian R Christie
- b Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Ausió
- a Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 3P6, Canada
| |
Collapse
|
23
|
Ehrhart F, Roozen S, Verbeek J, Koek G, Kok G, van Kranen H, Evelo CT, Curfs LMG. Review and gap analysis: molecular pathways leading to fetal alcohol spectrum disorders. Mol Psychiatry 2019; 24:10-17. [PMID: 29892052 PMCID: PMC6325721 DOI: 10.1038/s41380-018-0095-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/17/2017] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
Abstract
Alcohol exposure during pregnancy affects the development of the fetus in various ways and may lead to Fetal Alcohol Spectrum Disorders (FASD). FASD is one of the leading preventable forms of neurodevelopmental disorders. In the light of prevention and early intervention, knowledge on how ethanol exposure induces fetal damage is urgently needed. Besides direct ethanol and acetaldehyde toxicity, alcohol increases oxidative stress, and subsequent general effects (e.g., epigenetic imprinting, gene expression, and metabolite levels). The current review provides an overview of the existing knowledge about specific downstream pathways for FASD that affects e.g., the SHH pathway, cholesterol homeostasis, neurotransmitter signaling, and effects on the cytoskeleton. Available human data vary greatly, while animal studies with controlled ethanol exposition are only to a certain limit transferable to humans. The main deficits in knowledge about FASD are the lack of pathophysiological understanding and dose-response relationships, together with the lack of reliable biomarkers for either FASD detection or estimation of susceptibility. In addition to single outcome experiments, omics data should be generated to overcome this problem. Therefore, for future studies we recommend holistic data driven analysis, which allows integrative analyses over multiple levels of genetic variation, transcriptomics and metabolomics data to investigate the whole image of FASD development and to provide insight in potential drug targets for intervention.
Collapse
Affiliation(s)
- Friederike Ehrhart
- Governor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands. .,Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.
| | - Sylvia Roozen
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0001 0481 6099grid.5012.6Department of Work and Social Psychology, Maastricht University, Maastricht, The Netherlands
| | - Jef Verbeek
- 0000 0004 0480 1382grid.412966.eDepartment of Internal Medicine, Division of gastroenterology and hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ger Koek
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0004 0480 1382grid.412966.eDepartment of Internal Medicine, Division of gastroenterology and hepatology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Gerjo Kok
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0001 0481 6099grid.5012.6Department of Work and Social Psychology, Maastricht University, Maastricht, The Netherlands
| | - Henk van Kranen
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0001 0481 6099grid.5012.6Institute for Public Health Genomics, Maastricht University, Maastricht, The Netherlands
| | - Chris T. Evelo
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0001 0481 6099grid.5012.6Department of Bioinformatics, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Leopold M. G. Curfs
- 0000 0004 0480 1382grid.412966.eGovernor Kremers Centre, Maastricht University Medical Centre+, Maastricht, The Netherlands ,0000 0004 0480 1382grid.412966.eDepartment of Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
24
|
Chater-Diehl E, Sokolowski D, Alberry B, Singh SM. Coordinated Tcf7l2 regulation in a mouse model implicates Wnt signaling in fetal alcohol spectrum disorders. Biochem Cell Biol 2018; 97:375-379. [PMID: 30398926 DOI: 10.1139/bcb-2018-0215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mouse models of fetal alcohol spectrum disorders (FASD) have repeatedly identified genes with long-term changes in expression, DNA methylation, noncoding RNA, and histone modifications in response to neurodevelopmental alcohol exposure. Articulation of FASD is achieved via alcohol's effect on gene expression, likely involving epigenetic regulation. The list of genes affected is large and heterogeneous, depending on experimental protocol. We present reanalysis and synthesis of results highlighting the Wnt transcription factor 7 like 2 (Tcf7l2) gene as uniquely compatible with hippocampal DNA methylation, histone modifications, and gene expression changes in a coordinated response to neurodevelopmental alcohol exposure. We data-mined the literature for Tcf7l2 alterations in response to prenatal alcohol exposure. Four studies identified changes in brain Tcf7l2 expression in different FASD models. Further, we performed an in silico TCF7L2 binding site analysis for FASD mouse model data sets. Seven of these published gene lists were significantly enriched for TCF7L2 binding, indicating potential functional relationships. Finally, TCF7L2 is involved in regulation of hundreds of genes, with a role in brain development, myelination, and neuronal function. Tcf7l2 may be involved in neurological defects associated with alcohol exposure via dysregulation of many genes through Wnt signaling. Further functional work is warranted to validate this model for FASD.
Collapse
Affiliation(s)
- Eric Chater-Diehl
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Dustin Sokolowski
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Bonnie Alberry
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| | - Shiva M Singh
- Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada.,Molecular Genetics Unit, Department of Biology, The University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
25
|
Georgieff MK, Tran PV, Carlson ES. Atypical fetal development: Fetal alcohol syndrome, nutritional deprivation, teratogens, and risk for neurodevelopmental disorders and psychopathology. Dev Psychopathol 2018; 30:1063-1086. [PMID: 30068419 PMCID: PMC6074054 DOI: 10.1017/s0954579418000500] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Accumulating evidence indicates that the fetal environment plays an important role in brain development and sets the brain on a trajectory across the life span. An abnormal fetal environment results when factors that should be present during a critical period of development are absent or when factors that should not be in the developing brain are present. While these factors may acutely disrupt brain function, the real cost to society resides in the long-term effects, which include important mental health issues. We review the effects of three factors, fetal alcohol exposure, teratogen exposure, and nutrient deficiencies, on the developing brain and the consequent risk for developmental psychopathology. Each is reviewed with respect to the evidence found in epidemiological and clinical studies in humans as well as preclinical molecular and cellular studies that explicate mechanisms of action.
Collapse
Affiliation(s)
| | - Phu V Tran
- University of Minnesota School of Medicine
| | | |
Collapse
|
26
|
A Cyclin E Centered Genetic Network Contributes to Alcohol-Induced Variation in Drosophila Development. G3-GENES GENOMES GENETICS 2018; 8:2643-2653. [PMID: 29871898 PMCID: PMC6071605 DOI: 10.1534/g3.118.200260] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal exposure to ethanol causes a wide range of adverse physiological, behavioral and cognitive consequences. However, identifying allelic variants and genetic networks associated with variation in susceptibility to prenatal alcohol exposure is challenging in human populations, since time and frequency of exposure and effective dose cannot be determined quantitatively and phenotypic manifestations are diverse. Here, we harnessed the power of natural variation in the Drosophila melanogaster Genetic Reference Panel (DGRP) to identify genes and genetic networks associated with variation in sensitivity to developmental alcohol exposure. We measured development time from egg to adult and viability of 201 DGRP lines reared on regular or ethanol- supplemented medium and identified polymorphisms associated with variation in susceptibility to developmental ethanol exposure. We also documented genotype-dependent variation in sensorimotor behavior after developmental exposure to ethanol using the startle response assay in a subset of 39 DGRP lines. Genes associated with development, including development of the nervous system, featured prominently among genes that harbored variants associated with differential sensitivity to developmental ethanol exposure. Many of them have human orthologs and mutational analyses and RNAi targeting functionally validated a high percentage of candidate genes. Analysis of genetic interaction networks identified Cyclin E (CycE) as a central, highly interconnected hub gene. Cyclin E encodes a protein kinase associated with cell cycle regulation and is prominently expressed in ovaries. Thus, exposure to ethanol during development of Drosophila melanogaster might serve as a genetic model for translational studies on fetal alcohol spectrum disorder.
Collapse
|
27
|
Nonprotein-coding RNAs in Fetal Alcohol Spectrum Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:299-342. [PMID: 29933954 DOI: 10.1016/bs.pmbts.2017.11.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Early developmental exposure to ethanol, a known teratogen, can result in a range of neurodevelopmental disorders, collectively referred to as Fetal Alcohol Spectrum Disorders (FASDs). Changes in the environment, including exposure to teratogens, can result in long term alterations to the epigenetic landscape of a cell, thereby altering gene expression. Noncoding RNAs (ncRNAs) can affect transcription and translation of networks of genes. ncRNAs are dynamically expressed during development and have been identified as a target of alcohol. ncRNAs therefore make for attractive targets for novel therapeutics to address the developmental deficits associated with FASDs.
Collapse
|
28
|
Chang RC, Skiles WM, Chronister SS, Wang H, Sutton GI, Bedi YS, Snyder M, Long CR, Golding MC. DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Epigenetics 2017; 12:841-853. [PMID: 28816587 DOI: 10.1080/15592294.2017.1363952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The preconception environment is a significant modifier of dysgenesis and the development of environmentally-induced disease. To date, fetal alcohol spectrum disorders (FASDs) have been exclusively associated with maternal exposures, yet emerging evidence suggests male-inherited alterations in the developmental program of sperm may be relevant to the growth-restriction phenotypes of this condition. Using a mouse model of voluntary consumption, we find chronic preconception male ethanol exposure associates with fetal growth restriction, decreased placental efficiency, abnormalities in cholesterol trafficking, sex-specific alterations in the genetic pathways regulating hepatic fibrosis, and disruptions in the regulation of imprinted genes. Alterations in the DNA methylation profiles of imprinted loci have been identified in clinical studies of alcoholic sperm, suggesting the legacy of paternal drinking may transmit via heritable disruptions in the regulation of imprinted genes. However, the capacity of sperm-inherited changes in DNA methylation to broadly transmit environmentally-induced phenotypes remains unconfirmed. Using bisulphite mutagenesis and second-generation deep sequencing, we find no evidence to suggest that these phenotypes or any of the associated transcriptional changes are linked to alterations in the sperm-inherited DNA methylation profile. These observations are consistent with recent studies examining the male transmission of diet-induced phenotypes and emphasize the importance of epigenetic mechanisms of paternal inheritance beyond DNA methylation. This study challenges the singular importance of maternal alcohol exposures and suggests paternal alcohol abuse is a significant, yet overlooked epidemiological factor complicit in the genesis of alcohol-induced growth defects, and may provide mechanistic insight into the failure of FASD children to thrive postnatally.
Collapse
Affiliation(s)
- Richard C Chang
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - William M Skiles
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Sarah S Chronister
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Haiqing Wang
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Gabrielle I Sutton
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Yudhishtar S Bedi
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Matthew Snyder
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Charles R Long
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| | - Michael C Golding
- a Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences , Texas A&M University , College Station , Texas , USA
| |
Collapse
|
29
|
Kalisch-Smith JI, Moritz KM. Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol 2017; 96:107-116. [PMID: 29112458 DOI: 10.1139/bcb-2017-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - K M Moritz
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,b Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
30
|
Mahnke AH, Miranda RC, Homanics GE. Epigenetic mediators and consequences of excessive alcohol consumption. Alcohol 2017; 60:1-6. [PMID: 28395929 PMCID: PMC5439216 DOI: 10.1016/j.alcohol.2017.02.357] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States.
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, United States
| | - Gregg E Homanics
- Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|