1
|
Rouzer SK, Sreeram A, Miranda RC. Reduced fetal cerebral blood flow predicts perinatal mortality in a mouse model of prenatal alcohol and cannabinoid exposure. BMC Pregnancy Childbirth 2024; 24:263. [PMID: 38605299 PMCID: PMC11007973 DOI: 10.1186/s12884-024-06436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Children exposed prenatally to alcohol or cannabinoids individually can exhibit growth deficits and increased risk for adverse birth outcomes. However, these drugs are often co-consumed and their combined effects on early brain development are virtually unknown. The blood vessels of the fetal brain emerge and mature during the neurogenic period to support nutritional needs of the rapidly growing brain, and teratogenic exposure during this gestational window may therefore impair fetal cerebrovascular development. STUDY DESIGN To determine whether prenatal polysubstance exposure confers additional risk for impaired fetal-directed blood flow, we performed high resolution in vivo ultrasound imaging in C57Bl/6J pregnant mice. After pregnancy confirmation, dams were randomly assigned to one of four groups: drug-free control, alcohol-exposed, cannabinoid-exposed or alcohol-and-cannabinoid-exposed. Drug exposure occurred daily between Gestational Days 12-15, equivalent to the transition between the first and second trimesters in humans. Dams first received an intraperitoneal injection of either cannabinoid agonist CP-55,940 (750 µg/kg) or volume-equivalent vehicle. Then, dams were placed in vapor chambers for 30 min of inhalation of either ethanol or room air. Dams underwent ultrasound imaging on three days of pregnancy: Gestational Day 11 (pre-exposure), Gestational Day 13.5 (peri-exposure) and Gestational Day 16 (post-exposure). RESULTS All drug exposures decreased fetal cranial blood flow 24-hours after the final exposure episode, though combined alcohol and cannabinoid co-exposure reduced internal carotid artery blood flow relative to all other exposures. Umbilical artery metrics were not affected by drug exposure, indicating a specific vulnerability of fetal cranial circulation. Cannabinoid exposure significantly reduced cerebroplacental ratios, mirroring prior findings in cannabis-exposed human fetuses. Post-exposure cerebroplacental ratios significantly predicted subsequent perinatal mortality (p = 0.019, area under the curve, 0.772; sensitivity, 81%; specificity, 85.70%) and retroactively diagnosed prior drug exposure (p = 0.005; AUC, 0.861; sensitivity, 86.40%; specificity, 66.7%). CONCLUSIONS Fetal cerebrovasculature is significantly impaired by exposure to alcohol or cannabinoids, and co-exposure confers additional risk for adverse birth outcomes. Considering the rising potency and global availability of cannabis products, there is an imperative for research to explore translational models of prenatal drug exposure, including polysubstance models, to inform appropriate strategies for treatment and care in pregnancies affected by drug exposure.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Anirudh Sreeram
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M School of Medicine, 8447 Riverside Parkway, Bryan, TX, 77807, USA.
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Liu M, Su H, He Y, Zheng Q, Xu Z, Tang J. Paternal preconception alcohol consumption increased Angiotensin II-mediated vasoconstriction in male offspring cerebral arteries via oxidative stress-AT1R pathway. Addict Biol 2024; 29:e13385. [PMID: 38488472 PMCID: PMC11061854 DOI: 10.1111/adb.13385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/25/2023] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Alcohol consumption is popular worldwidely and closely associated with cardiovascular diseases. Influences of paternal preconception alcohol consumption on offspring cerebral arteries are largely unknown. Male rats were randomly given alcohol or water before being mated with alcohol-naive females to produce alcohol- and control-sired offspring. Middle cerebral artery (MCA) was tested with a Danish Myo Technology wire myograph, patch-clamp, IONOPTIX, immunofluorescence and quantitative PCR. Alcohol consumption enhanced angiotensin II (AngII)-mediated constriction in male offspring MCA mainly via AT1R. PD123,319 only augmented AngII-induced constriction in control offspring. AngII and Bay K8644 induced stronger intracellular calcium transient in vascular smooth muscle cells (VSMCs) from MCA of alcohol offspring. L-type voltage-dependent calcium channel (L-Ca2+ ) current at baseline and after AngII-stimulation was higher in VSMCs. Influence of large-conductance calcium-activated potassium channel (BKC a ) was lower. Caffeine induced stronger constriction and intracellular calcium release in alcohol offspring. Superoxide anion was higher in alcohol MCA than control. Tempol and thenoyltrifluoroacetone alleviated AngII-mediated contractions, while inhibition was significantly higher in alcohol group. The mitochondria were swollen in alcohol MCA. Despite lower Kcnma1 and Prkce expression, many genes expressions were higher in alcohol group. Hypoxia induced reactive oxygen species production and increased AT1R expression in control MCA and rat aorta smooth muscle cell line. In conclusion, this study firstly demonstrated paternal preconception alcohol potentiated AngII-mediated vasoconstriction in offspring MCA via ROS-AT1R. Alcohol consumption increased intracellular calcium via L-Ca2+ channel and endoplasmic reticulum and decreased BKCa function. The present study provided new information for male reproductive health and developmental origin of cerebrovascular diseases.
Collapse
Affiliation(s)
- Ze Zhang
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
| | - Yumeng Zhang
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
| | - Mingxing Liu
- Infection Management DepartmentFirst Hospital of Soochow UniversitySuzhouChina
| | - Hongyu Su
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
| | - Yun He
- Taixing People's HospitalTaixingChina
| | - Qiutong Zheng
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
| | - Zhice Xu
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
- Wuxi Maternily and Child Health HospitalWuxiChina
| | - Jiaqi Tang
- Institute for FetologyFirst Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
3
|
Reece AS, Hulse GK. Perturbation of 3D nuclear architecture, epigenomic dysregulation and aging, and cannabinoid synaptopathy reconfigures conceptualization of cannabinoid pathophysiology: part 1-aging and epigenomics. Front Psychiatry 2023; 14:1182535. [PMID: 37732074 PMCID: PMC10507876 DOI: 10.3389/fpsyt.2023.1182535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023] Open
Abstract
Much recent attention has been directed toward the spatial organization of the cell nucleus and the manner in which three-dimensional topologically associated domains and transcription factories are epigenetically coordinated to precisely bring enhancers into close proximity with promoters to control gene expression. Twenty lines of evidence robustly implicate cannabinoid exposure with accelerated organismal and cellular aging. Aging has recently been shown to be caused by increased DNA breaks. These breaks rearrange and maldistribute the epigenomic machinery to weaken and reverse cellular differentiation, cause genome-wide DNA demethylation, reduce gene transcription, and lead to the inhibition of developmental pathways, which contribute to the progressive loss of function and chronic immune stimulation that characterize cellular aging. Both cell lineage-defining superenhancers and the superanchors that control them are weakened. Cannabis exposure phenocopies the elements of this process and reproduces DNA and chromatin breakages, reduces the DNA, RNA protein and histone synthesis, interferes with the epigenomic machinery controlling both DNA and histone modifications, induces general DNA hypomethylation, and epigenomically disrupts both the critical boundary elements and the cohesin motors that create chromatin loops. This pattern of widespread interference with developmental programs and relative cellular dedifferentiation (which is pro-oncogenic) is reinforced by cannabinoid impairment of intermediate metabolism (which locks in the stem cell-like hyper-replicative state) and cannabinoid immune stimulation (which perpetuates and increases aging and senescence programs, DNA damage, DNA hypomethylation, genomic instability, and oncogenesis), which together account for the diverse pattern of teratologic and carcinogenic outcomes reported in recent large epidemiologic studies in Europe, the USA, and elsewhere. It also accounts for the prominent aging phenotype observed clinically in long-term cannabis use disorder and the 20 characteristics of aging that it manifests. Increasing daily cannabis use, increasing use in pregnancy, and exponential dose-response effects heighten the epidemiologic and clinical urgency of these findings. Together, these findings indicate that cannabinoid genotoxicity and epigenotoxicity are prominent features of cannabis dependence and strongly indicate coordinated multiomics investigations of cannabinoid genome-epigenome-transcriptome-metabolome, chromatin conformation, and 3D nuclear architecture. Considering the well-established exponential dose-response relationships, the diversity of cannabinoids, and the multigenerational nature of the implications, great caution is warranted in community cannabinoid penetration.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| |
Collapse
|
4
|
Kovács MV, Charchat-Fichman H, Landeira-Fernandez J, Medina AE, Krahe TE. Combined exposure to alcohol and cannabis during development: Mechanisms and outcomes. Alcohol 2023; 110:1-13. [PMID: 36740025 PMCID: PMC10372841 DOI: 10.1016/j.alcohol.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Exposure to substances of abuse during pregnancy can have long-lasting effects on offspring. Alcohol is one of the most widely used substances of abuse that leads to the most severe consequences. Recent studies in the United States, Canada, and the United Kingdom showed that between 1% and 7% of all children exhibit signs and symptoms of fetal alcohol spectrum disorder (FASD). Despite preventive campaigns, the rate of children with FASD has not decreased during recent decades. Alcohol consumption often accompanies exposure to such drugs as tobacco, cocaine, opioids, and cannabis. These interactions can be synergistic and exacerbate the deleterious consequences of developmental alcohol exposure. The present review focuses on interactions between alcohol and cannabis exposure and the potential consequences of these interactions.
Collapse
Affiliation(s)
- Martina V Kovács
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Helenice Charchat-Fichman
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - J Landeira-Fernandez
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Alexandre E Medina
- Department of Pediatrics - School of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States.
| | - Thomas E Krahe
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil.
| |
Collapse
|
5
|
Rouzer SK, Gutierrez J, Larin KV, Miranda RC. Alcohol & cannabinoid co-use: Implications for impaired fetal brain development following gestational exposure. Exp Neurol 2023; 361:114318. [PMID: 36627039 PMCID: PMC9892278 DOI: 10.1016/j.expneurol.2023.114318] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Alcohol and marijuana are two of the most consumed psychoactive substances by pregnant people, and independently, both substances have been associated with lifelong impacts on fetal neurodevelopment. Importantly, individuals of child-bearing age are increasingly engaging in simultaneous alcohol and cannabinoid (SAC) use, which amplifies each drug's pharmacodynamic effects and increases craving for both substances. However, to date, investigations of prenatal polysubstance use are notably limited in both human and non-human populations. In this review paper, we will address what is currently known about combined exposure to these substances, both directly and prenatally, and identify shared prenatal targets from single-exposure paradigms that may highlight susceptible neurobiological mechanisms for future investigation and therapeutic intervention. Finally, we conclude this manuscript by discussing factors that we feel are essential in the consideration and experimental design of future preclinical SAC studies.
Collapse
Affiliation(s)
- Siara Kate Rouzer
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States.
| | - Jessica Gutierrez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States
| | - Rajesh C Miranda
- Department of Neuroscience & Experimental Therapeutics, Texas A&M School of Medicine, Bryan, TX 77807, United States
| |
Collapse
|
6
|
Reece AS, Hulse GK. Patterns of Cannabis- and Substance-Related Congenital General Anomalies in Europe: A Geospatiotemporal and Causal Inferential Study. Pediatr Rep 2023; 15:69-118. [PMID: 36810339 PMCID: PMC9944887 DOI: 10.3390/pediatric15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/16/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Recent series of congenital anomaly (CA) rates (CARs) have showed the close and epidemiologically causal relationship of cannabis exposure to many CARs. We investigated these trends in Europe where similar trends have occurred. METHODS CARs from EUROCAT. Drug use from European Monitoring Centre for Drugs and Drug Addiction. Income data from World Bank. RESULTS CARs were higher in countries with increasing daily use overall (p = 9.99 × 10-14, minimum E-value (mEV) = 2.09) and especially for maternal infections, situs inversus, teratogenic syndromes and VACTERL syndrome (p = 1.49 × 10-15, mEV = 3.04). In inverse probability weighted panel regression models the series of anomalies: all anomalies, VACTERL, foetal alcohol syndrome, situs inversus (SI), lateralization (L), and teratogenic syndromes (TS; AAVFASSILTS) had cannabis metric p-values from: p < 2.2 × 10-16, 1.52 × 10-12, 1.44 × 10-13, 1.88 × 10-7, 7.39 × 10-6 and <2.2 × 10-16. In a series of spatiotemporal models this anomaly series had cannabis metric p-values from: 8.96 × 10-6, 6.56 × 10-6, 0.0004, 0.0019, 0.0006, 5.65 × 10-5. Considering E-values, the cannabis effect size order was VACTERL > situs inversus > teratogenic syndromes > FAS > lateralization syndromes > all anomalies. 50/64 (78.1%) E-value estimates and 42/64 (65.6%) mEVs > 9. Daily cannabis use was the strongest predictor for all anomalies. CONCLUSION Data confirmed laboratory, preclinical and recent epidemiological studies from Canada, Australia, Hawaii, Colorado and USA for teratological links between cannabis exposure and AAVFASSILTS anomalies, fulfilled epidemiological criteria for causality and underscored importance of cannabis teratogenicity. VACTERL data are consistent with causation via cannabis-induced Sonic Hedgehog inhibition. TS data suggest cannabinoid contribution. SI&L data are consistent with results for cardiovascular CAs. Overall, these data show that cannabis is linked across space and time and in a manner which fulfills epidemiological criteria for causality not only with many CAs, but with several multiorgan teratologic syndromes. The major clinical implication of these results is that access to cannabinoids should be tightly restricted in the interests of safeguarding the community's genetic heritage to protect and preserve coming generations, as is done for all other major genotoxins.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
7
|
Gasparyan A, Navarro D, Navarrete F, Austrich-Olivares A, Scoma ER, Hambardikar VD, Acosta GB, Solesio ME, Manzanares J. Cannabidiol repairs behavioral and brain disturbances in a model of fetal alcohol spectrum disorder. Pharmacol Res 2023; 188:106655. [PMID: 36642113 DOI: 10.1016/j.phrs.2023.106655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) includes neuropsychiatric disturbances related to gestational and lactational ethanol exposure. Available treatments are minimal and do not modulate ethanol-induced damage. Developing animal models simulating FASD is essential for understanding the underlying brain alterations and searching for efficient therapeutic approaches. The main goal of this study was to evaluate the effects of early and chronic cannabidiol (CBD) administration on offspring exposed to an animal model of FASD. Ethanol gavage (3 g/kg/12 h, p.o.) was administered to C57BL/6 J female mice, with a previous history of alcohol consumption, between gestational day 7 and postnatal day 21. On the weaning day, pups were separated by sex, and CBD administration began (30 mg/kg/day, i.p.). After 4-6 weeks of treatment, behavioral and neurobiological changes were analyzed. Mice exposed to the animal model of FASD showed higher anxiogenic and depressive-like behaviors and cognitive impairment that were evaluated through several experimental tests. These behaviors were accompanied by alterations in the gene, cellular and metabolomic targets. CBD administration normalized FASD model-induced emotional and cognitive disturbances, gene expression, and cellular changes with sex-dependent differences. CBD modulates the metabolomic changes detected in the hippocampus and prefrontal cortex. Interestingly, no changes were found in mitochondria or the oxidative status of the cells. These results suggest that the early and repeated administration of CBD modulated the long-lasting behavioral, gene and protein alterations induced by the FASD model, encouraging the possibility of performing clinical trials to evaluate the effects of CBD in children affected with FASD.
Collapse
Affiliation(s)
- Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Amaya Austrich-Olivares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain
| | - Ernest R Scoma
- Rutgers University, Department of Biology and CCIB, Camden, NJ, USA
| | | | - Gabriela B Acosta
- Instituto de Neurociencias Cognitiva y Traslacional (INCYT), CONICET, INECO, Universidad Favaloro, Ciudad Autónoma de Buenos Aires C1079ABE, Argentina
| | - María E Solesio
- Rutgers University, Department of Biology and CCIB, Camden, NJ, USA
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernandez-CSIC, San Juan de Alicante, Alicante, Spain; Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain.
| |
Collapse
|
8
|
Momin SZ, Le JT, Miranda RC. Vascular Contributions to the Neurobiological Effects of Prenatal Alcohol Exposure. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:10924. [PMID: 37205306 PMCID: PMC10191416 DOI: 10.3389/adar.2023.10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Fetal alcohol spectrum disorders (FASD) are often characterized as a cluster of brain-based disabilities. Though cardiovascular effects of prenatal alcohol exposure (PAE) have been documented, the vascular deficits due to PAE are less understood, but may contribute substantially to the severity of neurobehavioral presentation and health outcomes in persons with FASD. Methods We conducted a systematic review of research articles curated in PubMed to assess the strength of the research on vascular effects of PAE. 40 pertinent papers were selected, covering studies in both human populations and animal models. Results Studies in human populations identified cardiac defects, and defects in vasculature, including increased tortuosity, defects in basement membranes, capillary basal hyperplasia, endarteritis, and disorganized and diminished cerebral vasculature due to PAE. Preclinical studies showed that PAE rapidly and persistently results in vasodilation of large afferent cerebral arteries, but to vasoconstriction of smaller cerebral arteries and microvasculature. Moreover, PAE continues to affect cerebral blood flow into middle-age. Human and animal studies also indicate that ocular vascular parameters may have diagnostic and predictive value. A number of intervening mechanisms were identified, including increased autophagy, inflammation and deficits in mitochondria. Studies in animals identified persistent changes in blood flow and vascular density associated with endocannabinoid, prostacyclin and nitric oxide signaling, as well as calcium mobilization. Conclusion Although the brain has been a particular focus of studies on PAE, the cardiovascular system is equally affected. Studies in human populations, though constrained by small sample sizes, did link pathology in major blood vessels and tissue vasculature, including brain vasculature, to PAE. Animal studies highlighted molecular mechanisms that may be useful therapeutic targets. Collectively, these studies suggest that vascular pathology is a possible contributing factor to neurobehavioral and health problems across a lifespan in persons with a diagnosis of FASD. Furthermore, ocular vasculature may serve as a biomarker for neurovascular health in FASD.
Collapse
Affiliation(s)
| | | | - Rajesh C. Miranda
- Corresponding author to whom correspondence should be addressed: Rajesh C. Miranda, PhD, , Texas A&M University Health Science Center, School of Medicine, Department of Neuroscience & Experimental Therapeutics, Medical Research and Education Building, 8447 Riverside Parkway, Bryan, TX 77807-3260, Phone: 979-436-0332, Fax: 979-436-0086
| |
Collapse
|
9
|
Reece AS, Hulse GK. Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16721. [PMID: 36554603 PMCID: PMC9778714 DOI: 10.3390/ijerph192416721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Twelve separate streams of empirical data make a strong case for cannabis-induced accelerated aging including hormonal, mitochondriopathic, cardiovascular, hepatotoxic, immunological, genotoxic, epigenotoxic, disruption of chromosomal physiology, congenital anomalies, cancers including inheritable tumorigenesis, telomerase inhibition and elevated mortality. METHODS Results from a recently published longitudinal epigenomic screen were analyzed with regard to the results of recent large epidemiological studies of the causal impacts of cannabis. We also integrate theoretical syntheses with prior studies into these combined epigenomic and epidemiological results. RESULTS Cannabis dependence not only recapitulates many of the key features of aging, but is characterized by both age-defining and age-generating illnesses including immunomodulation, hepatic inflammation, many psychiatric syndromes with a neuroinflammatory basis, genotoxicity and epigenotoxicity. DNA breaks, chromosomal breakage-fusion-bridge morphologies and likely cycles, and altered intergenerational DNA methylation and disruption of both the histone and tubulin codes in the context of increased clinical congenital anomalies, cancers and heritable tumors imply widespread disruption of the genome and epigenome. Modern epigenomic clocks indicate that, in cannabis-dependent patients, cannabis advances cellular DNA methylation age by 25-30% at age 30 years. Data have implications not only for somatic but also stem cell and germ line tissues including post-fertilization zygotes. This effect is likely increases with the square of chronological age. CONCLUSION Recent epigenomic studies of cannabis exposure provide many explanations for the broad spectrum of cannabis-related teratogenicity and carcinogenicity and appear to account for many epidemiologically observed findings. Further research is indicated on the role of cannabinoids in the aging process both developmentally and longitudinally, from stem cell to germ cell to blastocystoids to embryoid bodies and beyond.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
10
|
Algburi AF, Dursun I, Garip Ustaoglu S. The investigation of the effects of postnatal alcohol exposure on molecular content and antioxidant capacity of mice liver tissue. Life Sci 2022; 310:121102. [DOI: 10.1016/j.lfs.2022.121102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
|
11
|
Saha PS, Mayhan WG. Prenatal exposure to alcohol: mechanisms of cerebral vascular damage and lifelong consequences. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2022; 2:10818. [PMID: 38390614 PMCID: PMC10880760 DOI: 10.3389/adar.2022.10818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/01/2022] [Indexed: 02/24/2024]
Abstract
Alcohol is a well-known teratogen, and prenatal alcohol exposure (PAE) leads to a greater incidence of many cardiovascular-related pathologies. Alcohol negatively impacts vasculogenesis and angiogenesis in the developing fetal brain, resulting in fetal alcohol spectrum disorders (FASD). Ample preclinical evidence indicates that the normal reactivity of cerebral resistance arterioles, which regulate blood flow distribution in response to metabolic demand (neurovascular coupling), is impaired by PAE. This impairment of dilation of cerebral arteries may carry implications for the susceptibility of the brain to cerebral ischemic damage well into adulthood. The focus of this review is to consolidate findings from studies examining the influence of PAE on vascular development, give insights into relevant pathological mechanisms at the vascular level, evaluate the risks of ethanol-driven alterations of cerebrovascular reactivity, and revisit different preventive interventions that may have promise in reversing vascular changes in preclinical FASD models.
Collapse
Affiliation(s)
- Partha S Saha
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
12
|
Reece AS, Hulse GK. Geospatiotemporal and causal inference study of cannabis and other drugs as risk factors for female breast cancer USA 2003-2017. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac006. [PMID: 35386387 PMCID: PMC8978645 DOI: 10.1093/eep/dvac006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 05/11/2023]
Abstract
Breast cancer (BC) is the commonest human cancer and its incidence (BC incidence, BCI) is rising worldwide. Whilst both tobacco and alcohol have been linked to BCI genotoxic cannabinoids have not been investigated. Age-adjusted state-based BCI 2003-2017 was taken from the Surveillance Epidemiology and End Results database of the Centers for Disease Control. Drug use from the National Survey of Drug Use and Health, response rate 74.1%. Median age, median household income and ethnicity were from US census. Inverse probability weighted (ipw) multivariable regression conducted in R. In bivariate analysis BCI was shown to be significantly linked with rising cannabis exposure {β-est. = 3.93 [95% confidence interval 2.99, 4.87], P = 1.10 × 10-15}. At 8 years lag cigarettes:cannabis [β-est. = 2660 (2150.4, 3169.3), P = 4.60 × 10-22] and cannabis:alcoholism [β-est. = 7010 (5461.6, 8558.4), P = 1.80 × 10-17] were significant in ipw-panel regression. Terms including cannabidiol [CBD; β-est. = 16.16 (0.39, 31.93), P = 0.446] and cannabigerol [CBG; β-est. = 6.23 (2.06, 10.39), P = 0.0034] were significant in spatiotemporal models lagged 1:2 years, respectively. Cannabis-liberal paradigms had higher BCI [67.50 ± 0.26 v. 65.19 ± 0.21/100 000 (mean ± SEM), P = 1.87 × 10-11; β-est. = 2.31 (1.65, 2.96), P = 9.09 × 10-12]. 55/58 expected values >1.25 and 13/58 >100. Abortion was independently and causally significant in space-time models. Data show that exposure to cannabis and the cannabinoids Δ9-tetrahydrocannabinol, CBD, CBG and alcoholism fulfil quantitative causal criteria for BCI across space and time. Findings are robust to adjustment for age and several known sociodemographic, socio-economic and hormonal risk factors and establish cannabinoids as an additional risk factor class for breast carcinogenesis. BCI is higher under cannabis-liberal legal paradigms.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, 27 Joondalup Dr., Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, 27 Joondalup Dr., Joondalup, WA 6027, Australia
| |
Collapse
|
13
|
Reece AS, Hulse GK. Cannabinoid and substance relationships of European congenital anomaly patterns: a space-time panel regression and causal inferential study. ENVIRONMENTAL EPIGENETICS 2022; 8:dvab015. [PMID: 35145760 PMCID: PMC8824558 DOI: 10.1093/eep/dvab015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/27/2022] [Indexed: 05/04/2023]
Abstract
With reports from Australia, Canada, USA, Hawaii and Colorado documenting a link between cannabis and congenital anomalies (CAs), this relationship was investigated in Europe. Data on 90 CAs were accessed from Eurocat. Tobacco and alcohol consumption and median household income data were from the World Bank. Amphetamine, cocaine and last month and daily use of cannabis from the European Monitoring Centre for Drugs and Drug Addiction. Cannabis herb and resin Δ9-tetrahydrocannabinol concentrations were from published reports. Data were processed in R. Twelve thousand three hundred sixty CA rates were sourced across 16 nations of Europe. Nations with a higher or increasing rate of daily cannabis use had a 71.77% higher median CA rates than others [median ± interquartile range 2.13 (0.59, 6.30) v. 1.24 (0.15, 5.14)/10 000 live births (P = 4.74 × 10-17; minimum E-value (mEV) = 1.52]. Eighty-nine out of 90 CAs in bivariate association and 74/90 CAs in additive panel inverse probability weighted space-time regression were cannabis related. In inverse probability weighted interactive panel models lagged to zero, two, four and six years, 76, 31, 50 and 29 CAs had elevated mEVs (< 2.46 × 1039) for cannabis metrics. Cardiovascular, central nervous, gastrointestinal, genital, uronephrology, limb, face and chromosomalgenetic systems along with the multisystem VACTERL syndrome were particularly vulnerable targets. Data reveal that cannabis is related to many CAs and fulfil epidemiological criteria of causality. The triple convergence of rising cannabis use prevalence, intensity of daily use and Δ9-tetrahydrocannabinol concentration in herb and resin is powerfully implicated as a primary driver of European teratogenicity, confirming results from elsewhere.
Collapse
Affiliation(s)
- Albert Stuart Reece
- **Correspondence address. Department of Psychiatry, University of Western Australia, Stirling Hwy, Crawley, Western Australia 6009, Australia. Tel: (617) +3844-4000; Fax: (617) +3844-4015; E-mail:
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia 6009, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia 6027, Australia
| |
Collapse
|
14
|
Alleyne J, Dopico AM. Alcohol Use Disorders and Their Harmful Effects on the Contractility of Skeletal, Cardiac and Smooth Muscles. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2021; 1:10011. [PMID: 35169771 PMCID: PMC8843239 DOI: 10.3389/adar.2021.10011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/21/2021] [Indexed: 06/14/2023]
Abstract
Alcohol misuse has deleterious effects on personal health, family, societal units, and global economies. Moreover, alcohol misuse usually leads to several diseases and conditions, including alcoholism, which is a chronic condition and a form of addiction. Alcohol misuse, whether as acute intoxication or alcoholism, adversely affects skeletal, cardiac and/or smooth muscle contraction. Ethanol (ethyl alcohol) is the main effector of alcohol-induced dysregulation of muscle contractility, regardless of alcoholic beverage type or the ethanol metabolite (with acetaldehyde being a notable exception). Ethanol, however, is a simple and "promiscuous" ligand that affects many targets to mediate a single biological effect. In this review, we firstly summarize the processes of excitation-contraction coupling and calcium homeostasis which are critical for the regulation of contractility in all muscle types. Secondly, we present the effects of acute and chronic alcohol exposure on the contractility of skeletal, cardiac, and vascular/ nonvascular smooth muscles. Distinctions are made between in vivo and in vitro experiments, intoxicating vs. sub-intoxicating ethanol levels, and human subjects vs. animal models. The differential effects of alcohol on biological sexes are also examined. Lastly, we show that alcohol-mediated disruption of muscle contractility, involves a wide variety of molecular players, including contractile proteins, their regulatory factors, membrane ion channels and pumps, and several signaling molecules. Clear identification of these molecular players constitutes a first step for a rationale design of pharmacotherapeutics to prevent, ameliorate and/or reverse the negative effects of alcohol on muscle contractility.
Collapse
Affiliation(s)
| | - Alex M. Dopico
- Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
15
|
Reece AS, Hulse GK. Contemporary epidemiology of rising atrial septal defect trends across USA 1991-2016: a combined ecological geospatiotemporal and causal inferential study. BMC Pediatr 2020; 20:539. [PMID: 33250054 PMCID: PMC7702707 DOI: 10.1186/s12887-020-02431-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/17/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cardiovascular anomalies are the largest group of congenital anomalies and the major cause of death in young children, with various data linking rising atrial septal defect incidence (ASDI) with prenatal cannabis exposure. Objectives / Hypotheses. Is cannabis associated with ASDI in USA? Is this relationship causal? METHODS Geospatiotemporal cohort study, 1991-2016. Census populations of adults, babies, congenital anomalies, income and ethnicity. Drug exposure data on cigarettes, alcohol abuse, past month cannabis use, analgesia abuse and cocaine taken from National Survey of Drug Use and Health (78.9% response rate). Cannabinoid concentrations from Drug Enforcement Agency. Inverse probability weighted (ipw) regressions. Analysis conducted in R. RESULTS ASDI rose nationally three-fold from 27.4 to 82.8 / 10,000 births 1991-2014 during a period when tobacco and alcohol abuse were falling but cannabis was rising. States including Nevada, Kentucky, Mississippi and Tennessee had steeply rising epidemics (Time: Status β-estimate = 10.72 (95%C.I. 8.39-13.05), P < 2.0 × 10 - 16). ASDI was positively related to exposure to cannabis and most cannabinoids. Drug exposure data was near-complete from 2006 thus restricting spatial modelling from 2006 to 2014, N = 282. In geospatial regression models cannabis: alcohol abuse term was significant (β-estimate = 19.44 (9.11, 29.77), P = 2.2 × 10 - 4); no ethnic or income factors survived model reduction. Cannabis legalization was associated with a higher ASDI (Time: Status β-estimate = 0.03 (0.01, 0.05), P = 1.1 × 10 -3). Weighted panel regression interactive terms including cannabis significant (from β-estimate = 1418, (1080.6, 1755.4), P = 7.3 × 10 -15). Robust generalized linear models utilizing inverse probability weighting interactive terms including cannabis appear (from β-estimate = 78.88, (64.38, 93.38), P = 1.1 × 10 -8). Marginal structural models with machine-aided SuperLearning association of ASDI with high v. low cannabis exposure R.R. = 1.32 (1.28, 1.36). Model e-values mostly > 1.5. CONCLUSIONS ASDI is associated with cannabis use, frequency, intensity and legalization in a spatiotemporally significant manner, robust to socioeconomicodemographic adjustment and fulfilled causal criteria, consistent with multiple biological mechanisms and similar reports from Hawaii, Colorado, Canada and Australia. Not only are these results of concern in themselves, but they further imply that our list of the congenital teratology of cannabis is as yet incomplete, and highlight in particular cardiovascular toxicology of prenatal cannabinoid and drug exposure.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia. .,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia.
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, Western Australia, 6009, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, 6027, Australia
| |
Collapse
|
16
|
Peng B, Han X, Peng C, Luo X, Deng L, Huang L. G9α-dependent histone H3K9me3 hypomethylation promotes overexpression of cardiomyogenesis-related genes in foetal mice. J Cell Mol Med 2019; 24:1036-1045. [PMID: 31746096 PMCID: PMC6933410 DOI: 10.1111/jcmm.14824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/08/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.
Collapse
Affiliation(s)
- Bohui Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiao Han
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chang Peng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaomei Luo
- Department of Physiology, School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Ling Deng
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Lixin Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Shirpoor A, Gaderi R, Naderi R. Ethanol exposure in prenatal and early postnatal induced cardiac injury in rats: involvement of oxidative stress, Hsp70, ERK 1/2, JNK, and apoptosis in a 3-month follow-up study. Cell Stress Chaperones 2019; 24:917-926. [PMID: 31410726 PMCID: PMC6717233 DOI: 10.1007/s12192-019-01015-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Alcohol exposure during pregnancy induces a wide range of structural and functional abnormalities in the fetal heart. However, the underlying mechanism of this phenomenon is not well known. This study was undertaken to elucidate probable mechanisms of myocardial damage induced by prenatal and early postnatal ethanol treatment. Pregnant Wistar rats received ethanol 4.5 g/kg BW once per day from the seventh day of gestation (GD7) throughout lactation. The oxidative stress injury of the myocardium in pups was evaluated by measuring levels of oxidative stress biomarkers. Histopathological examinations and Western blot were performed to evaluate histological features, apoptosis, and molecular alterations in the myocardial tissue of male pups on the postnatal day 21 (PN-21) and postnatal day 90 (PN-90). The results showed that maternal ethanol consumption caused oxidative stress (impaired total antioxidant capacity and malondialdehyde), histological changes, and apoptosis of the myocardium in the pups on PN-21 and PN-90. At the molecular levels, Western blot analysis revealed that ethanol modulated the protein expression of p-ERK1/2, p-JNK, and Hsp70 in the myocardial tissue of the pups after 21 and 90 days of birth compared with the controls. These findings revealed that maternal ethanol intake induced cardiac toxicity in part, mediated by oxidative stress and apoptosis in the pups. A further mechanism study revealed that ethanol enhanced ERK1/2 and JNK phosphorylation and Hsp70 protein expression.
Collapse
Affiliation(s)
- Alireza Shirpoor
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Gaderi
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
18
|
Bukiya AN. Fetal Cerebral Artery Mitochondrion as Target of Prenatal Alcohol Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16091586. [PMID: 31067632 PMCID: PMC6539770 DOI: 10.3390/ijerph16091586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022]
Abstract
Prenatal alcohol exposure results in an array of developmental abnormalities known as fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, therapeutic interventions against accidental or intended exposure of developing fetuses to alcohol are limited. This review outlines current knowledge about mitochondria in cerebral blood vessels as a potential target for anti-FASDs intervention. First, it describes the multifaceted role of mitochondria in maintaining the cerebral artery diameter as shown in adult tissue. Second, current literature on alcohol-driven damage of mitochondrial morphology and function in several fetal tissues, including liver, heart, and brain is summarized. The functional consequences of alcohol exposure in these organs include morphological enlargement of mitochondria, increased oxidative stress, and alteration of cellular respiration. These studies point to a tissue-specific effect of alcohol on mitochondrial function and a particular vulnerability of fetal mitochondria to alcohol exposure when compared to adult counterparts. Third, recent work from our group describing persistent changes in fetal baboon cerebral artery proteome following three episodes of prenatal alcohol exposure is reviewed. In conclusion, the consequences of prenatal alcohol exposure on cerebral artery mitochondria constitute an open field of investigation and, eventually, a point of therapeutic intervention against FASDs.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
19
|
Gandhi K, Montoya‐Uribe V, Martinez S, David S, Jain B, Shim G, Li C, Jenkins S, Nathanielsz P, Schlabritz‐Loutsevitch N. Ontogeny and programming of the fetal temporal cortical endocannabinoid system by moderate maternal nutrient reduction in baboons (Papio spp.). Physiol Rep 2019; 7:e14024. [PMID: 30912236 PMCID: PMC6434170 DOI: 10.14814/phy2.14024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
Poor nutrition during pregnancy is a worldwide public health problem. Maternal nutrient reduction (MNR) is associated with maternal and fetal stress and a sex-dependent decrease in nonhuman primate (NHP) cognitive performance. Early life stress potentiates epileptogenesis in a sex-specific manner, and temporal lobe (TL) epilepsy is associated with neurocognitive disorders. The endogenous cannabinoid system (ECS) demonstrates remarkable developmental changes and plays a key role in aging-related diseases (e.g., dementia). Baboons have been studied as a natural model of epilepsy and express all ECS system components. We therefore evaluated baboon fetal temporal cortex ECS ontogenic and MNR-dependent changes. At 120 days gestational age (dGA) (term 185 days), maternal, fetal, and placental morphometry were similar between control and MNR pregnancies. MNR maternal weight gain was decreased compared with controls at 165 dGA independent of fetal sex. In male fetuses, expression of ECS synthesizing and degrading enzymes was gestational age-dependent, with the exception of fatty acid amide hydrolase (FAAH). MNR had a sex-specific effect on the protein expression of CB1R during development: CB1R protein expression was decreased in fetal temporal cortex of male fetuses at 120 and 140 dGA. Our data reveal that the MNR has sex-specific effects on temporal cortical expression of the ECS in baboon offspring and shows vulnerability of ECS in male fetuses during gestation.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Animal Nutritional Physiological Phenomena
- Animals
- Caloric Restriction
- Endocannabinoids/genetics
- Endocannabinoids/metabolism
- Female
- Fetal Development
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Gestational Age
- Male
- Maternal Nutritional Physiological Phenomena
- Papio
- Pregnancy
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
- Sex Factors
- Signal Transduction
- Temporal Lobe/growth & development
- Temporal Lobe/metabolism
Collapse
Affiliation(s)
- Kushal Gandhi
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | | | - Stacy Martinez
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | - Samuel David
- Department of ChemistryUniversity of Texas at the Permian BasinOdessaTexas
| | - Bobby Jain
- Department of PsychiatryTexas Tech University Health Sciences Center at the Permian BasinOdessaTexas
| | - Grace Shim
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
| | - Cun Li
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Susan Jenkins
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Peter Nathanielsz
- University of WyomingLaramieWyoming
- Texas Biomedical Research InstituteSan AntonioTexas
| | - Natalia Schlabritz‐Loutsevitch
- Department of Obstetrics and GynecologyTexas Tech University Health sciences Center at the Permian BasinOdessaTexas
- Department of BiologyUniversity of Texas at the Permian BasinOdessaTexas
- Department of Neurobiology and PharmacologyTexas Tech University Health Sciences CenterLubbockTexas
| |
Collapse
|
20
|
Bisen S, Kakhniashvili D, Johnson DL, Bukiya AN. Proteomic Analysis of Baboon Cerebral Artery Reveals Potential Pathways of Damage by Prenatal Alcohol Exposure. Mol Cell Proteomics 2019; 18:294-307. [PMID: 30413562 PMCID: PMC6356072 DOI: 10.1074/mcp.ra118.001047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Alcohol is one of the most widely misused substances in the world. Alcohol consumption by pregnant women often results in an array of fetal developmental abnormalities, but the damage to the fetus by alcohol remains poorly understood. The limited knowledge regarding the molecular targets of alcohol in the developing fetus constitutes one of the major obstacles in developing effective pharmacological interventions that could prevent fetal damage after alcohol consumption by pregnant women. The fetal cerebral artery is emerging as an important mediator of fetal cerebral damage by maternal alcohol drinking. In the present work, we conduct proteomics analysis of cerebral (basilar) artery lysates of near-term fetal baboons to search for protein targets of fetal alcohol exposure. Our study demonstrates that 3 episodes of binge alcohol exposure during the second trimester-equivalent of human pregnancy are sufficient to render profound changes in fetal cerebral artery proteome. These changes persisted, as they were detected in near-term fetuses. In particular, the relative abundance of 238 proteins differed significantly between control and alcohol-exposed fetuses. Enrichment analysis pointed at the group of metabolic activity proteins as a major class targeted by alcohol. Western blotting confirmed upregulation of the aldehyde dehydrogenase 6 family member A1 (ALDH6A1) in cerebral artery lysates from alcohol-exposed fetuses. This upregulation translated to greater ALDH activity of cerebral artery lysate of near-term fetuses following prenatal alcohol exposure when compared with controls.
Collapse
Affiliation(s)
- Shivantika Bisen
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103
| | - David Kakhniashvili
- Proteomics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Daniel L Johnson
- Molecular Bioinformatics Core, University of Tennessee Health Science Center, 71 S. Manassas St., #110, Memphis, TN, 38103
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, 71 S. Manassas St., #205, Memphis, TN, 38103;.
| |
Collapse
|
21
|
Simakova M, Tobiasz A, Sullivan RD, Bisen S, Duncan J, Sullivan JP, Davison S, Tate DL, Barnett S, Mari G, Dopico AM, Bukiya AN. Gestational Age-Dependent Interplay between Endocannabinoid Receptors and Alcohol in Fetal Cerebral Arteries. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2019; 8:236068. [PMID: 31057979 PMCID: PMC6497414 DOI: 10.4303/jdar/236068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcohol (ethanol) is one of the most widely consumed drugs. Alcohol consumption by pregnant women may result in a range of fetal abnormalities termed fetal alcohol spectrum disorders (FASDs). The cerebrovascular system is emerging as a critical target of alcohol in the developing brain. We recently showed that three episodes of prenatal alcohol exposure resulting in 80 mg/dL alcohol in maternal blood during mid-pregnancy up-regulated anandamide-induced dilation of fetal cerebral arteries. Moreover, ethanol dilated fetal cerebral arteries via cannabinoid (CB) receptors. Whether a critical role of fetal cerebral artery CB system in responses to alcohol was maintained throughout the gestation, remains unknow. MAIN METHODS Pregnant baboons (second trimester equivalent) were subjected to three episodes of either alcohol or control drink infusion via gavage. Cerebral arteries from mothers and near-term female fetuses were in vitro pressurized for diameter monitoring. KEY FINDINGS Near-term fetal and maternal arteries exhibited similar ability to develop myogenic tone, to constrict in presence of 60 mM KCl, and to respond to 10 µM anandamide. Fetal and maternal arteries largely failed to dilate in presence of 63 mM ethanol. No differences were detected between arteries from control and alcohol-exposed baboon donors. Therefore, previously observed ethanol-induced dilation of fetal cerebral arteries and up-regulation of CB components in response to fetal alcohol exposure during mid-pregnancy was transient and disappeared by near-term.
Collapse
Affiliation(s)
- Maria Simakova
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ana Tobiasz
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan D Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Shivantika Bisen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose Duncan
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - J Pierce Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven Davison
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Danielle L Tate
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stacey Barnett
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giancarlo Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
22
|
Bukiya AN. Physiology of the Endocannabinoid System During Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1162:13-37. [PMID: 31332732 DOI: 10.1007/978-3-030-21737-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The endocannabinoid (eCB) system comprises endogenously produced cannabinoids (CBs), enzymes of their production and degradation, and CB-sensing receptors and transporters. The eCB system plays a critical role in virtually all stages of animal development. Studies on eCB system components and their physiological role have gained increasing attention with the rising legalization and medical use of marijuana products. The latter represent exogenous interventions that target the eCB system. This chapter summarizes knowledge in the field of CB contribution to gametogenesis, fertilization, embryo implantation, fetal development, birth, and adolescence-equivalent periods of ontogenesis. The material is complemented by the overview of data from our laboratory documenting the functional presence of the eCB system within cerebral arteries of baboons at different stages of development.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
23
|
Bisen S, Simakova MN, Dopico AM, Bukiya AN. Large conductance voltage- and calcium-gated potassium channels (BK) in cerebral artery myocytes of perinatal fetal primates share several major characteristics with the adult phenotype. PLoS One 2018; 13:e0203199. [PMID: 30212531 PMCID: PMC6136719 DOI: 10.1371/journal.pone.0203199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/19/2018] [Indexed: 12/30/2022] Open
Abstract
Large conductance voltage- and calcium-gated channels (BK) control fundamental processes, including smooth muscle contractility and artery diameter. We used a baboon (Papio spp) model of pregnancy that is similar to that of humans to characterize BK channels in the middle cerebral artery and its branches in near-term (165 dGa) primate fetuses and corresponding pregnant mothers. In cell-attached patches (K+pipette = 135 mM) on freshly isolated fetal cerebral artery myocytes, BK currents were identified by large conductance, and voltage- and paxilline-sensitive effects. Their calcium sensitivity was confirmed by a lower Vhalf (transmembrane voltage needed to reach half-maximal current) in inside-out patches at 30 versus 3 μM [Ca2+]free. Immunostaining against the BK channel-forming alpha subunit revealed qualitatively similar levels of BK alpha protein-corresponding fluorescence in fetal and maternal myocytes. Fetal and maternal BK currents recorded at 3 μM [Ca2+]free from excised membrane patches had similar unitary current amplitude, and Vhalf. However, subtle differences between fetal and maternal BK channel phenotypes were detected in macroscopic current activation kinetics. To assess BK function at the organ level, fetal and maternal artery branches were pressurized in vitro at 30 mmHg and probed with the selective BK channel blocker paxilline (1 μM). The degree of paxilline-induced constriction was similar in fetal and maternal arteries, yet the constriction of maternal arteries was achieved sooner. In conclusion, we present a first identification and characterization of fetal cerebral artery BK channels in myocytes from primates. Although differences in BK channels between fetal and maternal arteries exist, the similarities reported herein advance the idea that vascular myocyte BK channels are functional near-term, and thus may serve as pharmacological targets during the perinatal-neonatal period.
Collapse
Affiliation(s)
- Shivantika Bisen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Maria N. Simakova
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Alex M. Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Anna N. Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| |
Collapse
|
24
|
North K, Tobiasz A, Sullivan RD, Bursac Z, Duncan J, Sullivan JP, Davison S, Tate DL, Barnett S, Mari G, Bukiya AN. Prenatal Alcohol Exposure, Anesthesia, and Fetal Loss in Baboon Model of Pregnancy. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2018; 7:236064. [PMID: 30656064 PMCID: PMC6333472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Approximately half of pregnant women engage in alcohol consumption some time during pregnancy. On the other hand, a small percentage of pregnant women undergo surgery and anesthesia at some time during pregnancy. In emergencies, anesthesia has to be administered to patients who are under alcohol intoxication. Anesthetic management during pregnancy while patients are intoxicated with alcohol is challenging. Here, we utilized a retrospective analysis of data available from 17 pregnant baboons that underwent anesthesia with alcohol exposure during mid-pregnancy. The analysis was designed to answer three questions: whether maternal vital signs remained stable under anesthesia combined with alcohol, whether maternal vital signs that were routinely monitored under anesthesia could serve as predictor(s) of fetal loss, and what the impact of the combined application of anesthesia and alcohol was on fetal loss. For the purpose of this retrospective analysis, we utilized vital sign (heart and respiratory rates, temperature, oxygen, carbon dioxide, systolic and diastolic blood pressure) and pregnancy outcome (miscarriage versus fetal survival through second trimester-equivalent of human pregnancy) records from 17 pregnant baboons that underwent gastric infusion of either control or alcohol-containing drink under isoflurane anesthesia during the second trimester-equivalent of human pregnancy. Half of the dams underwent a brief prior anesthetic episode for the purpose of gestational age confirmation. Thus, in our analysis, baboons were divided into four groups: "Control" without prior anesthesia, "Control" with prior anesthesia, "Alcohol" without prior anesthesia, and "Alcohol" with prior anesthesia. We did not detect any maternal vital sign in any of the groups that would be predictive of a fetal loss. However, prior anesthesia predisposed dams to the risk of lowering maternal systolic blood pressure and to a significant decrease in maternal oxygen level during the combined application of anesthesia and alcohol. Conceivably, our data showed the largest fetal loss in this group. The disruptive nature of anesthesia and alcohol on maternal vital parameters warns against the use of anesthesia in combination with alcohol during pregnancy.
Collapse
Affiliation(s)
- Kelsey North
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ana Tobiasz
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ryan D. Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoran Bursac
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jose Duncan
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - J. Pierce Sullivan
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Steven Davison
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Danielle L. Tate
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Stacey Barnett
- Department of Comparative Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Giancarlo Mari
- Department of Obstetrics and Gynecology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anna N. Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
25
|
Bukiya AN, Dopico AM. Fetal Cerebral Circulation as Target of Maternal Alcohol Consumption. Alcohol Clin Exp Res 2018; 42:1006-1018. [PMID: 29672868 PMCID: PMC5984173 DOI: 10.1111/acer.13755] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/08/2018] [Indexed: 12/29/2022]
Abstract
Alcohol (ethanol [EtOH]) is one of the most widely used psychoactive substances worldwide. Alcohol consumption during pregnancy may result in a wide range of morphological and neurodevelopmental abnormalities termed fetal alcohol spectrum disorders (FASD), with the most severe cases diagnosed as fetal alcohol syndrome (FAS). FAS and FASD are not readily curable and currently represent the leading preventable causes of birth defect and neurodevelopmental delay in the United States. The etiology of FAS/FASD remains poorly understood. This review focuses on the effects of prenatal alcohol exposure (PAE) on fetal cerebrovascular function. A brief introduction to the epidemiology of alcohol consumption and the developmental characteristics of fetal cerebral circulation is followed by several sections that discuss current evidence documenting alcohol-driven alterations of fetal cerebral blood flow, artery function, and microvessel networks. The material offers mechanistic insights at the vascular level itself into the pathophysiology of PAE.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alex M Dopico
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
26
|
Richter JS, Quenardelle V, Rouyer O, Raul JS, Beaujeux R, Gény B, Wolff V. A Systematic Review of the Complex Effects of Cannabinoids on Cerebral and Peripheral Circulation in Animal Models. Front Physiol 2018; 9:622. [PMID: 29896112 PMCID: PMC5986896 DOI: 10.3389/fphys.2018.00622] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
While cannabis is perceived as a relatively safe drug by the public, accumulating clinical data suggest detrimental cardiovascular effects of cannabinoids. Cannabis has been legalized in several countries and jurisdictions recently. Experimental studies specifically targeting cannabinoids' effects on the cerebral vasculature are rare. There is evidence for transient vasoconstrictive effects of cannabinoids in the peripheral and cerebral vasculature in a complex interplay of vasodilation and vasoconstriction. Vasoreactivity to cannabinoids is dependent on the specific molecules, their metabolites and dose, baseline vascular tone, and vessel characteristics as well as experimental conditions and animal species. We systematically review the currently available literature of experimental results in in vivo and in vitro animal studies, examining cannabinoids' effects on circulation and reactive vasodilation or vasoconstriction, with a particular focus on the cerebral vascular bed.
Collapse
Affiliation(s)
- J. Sebastian Richter
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
| | - Véronique Quenardelle
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| | - Olivier Rouyer
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | | | - Rémy Beaujeux
- Department of Interventional Neuroradiology, University Hospital of Strasbourg, Strasbourg, France
- Institute of Image-Guided Surgery (IHU), Strasbourg, France
| | - Bernard Gény
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Department of Physiology and Functional Explorations, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Wolff
- Equipe d'Accueil 3072, University of Strasbourg, Strasbourg, France
- Stroke Unit, University Hospital, Strasbourg, France
| |
Collapse
|
27
|
Tobiasz AM, Duncan JR, Bursac Z, Sullivan RD, Tate DL, Dopico AM, Bukiya AN, Mari G. The Effect of Prenatal Alcohol Exposure on Fetal Growth and Cardiovascular Parameters in a Baboon Model of Pregnancy. Reprod Sci 2017; 25:1116-1123. [PMID: 28982294 DOI: 10.1177/1933719117734317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Prenatal alcohol exposure often results in an array of fetal developmental abnormalities termed fetal alcohol spectrum disorders (FASDs). Despite the high prevalence of FASDs, the pathophysiology of fetal damage by alcohol remains poorly understood. One of the major obstacles in studying fetal development in response to alcohol exposure is the inability to standardize the amount, pattern of alcohol consumption, and peak blood alcohol levels in pregnant mothers. In the present study, we used Doppler ultrasonography to assess fetal growth and cardiovascular parameters in response to alcohol exposure in pregnant baboons. Baboons were subjected to gastric alcohol infusion 3 times during the second trimester equivalent to human pregnancy, with maternal blood alcohol levels reaching 80 mg/dL within 30 to 60 minutes following alcohol infusion. The control group received a drink that was isocaloric to the alcohol-containing one. Doppler ultrasonography was used for longitudinal assessment of fetal biometric parameters and fetal cardiovascular indices. Fetal abdominal and head circumferences, but not femur length, were significantly decreased in alcohol-exposed fetuses near term. Peak systolic velocity of anterior and middle cerebral arteries decreased during episodes of alcohol intoxication, but there was no difference in Doppler indices between groups near term. Acute alcohol intoxication affected fetal cerebral blood flow independent of changes in the fetal cardiac output. Unlike fetal growth parameters, changes in vascular indices did not persist over gestation. In summary, alcohol effects on fetal growth and on fetal vascular function have different time courses.
Collapse
Affiliation(s)
- Ana M Tobiasz
- 1 Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jose R Duncan
- 1 Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Zoran Bursac
- 2 Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ryan D Sullivan
- 3 Department of Comparative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Danielle L Tate
- 1 Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex M Dopico
- 4 Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anna N Bukiya
- 4 Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Giancarlo Mari
- 1 Department of Obstetrics and Gynecology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|