1
|
Hou S, Arce Soto NM, Glover EJ. Modeling Alcohol Consumption in Rodents Using Two-Bottle Choice Home Cage Drinking and Microstructural Analysis. J Vis Exp 2024:10.3791/67486. [PMID: 39584683 PMCID: PMC11849807 DOI: 10.3791/67486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Two-bottle choice home cage drinking is one of the most widely used paradigms to study ethanol consumption in rodents. In its simplest form, animals are provided with access to two drinking bottles, one of which contains regular tap water and the other ethanol, with daily intake measured by change in bottle weight over the 24 h period. Consequently, this approach requires no specialized laboratory equipment. While such ease of implementation is likely the greatest contributor to its widespread adoption by preclinical alcohol researchers, the resolution of drinking data acquired using this approach is limited by the number of times the researcher measures bottle weight (e.g., once daily). However, the desire to examine drinking patterns in the context of overall intake, pharmacological interventions, and neuronal manipulations has prompted the development of home cage lick detection systems that can acquire data at the level of individual licks. Although a number of these systems have been developed recently, the open-source system, LIQ HD (Lick Instance Quantifier Home cage Device), has garnered significant attention in the field for its affordability and user friendliness. Although exciting, this system was designed for use in mice. Here, we review appropriate procedures for standard and lickometer-equipped two-bottle choice home cage drinking. We also introduce methods for adapting the LIQ HD system to rats including hardware modifications to accommodate larger cage size and a redesigned 3D printed bottle holder compatible with standard off-the-shelf drinking bottles. Using this approach, researchers can examine daily drinking patterns in addition to levels of intake in many rats in parallel thereby increasing the resolution of acquired data with minimal investment in additional resources. These methods provide researchers with the flexibility to use either standard bottles or a lickometer-equipped apparatus to interrogate the neurobiological mechanisms underlying alcohol drinking depending on their precise experimental needs.
Collapse
Affiliation(s)
- Shikun Hou
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago
| | - Nathaly M Arce Soto
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago;
| |
Collapse
|
2
|
Hou S, Arce Soto NM, Glover EJ. Modelling alcohol consumption in rodents using two-bottle choice home cage drinking and optional lickometry-based microstructural analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604367. [PMID: 39091815 PMCID: PMC11291077 DOI: 10.1101/2024.07.19.604367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Two-bottle choice home cage drinking is one of the most widely used paradigms to study ethanol consumption in rodents. In its simplest form, animals are provided with access to two drinking bottles, one of which contains regular tap water and the other ethanol, for 24 hr/day with daily intake measured via change in bottle weight over the 24 hr period. Consequently, this approach requires no specialized laboratory equipment. While such ease of implementation is likely the greatest contributor to its widespread adoption by preclinical alcohol researchers, the resolution of drinking data acquired using this approach is limited by the number of times the researcher measures bottle weight (e.g., once daily). However, the desire to examine drinking patterns in the context of overall intake, pharmacological interventions, and neuronal manipulations has prompted the development of home cage lickometer systems that can acquire data at the level of individual licks. Although a number of these systems have been developed recently, the open-source system, LIQ HD, has garnered significant attention in the field for its affordability and user friendliness. Although exciting, this system was designed for use in mice. Here, we review appropriate procedures for standard and lickometer-equipped two-bottle choice home cage drinking. We also introduce methods for adapting the LIQ HD system to rats including hardware modifications to accommodate larger cage size and a redesigned 3D printed bottle holder compatible with standard off-the-shelf drinking bottles. Using this approach, researchers can examine daily drinking patterns in addition to levels of intake in many rats in parallel thereby increasing the resolution of acquired data with minimal investment in additional resources. These methods provide researchers with the flexibility to use either standard bottles or a lickometer-equipped apparatus to interrogate the neurobiological mechanisms underlying alcohol drinking depending on their precise experimental needs.
Collapse
Affiliation(s)
- Shikun Hou
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Nathaly M Arce Soto
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Lapish CC. Understanding How Acute Alcohol Impacts Neural Encoding in the Rodent Brain. Curr Top Behav Neurosci 2024. [PMID: 38858298 DOI: 10.1007/7854_2024_479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Alcohol impacts neural circuitry throughout the brain and has wide-ranging effects on the biophysical properties of neurons in these circuits. Articulating how these wide-ranging effects might eventually result in altered computational properties has the potential to provide a tractable working model of how alcohol alters neural encoding. This chapter reviews what is currently known about how acute alcohol influences neural activity in cortical, hippocampal, and dopaminergic circuits as these have been the primary focus of understanding how alcohol alters neural computation. While other neural systems have been the focus of exhaustive work on this topic, these brain regions are the ones where in vivo neural recordings are available, thus optimally suited to make the link between changes in neural activity and behavior. Rodent models have been key in developing an understanding of how alcohol impacts the function of these circuits, and this chapter therefore focuses on work from mice and rats. While progress has been made, it is critical to understand the challenges and caveats associated with experimental procedures, especially when performed in vivo, which are designed to answer this question and if/how to translate these data to humans. The hypothesis is discussed that alcohol impairs the ability of neural circuits to acquire states of neural activity that are transiently elevated and characterized by increased complexity. It is hypothesized that these changes are distinct from the traditional view of alcohol being a depressant of neural activity in the forebrain.
Collapse
Affiliation(s)
- Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Stark Neuroscience Institute, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
4
|
Hauser SR, Waeiss RA, Deehan GA, Engleman EA, Bell RL, Rodd ZA. Adolescent alcohol and nicotine exposure alters the adult response to alcohol use. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2023; 3:11880. [PMID: 38389816 PMCID: PMC10880795 DOI: 10.3389/adar.2023.11880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 02/24/2024]
Abstract
Adolescence through young adulthood is a unique period of neuronal development and maturation. Numerous agents can alter this process, resulting in long-term neurological and biological consequences. In the clinical literature, it is frequently reported that adolescent alcohol consumption increases the propensity to develop addictions, including alcohol use disorder (AUD), during adulthood. A general limitation of both clinical and human pre-clinical adolescent alcohol research is the high rate of co-using/abusing more than one drug during adolescence, such as co-using/abusing alcohol with nicotine. A primary goal of basic research is elucidating neuroadaptations produced by adolescent alcohol exposure/consumption that promote alcohol and other drug self-administration in adulthood. The long-term goal is to develop pharmacotherapeutics for the prevention or amelioration of these neuroadaptations. This review will focus on studies that have examined the effects of adolescent alcohol and nicotine exposure on adult alcohol consumption, the hypersensitivity of the mesolimbic dopaminergic system, and enhanced responses not only to alcohol but also to nicotine during adulthood. Again, the long-term goal is to identify potential cholinergic agents to prevent or ameliorate the consequences of, peri-adolescent alcohol abuse.
Collapse
Affiliation(s)
- Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert A Waeiss
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gerald A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - Eric A Engleman
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
5
|
Giacometti LL, Side CM, Chandran K, Stine S, Buck LA, Wenzel-Rideout RM, Barker JM. Effects of adolescent ethanol exposure on adult nondrug reward seeking behavior in male and female mice. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1736-1747. [PMID: 37438117 DOI: 10.1111/acer.15151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/23/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Adolescent alcohol use is associated with an increased likelihood of developing an alcohol use disorder in adulthood, potentially due to the effects of alcohol exposure on reward-seeking behavior. However, it remains unclear whether adolescent drinking is sufficient to alter nondrug reward seeking in adulthood. As adolescence is a period of both brain and sexual maturation, which occur in a sex-dependent manner, males and females may be differentially sensitive to the consequences of adolescent alcohol exposure. The present study investigated whether adolescent ethanol exposure affected food reward taking and seeking in male and female adult mice. METHODS Male and female C57BL/6J mice underwent intermittent ethanol exposure (AIE) via vapor inhalation during early adolescence (28-42 days of age). At 10 weeks of age, the mice were trained in a conditioned place preference paradigm (CPP) for a food reward. We measured food consumption, CPP, and cFos expression in multiple brain regions following CPP testing. Data were analyzed using repeated measures analysis of variance with exposure (air vs. AIE), sex, and time as factors. RESULTS AIE exposure increased food consumption during CPP training in adult male mice, but reduced pellet consumption in adult female mice. AIE exposure impaired CPP expression only in female mice. Despite these behavioral differences, exposure to the reward-paired chamber did not induce differential cFos expression following CPP testing in the prelimbic and infralimbic cortices or the nucleus accumbens core and shell. CONCLUSION These findings indicate that adolescent ethanol exposure disrupted nondrug reward taking and seeking in adulthood in female mice and altered consumption in adult male mice.
Collapse
Affiliation(s)
- Laura L Giacometti
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Christine M Side
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kelsey Chandran
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Sam Stine
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Lauren A Buck
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Rebecca M Wenzel-Rideout
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jacqueline M Barker
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Foo JC, Skorodumov I, Spanagel R, Meinhardt MW. Sex- and age-specific effects on the development of addiction and compulsive-like drinking in rats. Biol Sex Differ 2023; 14:44. [PMID: 37420305 PMCID: PMC10327342 DOI: 10.1186/s13293-023-00529-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Biological factors are known to influence disease trajectories and treatment effectiveness in alcohol addiction and preclinical and clinical evidence suggests that sex is an important factor influencing disease dynamics in alcohol dependence. Another critical factor is age at first intoxicating drink, which has been identified as a risk factor for later alcohol binging. Preclinical research allows prospective monitoring of rodents throughout the lifespan, providing very detailed information that cannot be acquired in humans. Lifetime monitoring in rodents can be conducted under highly controlled conditions, during which one can systematically introduce multiple biological and environmental factors that impact behaviors of interest. METHODS Here, we used the alcohol deprivation effect (ADE) rat model of alcohol addiction in a computerized drinkometer system, acquiring high-resolution data to study changes over the course of addictive behavior as well as compulsive-like drinking in cohorts of adolescent vs. adult as well as male vs. female rats. RESULTS Female rats drank more alcohol than male rats during the whole experiment, drinking much more weak alcohol (5%) and similar amounts of stronger alcohol solutions (10%, 20%); female rats also consumed more alcohol than male rats during quinine taste adulteration. Increased consumption in females compared to males was driven by larger access sizes of alcohol. Differences in circadian patterns of movement were observed between groups. Early age of onset of drinking (postnatal day 40) in male rats had surprisingly little impact on the development of drinking behavior and compulsivity (quinine taste adulteration) when compared to rats that started drinking during early adulthood (postnatal day 72). CONCLUSIONS Our results suggest that there are sex-specific drinking patterns, not only in terms of total amount consumed, but specifically in terms of solution preference and access size. These findings provide a better understanding of sex and age factors involved in the development of drinking behavior, and can inform the preclinical development of models of addiction, drug development and exploration of options for new treatments.
Collapse
Affiliation(s)
- Jerome C. Foo
- Department of Genetic Epidemiology in Psychiatry, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Institute for Psychopharmacology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Ivan Skorodumov
- Institute for Psychopharmacology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Rainer Spanagel
- Institute for Psychopharmacology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Marcus W. Meinhardt
- Institute for Psychopharmacology, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
7
|
Scopano MR, Jones HE, Stea SG, Freeman MZ, Grisel JE. Age, β-endorphin, and sex dependent effects of maternal separation on locomotor activity, anxiety-like behavior, and alcohol reward. Front Behav Neurosci 2023; 17:1155647. [PMID: 37091593 PMCID: PMC10113444 DOI: 10.3389/fnbeh.2023.1155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionChildhood adversity is pervasive and linked to numerous disadvantages in adulthood, including physical health problems, mental illness, and substance use disorders. Initial sensitivity to the rewarding effects of alcohol predicts the risk of developing an alcohol use disorder, and may be linked to developmental stress. The opioid peptide β-endorphin (β-E) regulates the stress response and is also implicated in the risk for excessive alcohol consumption.MethodsWe explored the influence of β-E in an animal model of early life adversity using controlled maternal separation by evaluating changes in locomotor activity, anxiety-like behavior, and the initial rewarding effects of alcohol in a single exposure conditioned place preference paradigm in control C57BL/6J and β-E deficient β-E +/+ 0.129S2-Pomc tm1Low/J; β-E −/− mice. Maternal separation (MS) occurred for 3 h each day from post-natal days (PND) 5–18 in approximately half the subjects.ResultsMaternal interactions increased following the separation protocol equally in both genotypes. MS and control subjects were tested as adolescents (PND 26–32) or adults (PND 58–72); the effects of MS were generally more pronounced in older subjects. Adults were more active than adolescents in the open field, and MS decreased activity in adolescent mice but increased it in adults. The increase in adult activity as a result of early life stress depended on both β-E and sex. β-E also influenced the effect of maternal separation on anxiety-like behavior in the Elevated Plus Maze. MS promoted rewarding effects of alcohol in male β-E deficient mice of either age, but had no effect in other groups.DiscussionTaken together, these results suggest that the effects of MS develop over time and are β-E and sex dependent and may aid understanding of how individual differences influence the impact of adverse childhood experiences.
Collapse
|
8
|
Obray JD, Landin JD, Vaughan DT, Scofield MD, Chandler LJ. Adolescent alcohol exposure reduces dopamine 1 receptor modulation of prelimbic neurons projecting to the nucleus accumbens and basolateral amygdala. ADDICTION NEUROSCIENCE 2022; 4:100044. [PMID: 36643604 PMCID: PMC9836047 DOI: 10.1016/j.addicn.2022.100044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Binge drinking during adolescence is highly prevalent despite increasing evidence of its long-term impact on behaviors associated with modulation of behavioral flexibility by the medial prefrontal cortex (mPFC). In the present study, male and female rats underwent adolescent intermittent ethanol (AIE) exposure by vapor inhalation. After aging to adulthood, retrograde bead labelling and viral tagging were used to identify populations of neurons in the prelimbic region (PrL) of the mPFC that project to specific subcortical targets. Electrophysiological recording from bead-labelled neurons in PrL slices revealed that AIE did not alter the intrinsic excitability of PrL neurons that projected to either the NAc or the BLA. Similarly, recordings of spontaneous inhibitory and excitatory post-synaptic currents revealed no AIE-induced changes in synaptic drive onto either population of projection neurons. In contrast, AIE exposure was associated with a loss of dopamine receptor 1 (D1), but no change in dopamine receptor 2 (D2), modulation of evoked firing of both populations of projection neurons. Lastly, confocal imaging of proximal and apical dendritic tufts of viral-labelled PrL neurons that projected to the nucleus accumbens (NAc) revealed AIE did not alter the density of dendritic spines. Together, these observations provide evidence that AIE exposure results in disruption of D1 receptor modulation of PrL inputs to at least two major subcortical target regions that have been implicated in AIE-induced long-term changes in behavioral control.
Collapse
Affiliation(s)
- J. Daniel Obray
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA
| | - Michael D. Scofield
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Department of Anesthesiology, Medical University of South Carolina, Charleston SC, USA
| | - L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, 30 Courtenay Drive, Charleston SC 29425, USA,Corresponding author. (L.J. Chandler)
| |
Collapse
|
9
|
Starski P, Maulucci D, Mead H, Hopf F. Adaptation of the 5-choice serial reaction time task to measure engagement and motivation for alcohol in mice. Front Behav Neurosci 2022; 16:968359. [PMID: 36187376 PMCID: PMC9522902 DOI: 10.3389/fnbeh.2022.968359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Alcohol use disorder (AUD) is related to excessive binge alcohol consumption, and there is considerable interest in associated factors that promote intake. AUD has many behavioral facets that enhance inflexibility toward alcohol consumption, including impulsivity, motivation, and attention. Thus, it is important to understand how these factors might promote responding for alcohol and can change after protracted alcohol intake. Previous studies have explored such behavioral factors using responding for sugar in the 5-Choice Serial Reaction Time Task (5-CSRTT), which allows careful separation of impulsivity, attention, and motivation. Importantly, our studies uniquely focus on using alcohol as the reward throughout training and testing sessions, which is critical for beginning to answer central questions relating to behavioral engagement for alcohol. Alcohol preference and consumption in male C57BL/6 mice were determined from the first 9 sessions of 2-h alcohol drinking which were interspersed among 5-CSRTT training. Interestingly, alcohol preference but not consumption level significantly predicted 5-CSRTT responding for alcohol. In contrast, responding for strawberry milk was not related to alcohol preference. Moreover, high-preference (HP) mice made more correct alcohol-directed responses than low-preference (LP) during the first half of each session and had more longer reward latencies in the second half, with no differences when performing for strawberry milk, suggesting that HP motivation for alcohol may reflect “front-loading.” Mice were then exposed to an Intermittent Access to alcohol paradigm and retested in 5-CSRTT. While both HP and LP mice increased 5-CSRTT responding for alcohol, but not strawberry milk, LP performance rose to HP levels, with a greater change in correct and premature responding in LP versus HP. Overall, this study provides three significant findings: (1) alcohol was a suitable reward in the 5-CSRTT, allowing dissection of impulsivity, attention, and motivation in relation to alcohol drinking, (2) alcohol preference was a more sensitive indicator of mouse 5-CSRTT performance than consumption, and (3) intermittent alcohol drinking promoted behavioral engagement with alcohol, especially for individuals with less initial engagement.
Collapse
Affiliation(s)
- Phillip Starski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Danielle Maulucci
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Hunter Mead
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, United States
| | - Frederic Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Frederic Hopf,
| |
Collapse
|
10
|
Williams KL, Parikh UK, Doyle SM, Meyer LN. Effect of intermittent access to alcohol mixed in energy drink during adolescence on alcohol self-administration, anxiety, and memory during adulthood in rats. Alcohol Clin Exp Res 2022; 46:1423-1432. [PMID: 35778776 DOI: 10.1111/acer.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mixing alcohol with caffeinated energy drinks is a common practice among young people. Consumption of alcohol mixed in energy drink is associated with increased risk of binge drinking and alcohol dependence. The purpose of this study was to determine whether voluntary intermittent access to alcohol mixed in energy drink in adolescent rats alters adult self-administration of alcohol, anxiety, and memory. METHODS For 10 weeks in the home-cage, two groups of adolescent female Sprague-Dawley rats had intermittent access to energy drink (ED) or 10% alcohol mixed in energy drink (AmED) with water concurrently available. Other rat groups had daily continuous access to ED or AmED. Anxiety was measured with an open field test and memory was assessed with a novel place recognition test. For self-administration, rats pressed levers for 10% alcohol alone on a fixed ratio (FR1) and on a progressive ratio (PR). RESULTS Intermittent access to AmED generated greater intake during the initial 30 min of access (AmED 1.70 ± 0.04 g/kg vs. ED 1.01 ± 0.06 g/kg) and during the subsequent 24 h (AmED 7.04 ± 0.25 g/kg vs. ED 5.60 ± 0.29 g/kg). Intermittent AmED caused a significant but small decrease in anxiety while neither ED nor AmED altered memory. During alcohol self-administration, group differences emerged only during PR testing during which intermittent AmED rats responded more than all other groups. CONCLUSIONS These findings suggest that intermittent access to AmED generates binge-like consumption that supports human findings that AmED generates greater alcohol consumption. Furthermore, experience with AmED may alter the motivational properties of alcohol into adulthood without necessarily causing a major impact on anxiety or memory.
Collapse
Affiliation(s)
- Keith L Williams
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Urja K Parikh
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Shannon M Doyle
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| | - Lindsey N Meyer
- Department of Psychology, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
11
|
Chandler LJ, Vaughan DT, Gass JT. Adolescent Alcohol Exposure Results in Sex-specific Alterations in Conditioned Fear Learning and Memory in Adulthood. Front Pharmacol 2022; 13:837657. [PMID: 35211024 PMCID: PMC8861326 DOI: 10.3389/fphar.2022.837657] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022] Open
Abstract
The present study used auditory fear conditioning to assess the impact of repeated binge-like episodes of alcohol exposure during adolescence on conditioned fear in adulthood. Male and female Long-Evans rats were subjected to adolescent intermittent ethanol (AIE) exposure by vapor inhalation between post-natal day 28 and 44. After aging into adulthood, rats then underwent fear conditioning by exposure to a series of tone-shock pairings. This was followed by cued-tone extinction training, and then testing of fear recovery. In male rats, AIE exposure enhanced conditioned freezing but did not alter the time-course of extinction of cued-tone freezing. During subsequent assessment of fear recovery, AIE exposed rats exhibited less freezing during contextual fear renewal, but greater freezing during extinction recall and spontaneous recovery. Compared to males, female rats exhibited significantly lower levels of freezing during fear conditioning, more rapid extinction of freezing behavior, and significantly lower levels of freezing during the tests of fear recovery. Unlike males that were all classified as high conditioners; female rats could be parsed into either a high or low conditioning group. However, irrespective of their level of conditioned freezing, both the high and low conditioning groups of female rats exhibited rapid extinction of conditioned freezing behavior and comparatively low levels of freezing in tests of fear recovery. Regardless of group classification, AIE had no effect on freezing behavior in female rats during acquisition, extinction, or fear recovery. Lastly, exposure of male rats to the mGlu5 positive allosteric modulator CDPPB prevented AIE-induced alterations in freezing. Taken together, these observations demonstrate sex-specific changes in conditioned fear behaviors that are reversible by pharmacological interventions that target mGlu5 receptor activation.
Collapse
Affiliation(s)
- L. Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Dylan T. Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| | - Justin T. Gass
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
12
|
Simmons KE, Healey KL, Li Q, Moore SD, Klein RC. Effects of sex and genotype in human APOE-targeted replacement mice on alcohol self-administration measured with the automated IntelliCage system before and after repeated mild traumatic brain injury. Alcohol Clin Exp Res 2021; 45:2231-2245. [PMID: 34585391 DOI: 10.1111/acer.14717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Few studies have examined the association between APOE genotype and alcohol use. Although some of these studies have reported outcomes associated with a history of drinking, none have examined alcohol-seeking behavior. In addition, no preclinical studies have examined alcohol use as a function of APOE genotype with or without traumatic brain injury. METHODS Male and female human APOE3- and APOE4-targeted replacement (TR) mice were used to assess voluntary alcohol seeking longitudinally using a 2-bottle choice paradigm conducted within the automated IntelliCage system prior to and following repeated mild TBI (rmTBI). Following an acquisition phase in which the concentration of ethanol (EtOH) was increased to 12%, a variety of drinking paradigms that included extended alcohol access (EAA1 and EAA2), alcohol deprivation effect (ADE), limited access drinking in the dark (DID), and progressive ratio (PR) were used to assess alcohol-seeking behavior. Additional behavioral tasks were performed to measure cognitive function and anxiety-like behavior. RESULTS All groups readily consumed increasing concentrations of EtOH (4-12%) during the acquisition phase. During the EAA1 period (12% EtOH), there was a significant genotype effect in both males and females for EtOH preference. Following a 3-week abstinence period, mice received sham or rmTBI resulting in a genotype- and sex-independent main effect of rmTBI on the recovery of righting reflex and a main effect of rmTBI on spontaneous home-cage activity in females only. Reintroduction of 12% EtOH (EAA2) resulted in a significant effect genotype for alcohol preference in males with APOE4 mice displaying increased preference and motivation for alcohol compared with APOE3 mice independent of TBI while in females, there was a significant genotype × TBI interaction under the ADE and DID paradigms. Finally, there was a main effect of rmTBI on increased risk-seeking behavior in both sexes, but no effect on spatial learning or cognitive flexibility. CONCLUSION These results suggest that sex and APOE genotype play a significant role in alcohol consumption and may subsequently influence long-term recovery following traumatic brain insults.
Collapse
Affiliation(s)
- Kathryn E Simmons
- Trinity College of Arts and Sciences, Duke University, Durham, North Carolina, USA
| | - Kati L Healey
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Qiang Li
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | - Scott D Moore
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA.,Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| | - Rebecca C Klein
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA.,Durham Veterans Affairs Medical Center, Durham, North Carolina, USA
| |
Collapse
|
13
|
Hauser SR, Rodd ZA, Deehan GA, Liang T, Rahman S, Bell RL. Effects of adolescent substance use disorders on central cholinergic function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:175-221. [PMID: 34696873 DOI: 10.1016/bs.irn.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adolescence is a transitional period between childhood and adulthood, in which the individual undergoes significant cognitive, behavioral, physical, emotional, and social developmental changes. During this period, adolescents engage in experimentation and risky behaviors such as licit and illicit drug use. Adolescents' high vulnerability to abuse drugs and natural reinforcers leads to greater risk for developing substance use disorders (SUDs) during adulthood. Accumulating evidence indicates that the use and abuse of licit and illicit drugs during adolescence and emerging adulthood can disrupt the cholinergic system and its processes. This review will focus on the effects of peri-adolescent nicotine and/or alcohol use, or exposure, on the cholinergic system during adulthood from preclinical and clinical studies. This review further explores potential cholinergic agents and pharmacological manipulations to counteract peri-adolescent nicotine and/or alcohol abuse.
Collapse
Affiliation(s)
- S R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Z A Rodd
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - G A Deehan
- Department of Psychology, East Tennessee State University, Johnson City, TN, United States
| | - T Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
14
|
Walker CD, Kuhn CM, Risher ML. The effects of peri-adolescent alcohol use on the developing hippocampus. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:251-280. [PMID: 34696875 DOI: 10.1016/bs.irn.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adolescence is a period of continued brain development. Regions of the brain, such as the hippocampus, continue to undergo refinement and maturation throughout adolescence and into early adulthood. Adolescence is also a time of heightened sensitivity to novelty and reward, which contribute to an increase in risk-taking behaviors including the use of drugs and alcohol. Importantly, binge drinking is highly prevalent among adolescents and emerging adults. The hippocampus which is important for the integration of emotion, reward, homeostasis, and memory is particularly vulnerable to the neurotoxic effects of alcohol. In this chapter, we cover the fundamentals of hippocampal neuroanatomy and the current state of knowledge of the acute and chronic effects of ethanol in adolescent humans and adolescent rodent models. We focus on the hippocampal-dependent behavioral, structural, and neurochemical changes and identify knowledge gaps in our understanding of age-dependent neurobiological effects of alcohol use.
Collapse
Affiliation(s)
- C D Walker
- Department of Biomedical Research, Joan C Edwards School of Medicine Marshall University, Huntington, WV, United States
| | - Cynthia M Kuhn
- Department of Pharmacology and Cancer Biology, School of Medicine, Duke University, Durham, NC, United States
| | - M-L Risher
- Department of Biomedical Research, Joan C Edwards School of Medicine Marshall University, Huntington, WV, United States; Neurobiology Research Laboratory, Hershel Woody Williams Veteran Affairs Medical Center, Huntington, WV, United States.
| |
Collapse
|
15
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Hu J, Li ZL. The Role of Alveolar Edema in COVID-19. Cells 2021; 10:cells10081897. [PMID: 34440665 PMCID: PMC8391241 DOI: 10.3390/cells10081897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread over the world for more than one year. COVID-19 often develops life-threatening hypoxemia. Endothelial injury caused by the viral infection leads to intravascular coagulation and ventilation-perfusion mismatch. However, besides above pathogenic mechanisms, the role of alveolar edema in the disease progression has not been discussed comprehensively. Since the exudation of pulmonary edema fluid was extremely serious in COVID-19 patients, we bring out a hypothesis that severity of alveolar edema may determine the size of poorly-ventilated area and the blood oxygen content. Treatments to pulmonary edema (conservative fluid management, exogenous surfactant replacements and ethanol–oxygen vapor therapy hypothetically) may be greatly helpful for reducing the occurrences of severe cases. Given that late mechanical ventilation may cause mucus (edema fluid) to be blown deep into the small airways, oxygen therapy should be given at the early stages. The optimal time and blood oxygen saturation (SpO2) threshold for oxygen therapy are also discussed.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
- Correspondence:
| | - Si-Cong Jiang
- Chengdu Kang Hong Pharmaceutical Group Comp. Ltd., Chengdu 610036, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
| | - Jing Hu
- School of Medicine, Northwest University, Xi’an 710069, China;
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi’an 710032, China;
| |
Collapse
|
16
|
Przybysz KR, Gamble ME, Diaz MR. Moderate adolescent chronic intermittent ethanol exposure sex-dependently disrupts synaptic transmission and kappa opioid receptor function in the basolateral amygdala of adult rats. Neuropharmacology 2021; 188:108512. [PMID: 33667523 PMCID: PMC10500544 DOI: 10.1016/j.neuropharm.2021.108512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 02/04/2023]
Abstract
Adolescent alcohol exposure is associated with many consequences in adulthood, including altered affective and reward-related behaviors. However, the long-term neurological disruptions underlying these behaviors are not fully understood. Shifts in the excitatory/inhibitory balance in the basolateral amygdala (BLA) relate to the expression of these behaviors and changes to BLA physiology are seen during withdrawal immediately following adolescent ethanol exposure, but no studies have examined whether these changes persist long-term. The kappa opioid receptor (KOR) neuromodulatory system mediates negative affective behaviors, and alterations of this system are implicated in behavioral changes following adult and adolescent chronic ethanol exposure. In the BLA, the KOR system undergoes functional changes across development, but whether BLA KOR function is disrupted by adolescent ethanol exposure is unknown. In this study, male and female Sprague-Dawley rats were exposed to a vapor model of moderate adolescent chronic intermittent ethanol (aCIE) and assessed for long-term effects on GABAergic and glutamatergic neurotransmission within the adult BLA and KOR modulation of these systems. aCIE exposure increased presynaptic glutamate transmission in females but had no effect in males or on GABA transmission in either sex. Additionally, aCIE exposure disrupted male KOR modulation of GABA release, with no effects in females or on glutamate transmission. These data suggest that aCIE produces sex-dependent and long-term changes to BLA physiology and KOR function. This is the first study to examine these persistent adaptations following adolescent alcohol exposure and opens a broad avenue for future investigation into other adolescent ethanol-induced disruptions of these systems.
Collapse
Affiliation(s)
- Kathryn R Przybysz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States
| | - Meredith E Gamble
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States
| | - Marvin R Diaz
- Department of Psychology, Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY, 13902, United States; Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY, 13902, United States.
| |
Collapse
|
17
|
Maldonado-Devincci AM, Makdisi JG, Hill AM, Waters RC, Hall NI, Shobande MJ, Kumari A. Adolescent intermittent ethanol exposure induces sex-dependent divergent changes in ethanol drinking and motor activity in adulthood in C57BL/6J mice. J Neurosci Res 2021; 100:1560-1572. [PMID: 33725399 DOI: 10.1002/jnr.24814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
With alcohol readily accessible to adolescents, its consumption leads to many adverse effects, including impaired learning, attention, and behavior. Adolescents report higher rates of binge drinking compared to adults. They are also more prone to substance use disorder in adulthood due to physiological changes during the adolescent developmental period. We used C57BL/6J male and female mice to investigate the long-lasting impact of binge ethanol exposure during adolescence on voluntary ethanol intake and open field behavior during later adolescence (Experiment 1) and during emerging adulthood (Experiment 2). The present set of experiments were divided into four stages: (1) adolescent intermittent vapor inhalation exposure, (2) abstinence, (3) voluntary ethanol intake, and (4) open field behavioral testing. During adolescence, male and female mice were exposed to air or ethanol using intermittent vapor inhalation from postnatal day (PND) 28-42. Following this, mice underwent short-term abstinence from PND 43-49 (Experiment 1) or protracted abstinence from PND 43-69 (Experiment 2). Beginning on PND 50-76 or PND 70-97, mice were assessed for intermittent voluntary ethanol consumption using a two-bottle choice drinking procedure over 28 days. Male adolescent ethanol-exposed mice showed increased ethanol consumption following short-term abstinence and following protracted abstinence. In contrast, female mice showed no changes in ethanol consumption following short-term abstinence and decreased ethanol consumption following protracted abstinence. There were modest changes in open field behavior following voluntary ethanol consumption in both experiments. These data demonstrate a sexually divergent shift in ethanol consumption following binge ethanol exposure during adolescence and differences in open field behavior. These results highlight sex-dependent vulnerability to developing substance use disorders in adulthood.
Collapse
Affiliation(s)
- Antoniette M Maldonado-Devincci
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Joseph G Makdisi
- Department of Social Work and Sociology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Andrea M Hill
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.,The Gerontology Institute, College of Arts and Science, Georgia State University, Atlanta, GA, USA
| | - Renee C Waters
- Department of Psychology, College of Health and Human Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.,Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Nzia I Hall
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA.,Department of Neuroscience, Biomedical Graduate Education, Georgetown University, Washington, DC, USA
| | - Mariah J Shobande
- Department of Bioengineering, College of Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Anjali Kumari
- Department of Biology, College of Science and Technology, North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| |
Collapse
|
18
|
Effects of vapourized THC and voluntary alcohol drinking during adolescence on cognition, reward, and anxiety-like behaviours in rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110141. [PMID: 33069816 DOI: 10.1016/j.pnpbp.2020.110141] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022]
Abstract
Cannabis and alcohol co-use is prevalent in adolescence, but the long-term behavioural effects of this co-use remain largely unexplored. The aim of this study is to investigate the effects of adolescent alcohol and Δ9-tetrahydracannabinol (THC) vapour co-exposure on cognitive- and reward-related behaviours. Male Sprague-Dawley rats received vapourized THC (10 mg vapourized THC/four adolescent rats) or vehicle every other day (from post-natal day (PND) 28-42) and had continuous voluntary access to ethanol (10% volume/volume) in adolescence. Alcohol intake was measured during the exposure period to assess the acute effects of THC on alcohol consumption. In adulthood (PND 56+), rats underwent behavioural testing. Adolescent rats showed higher alcohol preference, assessed using the two-bottle choice test, on days on which they were not exposed to THC vapour. In adulthood, rats that drank alcohol as adolescents exhibited short-term memory deficits and showed decreased alcohol preference; on the other hand, rats exposed to THC vapour showed learning impairments in the delay-discounting task. Vapourized THC, alcohol or their combination had no effect on anxiety-like behaviours in adulthood. Our results show that although adolescent THC exposure acutely affects alcohol drinking, adolescent alcohol and cannabis co-use may not produce long-term additive effects.
Collapse
|
19
|
Leenaars CH, Van der Mierden S, Joosten RN, Van der Weide MA, Schirris M, Dematteis M, Meijboom FL, Feenstra MG, Bleich A. Risk-Based Decision Making: A Systematic Scoping Review of Animal Models and a Pilot Study on the Effects of Sleep Deprivation in Rats. Clocks Sleep 2021; 3:31-52. [PMID: 33498259 PMCID: PMC7838799 DOI: 10.3390/clockssleep3010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Animals, including humans, frequently make decisions involving risk or uncertainty. Different strategies in these decisions can be advantageous depending the circumstances. Short sleep duration seems to be associated with more risky decisions in humans. Animal models for risk-based decision making can increase mechanistic understanding, but very little data is available concerning the effects of sleep. We combined primary- and meta-research to explore the relationship between sleep and risk-based decision making in animals. Our first objective was to create an overview of the available animal models for risky decision making. We performed a systematic scoping review. Our searches in Pubmed and Psychinfo retrieved 712 references, of which 235 were included. Animal models for risk-based decision making have been described for rodents, non-human primates, birds, pigs and honey-bees. We discuss task designs and model validity. Our second objective was to apply this knowledge and perform a pilot study on the effect of sleep deprivation. We trained and tested male Wistar rats on a probability discounting task; a "safe" lever always resulted in 1 reward, a "risky" lever resulted in 4 or no rewards. Rats adapted their preferences to variations in reward probabilities (p < 0.001), but 12 h of sleep deprivation during the light phase did not clearly alter risk preference (p = 0.21).
Collapse
Affiliation(s)
- Cathalijn H.C. Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
- Department for Health Evidence (Section HTA), SYRCLE, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
- Unit Animals in Science and Society, Population Health Sciences, Utrecht University, 3500 Utrecht, The Netherlands;
| | - Stevie Van der Mierden
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
- Department for Health Evidence (Section HTA), SYRCLE, Radboud University Medical Centre, 6600 Nijmegen, The Netherlands
| | - Ruud N.J.M.A. Joosten
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Marnix A. Van der Weide
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Mischa Schirris
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - Maurice Dematteis
- Department of Addiction Medicine, Grenobles Alpes University Hospital, Faculty of Medicine, Grenoble Alpes University, 38400 Grenoble, France;
| | - Franck L.B. Meijboom
- Unit Animals in Science and Society, Population Health Sciences, Utrecht University, 3500 Utrecht, The Netherlands;
| | - Matthijs G.P. Feenstra
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1000 Amsterdam, The Netherlands; (R.N.J.M.A.J.); (M.A.V.d.W.); (M.S.); (M.G.P.F.)
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany; (S.V.d.M.); (A.B.)
| |
Collapse
|
20
|
Glover EJ, Khan F, Clayton-Stiglbauer K, Chandler LJ. Impact of sex, strain, and age on blood ethanol concentration and behavioral signs of intoxication during ethanol vapor exposure. Neuropharmacology 2020; 184:108393. [PMID: 33221480 DOI: 10.1016/j.neuropharm.2020.108393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 11/02/2020] [Indexed: 11/19/2022]
Abstract
Animal models of alcohol drinking and dependence are a critical resource for understanding the neurobiological mechanisms and development of more effective treatments for alcohol use disorder (AUD). Because most rat strains do not voluntarily consume large enough quantities of alcohol to adequately model heavy drinking, dependence, and withdrawal-related symptoms, researchers frequently turn to experimenter administered methods to investigate how prolonged and repeated exposure to large quantities of alcohol impacts brain and behavior. Vaporized ethanol is a common method used for chronically subjecting rodents to alcohol and has been widely used to model both binge and dependence-inducing heavy drinking patterns observed in humans. Rodent strain, sex, and age during exposure are all well-known to influence outcomes in experiments utilizing intraperitoneal or intragastric methods of repeated ethanol exposure. Yet, despite its frequent use, the impact of these variables on outcomes associated with ethanol vapor exposure has not been widely investigated. The present study analyzed data generated from over 700 rats across an eight-year period to provide a population-level assessment of variables influencing level of intoxication using vapor exposure. Our findings reveal important differences with respect to strain, sex, and age during ethanol exposure in the relationship between blood ethanol concentration and behavioral signs of intoxication. These data provide valuable scientific and practical insight for laboratories utilizing ethanol vapor exposure paradigms to model AUD in rats.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA.
| | - Fauzan Khan
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - Kacey Clayton-Stiglbauer
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| | - L Judson Chandler
- Department of Neuroscience, Center for Drug & Alcohol Programs, Medical University of South Carolina, USA
| |
Collapse
|
21
|
Gamble ME, Diaz MR. Moderate Adolescent Ethanol Vapor Exposure and Acute Stress in Adulthood: Sex-Dependent Effects on Social Behavior and Ethanol Intake in Sprague-Dawley Rats. Brain Sci 2020; 10:E829. [PMID: 33171857 PMCID: PMC7695197 DOI: 10.3390/brainsci10110829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/25/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
Adolescent alcohol use can lead to numerous consequences, including altered stress reactivity and higher risk for later anxiety and alcohol use disorders. Many studies have examined the consequences of heavy ethanol exposure in adolescence, but far less is understood about lower levels of intoxication. The present study examined moderate adolescent ethanol exposure as a possible factor in increasing stress reactivity in adulthood, measured through general and social anxiety-like behaviors, as well voluntary ethanol intake. Male and female Sprague-Dawley rats underwent an adolescent chronic intermittent ethanol (aCIE) vapor exposure during early adolescence, reaching moderate blood ethanol concentrations. Animals then underwent two days of forced swim stress in adulthood. We found that ethanol-exposed males consumed more ethanol than their air counterparts and an interesting stress and ethanol exposure interaction in males. There were no significant effects on voluntary drinking in females. However, the social interaction test revealed increased play-fighting behavior in ethanol-exposed females and reduced social preference in females after two days of stress exposure. Overall, this work provides evidence for sex-specific, long-term effects of moderate aCIE and susceptibility to acute stress in adulthood.
Collapse
Affiliation(s)
- Meredith E. Gamble
- Department of Psychology, Binghamton University, Binghamton, NY 13902, USA;
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, USA
| | - Marvin R. Diaz
- Department of Psychology, Binghamton University, Binghamton, NY 13902, USA;
- Center for Development and Behavioral Neuroscience, Binghamton University, Binghamton, NY 13902, USA
- Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, NY 13902, USA
| |
Collapse
|
22
|
Radke AK, Held IT, Sneddon EA, Riddle CA, Quinn JJ. Additive influences of acute early life stress and sex on vulnerability for aversion-resistant alcohol drinking. Addict Biol 2020; 25:e12829. [PMID: 31657073 DOI: 10.1111/adb.12829] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 07/29/2019] [Accepted: 08/19/2019] [Indexed: 01/06/2023]
Abstract
Acute early life stress (ELS) alters stress system functioning in adulthood and increases susceptibility to posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD). The current study assessed the effects of acute, infant ELS on alcohol drinking, including aversion-resistant drinking, in male and female Long Evans rats. Acute ELS was induced using a stress-enhanced fear learning (SEFL) protocol that consisted of 15 footshocks delivered on postnatal day (PND) 17. Alcohol drinking during adolescence and adulthood was measured with a two-bottle choice intermittent alcohol access paradigm. Aversion-resistant drinking was assessed in adulthood by adding quinine (0.01, 0.1, and 1.0 g/L) to the alcohol bottle after 5 to 6 weeks and 11 to 12 weeks of drinking. ELS had minimal influences on adolescent and adult alcohol consumption and preference. However, ELS, sex, and alcohol exposure history all influenced aversion-resistant alcohol drinking in an additive fashion. Higher concentrations of quinine were tolerated in females, ELS-exposed rats, and after 11 to 12 weeks of drinking. Tests of quinine sensitivity in a separate cohort of animals found that rats can detect concentrations of quinine as low as 0.001 g/L in water and that quinine sensitivity is not influenced by sex or ELS exposure. These results agree with reports of sex differences in aversion-resistant drinking and are the first to demonstrate an influence of ELS on this behavior. Our results also suggest that a single traumatic stress exposure in infancy may be a promising model of comorbid PTSD and AUD and useful in studying the interactions between ELS, sex, and alcohol dependence.
Collapse
Affiliation(s)
- Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Isabel T Held
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Elizabeth A Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Collin A Riddle
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| | - Jennifer J Quinn
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA
| |
Collapse
|
23
|
Binge drinking in male adolescent rats and its relationship to persistent behavioral impairments and elevated proinflammatory/proapoptotic proteins in the cerebellum. Psychopharmacology (Berl) 2020; 237:1305-1315. [PMID: 31984446 DOI: 10.1007/s00213-020-05458-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE To demonstrate that repeated episodes of binge drinking during the adolescent period can lead to long-term deficits in motor function and memory in adulthood, and increase proteins in the brain involved with inflammation and apoptotic cell death. METHODS Groups of early adolescent (PND 26) and periadolescent (PND 34) Sprague-Dawley rats were exposed to either ethanol or plain air through a vapor chamber apparatus for five consecutive days (2 h per day), achieving a blood ethanol concentration equivalent to 6-8 drinks in the treatment group. Subjects then underwent a series of behavioral tests designed to assess memory, anxiety regulation, and motor function. Brains were collected on PND 94 for subsequent western blot analysis. RESULTS Behavioral testing using the rota-rod, cage-hang, novel object recognition, light-dark box, and elevated plus maze apparatuses showed significant differences between groups; several of which persisted for up to 60 days after treatment. Western blot testing indicated elevated levels of caspase-3/cleaved caspase-3, NF-kB, and PKC/pPKC proteins in the cerebella of ethanol-treated animals. CONCLUSIONS Differences on anxiety tests indicate a possible failure of behavioral inhibition in the treatment group leading to riskier behavior. Binge drinking also impairs motor coordination and object memory, which involve the cerebellar and hippocampal brain regions, respectively. These experiments indicate the potential dangers of binge drinking while the brain is still developing and indicate the need for future studies in this area.
Collapse
|
24
|
Salguero A, Suarez A, Luque M, Ruiz-Leyva L, Cendán CM, Morón I, Pautassi RM. Binge-Like, Naloxone-Sensitive, Voluntary Ethanol Intake at Adolescence Is Greater Than at Adulthood, but Does Not Exacerbate Subsequent Two-Bottle Choice Drinking. Front Behav Neurosci 2020; 14:50. [PMID: 32327981 PMCID: PMC7161160 DOI: 10.3389/fnbeh.2020.00050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/19/2020] [Indexed: 12/31/2022] Open
Abstract
The present study assessed the effects of ethanol exposure during adolescence or adulthood. We exposed Wistar rats, males or females, to self-administered 8–10% (v/v) ethanol (BINGE group) during the first 2 h of the dark cycle, three times a week (Monday, Wednesday, and Friday) during postnatal days (PDs) 32–54 or 72–94 (adolescent and adults, respectively). During this period, controls were only handled, and a third (IP) condition was given ethanol intraperitoneal administrations, three times a week (Monday, Wednesday, and Friday), at doses that matched those self-administered by the BINGE group. The rats were tested for ethanol intake and preference in a two-bottle (24 h long) choice test, shortly before (PD 30 or 70) and shortly after (PD 56 or 96) exposure to the binge or intraperitoneal protocol; and then tested for free-choice drinking during late adulthood (PDs 120–139) in intermittent two-bottle intake tests. Binge drinking was significantly greater in adolescents vs. adults, and was blocked by naloxone (5.0 mg/kg) administered immediately before the binge session. Mean blood ethanol levels (mg/dl) at termination of binge session 3 were 60.82 ± 22.39. Ethanol exposure at adolescence, but not at adulthood, significantly reduced exploration of an open field-like chamber and significantly increased shelter-seeking behavior in the multivariate concentric square field. The rats that had been initially exposed to ethanol at adolescence drank, during the intake tests conducted at adulthood, significantly more than those that had their first experience with ethanol at adulthood, an effect that was similar among BINGE, IP and control groups. The study indicates that binge ethanol drinking is greater in adolescent that in adults and is associated with heightened ethanol intake at adulthood. Preventing alcohol access to adolescents should reduce the likelihood of problematic alcohol use or alcohol-related consequences.
Collapse
Affiliation(s)
- Agustín Salguero
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Andrea Suarez
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maribel Luque
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L Ruiz-Leyva
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Cruz Miguel Cendán
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center (CIBM), University of Granada, Granada, Spain.,Biosanitary Research Institute (IBS), University Hospital Complex of Granada, Granada, Spain
| | - Ignacio Morón
- Department of Psychobiology and Research Center for Mind, Brain, and Behavior (CIMCYC), University of Granada, Faculty of Psychology, Granada, Spain
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
25
|
Towner TT, Varlinskaya EI. Adolescent Ethanol Exposure: Anxiety-Like Behavioral Alterations, Ethanol Intake, and Sensitivity. Front Behav Neurosci 2020; 14:45. [PMID: 32296315 PMCID: PMC7136472 DOI: 10.3389/fnbeh.2020.00045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/16/2020] [Indexed: 01/29/2023] Open
Abstract
Adolescence is a developmental period associated with rapid age-specific physiological, neural, and hormonal changes. Behaviorally, human adolescents are characterized by age-typical increases in novelty-seeking and risk-taking, including the frequent initiation of alcohol and drug use. Alcohol use typically begins during early adolescence, and older adolescents often report high levels of alcohol consumption, commonly referred to as high-intensity drinking. Early-onset and heavy drinking during adolescence are associated with an increased risk of developing alcohol use disorders later in life. Yet, long-term behavioral consequences of adolescent alcohol use that might contribute to excessive drinking in adulthood are still not well understood. Recent animal research, however, using different exposure regimens and routes of ethanol administration, has made substantial progress in identifying the consequences of adolescent ethanol exposure that last into adulthood. Alterations associated with adolescent ethanol exposure include increases in anxiety-like behavior, impulsivity, risk-taking, and ethanol intake, although the observed alterations differ as a function of exposure regimens and routes of ethanol administration. Rodent studies have also shown that adolescent ethanol exposure produces alterations in sensitivity to ethanol, with these alterations reminiscent of adolescent-typical ethanol responsiveness. The goal of this mini-review article is to summarize the current state of animal research, focusing on the long-term consequences related to adolescent ethanol exposure, with a special emphasis on the behavioral alterations and changes to ethanol sensitivity that can foster high levels of drinking in adulthood.
Collapse
Affiliation(s)
- Trevor T Towner
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| | - Elena I Varlinskaya
- Neurobiology of Adolescent Drinking in Adulthood Consortium (NADIA), Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
26
|
Marcolin ML, Baumbach JL, Hodges TE, McCormick CM. The effects of social instability stress and subsequent ethanol consumption in adolescence on brain and behavioral development in male rats. Alcohol 2020; 82:29-45. [PMID: 31465790 DOI: 10.1016/j.alcohol.2019.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
Abstract
Excessive drinking in adolescence continues to be a problem, and almost a quarter of young Canadians have reported consuming five or more alcoholic drinks in one occasion in recent surveys. The consequences of such drinking may be more pronounced when commenced in adolescence, given the ongoing brain development during this period of life. Here, we investigated the consequences of 3 weeks' intermittent access to ethanol in mid-adolescence to early adulthood in rats, and the extent to which a stress history moderated the negative consequences of ethanol access. In experiment 1, male rats that underwent adolescent social instability stress (SS; daily 1 h isolation + return to unfamiliar cage partner every day from postnatal day [PND] 30-45) did not differ from control (CTL) rats in intake of 10% ethanol sweetened with 0.1% saccharin (access period; PND 47-66). Ethanol drinking reduced proteins relevant for synaptic plasticity (αCaMKII, βCaMKII, and PSD-95) in the dorsal hippocampus, and in CTL rats only in the prefrontal cortex (αCaMKII and PSD 95), attenuating the difference between CTL and SS rats in the water-drinking group. In experiment 2, ethanol also attenuated the difference between SS and CTL rats in a social interaction test by reducing social interaction in SS rats; CTL rats, however, had a higher intake of ethanol than did SS rats during the access period. Ethanol drinking reduced baseline and fear recall recovery concentrations of corticosterone relative to those exposed only to water, although there was no effect of either ethanol or stress history on fear conditioning. Ethanol drinking did not influence intake after 9 days of withdrawal; however, ethanol-naïve SS rats drank more than did CTL rats when given a 24-h access in adulthood. These results reveal a complex relationship between stress history and ethanol intake in adolescence on outcomes in adulthood.
Collapse
Affiliation(s)
- Marina L Marcolin
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Travis E Hodges
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Psychology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada; Centre for Neuroscience, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
27
|
Thorpe HHA, Hamidullah S, Jenkins BW, Khokhar JY. Adolescent neurodevelopment and substance use: Receptor expression and behavioral consequences. Pharmacol Ther 2019; 206:107431. [PMID: 31706976 DOI: 10.1016/j.pharmthera.2019.107431] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Adolescence is the transitional period between childhood and adulthood, during which extensive brain development occurs. Since this period also overlaps with the initiation of drug use, it is important to consider how substance use during this time might produce long-term neurobiological alterations, especially against the backdrop of developmental changes in neurotransmission. Alcohol, cannabis, nicotine, and opioids all produce marked changes in the expression and function of the neurotransmitter and receptor systems with which they interact. These acute and chronic alterations also contribute to behavioral consequences ranging from increased addiction risk to cognitive or neuropsychiatric behavioral dysfunctions. The current review provides an in-depth overview and update of the developmental changes in neurotransmission during adolescence, as well as the impact of drug exposure during this neurodevelopmental window. While most of these factors have been studied in animal models, which are the focus of this review, future longitudinal studies in humans that assess neural function and behavior will help to confirm pre-clinical findings. Furthermore, the neural changes induced by each drug should also be considered in the context of other contributing factors, such as sex. Further understanding of these consequences can help in the identification of novel approaches for preventing and reversing the neurobiological effects of adolescent substance use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Shahnaza Hamidullah
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Bryan W Jenkins
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ontario, Canada.
| |
Collapse
|
28
|
Crews FT, Robinson DL, Chandler LJ, Ehlers CL, Mulholland PJ, Pandey SC, Rodd ZA, Spear LP, Swartzwelder HS, Vetreno RP. Mechanisms of Persistent Neurobiological Changes Following Adolescent Alcohol Exposure: NADIA Consortium Findings. Alcohol Clin Exp Res 2019; 43:1806-1822. [PMID: 31335972 PMCID: PMC6758927 DOI: 10.1111/acer.14154] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022]
Abstract
The Neurobiology of Adolescent Drinking in Adulthood (NADIA) Consortium has focused on the impact of adolescent binge drinking on brain development, particularly on effects that persist into adulthood. Adolescent binge drinking is common, and while many factors contribute to human brain development and alcohol use during adolescence, animal models are critical for understanding the specific consequences of alcohol exposure during this developmental period and the underlying mechanisms. Using adolescent intermittent ethanol (AIE) exposure models, NADIA investigators identified long-lasting AIE-induced changes in adult behavior that are consistent with observations in humans, such as increased alcohol drinking, increased anxiety (particularly social anxiety), increased impulsivity, reduced behavioral flexibility, impaired memory, disrupted sleep, and altered responses to alcohol. These behavioral changes are associated with multiple molecular, cellular, and physiological alterations in the brain that persist long after AIE exposure. At the molecular level, AIE results in long-lasting changes in neuroimmune/trophic factor balance and epigenetic-microRNA (miRNA) signaling across glia and neurons. At the cellular level, AIE history is associated in adulthood with reduced expression of cholinergic, serotonergic, and dopaminergic neuron markers, attenuated cortical thickness, decreased neurogenesis, and altered dendritic spine and glial morphology. This constellation of molecular and cellular adaptations to AIE likely contributes to observed alterations in neurophysiology, measured by synaptic physiology, EEG patterns, and functional connectivity. Many of these AIE-induced brain changes replicate findings seen in postmortem brains of humans with alcohol use disorder (AUD). NADIA researchers are now elucidating mechanisms of these adaptations. Emerging data demonstrate that exercise, antiinflammatory drugs, anticholinesterases, histone deacetylase inhibitors, and other pharmacological compounds are able to prevent (administered during AIE) and/or reverse (given after AIE) AIE-induced pathology in adulthood. These studies support hypotheses that adolescent binge drinking increases risk of adult hazardous drinking and influences brain development, and may provide insight into novel therapeutic targets for AIE-induced neuropathology and AUDs.
Collapse
Affiliation(s)
- Fulton T Crews
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - L Judson Chandler
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Cindy L Ehlers
- Department of Neurosciences, The Scripps Research Institute, La Jolla, California
| | - Patrick J Mulholland
- Department of Neuroscience, Charleston Alcohol Research Center, Charleston, South Carolina
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, Chicago, Illinois
| | - Zachary A Rodd
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linda P Spear
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, New York
| | - H Scott Swartzwelder
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Ryan P Vetreno
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|