1
|
Pan Y, Jia X, Ding R, Xia S, Zhu X. Interference of two typical polycyclic aromatic hydrocarbons on the induced anti-grazing defense of Tetradesmus obliquus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116263. [PMID: 38547727 DOI: 10.1016/j.ecoenv.2024.116263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) cause severe ecological impacts by contaminating natural water bodies, affecting various biological groups, and altering interspecies relationships and ecological functions. This study examined the effects of two typical PAHs, phenanthrene (Phe) and naphthalene (Nap), on the anti-grazing defense mechanisms of Tetradesmus obliquus, a primary producer in freshwater food chains. Four non-lethal concentrations (0.01, 0.1, 1, and 10 mg L-1) of Phe and Nap were tested and the population growth, photosynthetic capacity, pigment content, and morphological defense of T. obliquus were analyzed. The results indicated that Phe and Nap inhibited both the growth rate and formation of defensive colonies of T. obliquus induced by Daphnia grazing cues, and the inhibition ratio increased with concentration. Phe and Nap significantly shortened the defense colony formation time of T. obliquus. Phe and Nap significantly suppressed photosynthesis in the early stages; however, the photosynthetic efficiency recovered over time. These findings highlight the high sensitivity of grazing-induced colony formation in T. obliquus to Phe and Nap at non-lethal concentrations, which could affect the interactions between phytoplankton and zooplankton in aquatic ecosystems. Our study underscores the influence of Phe and Nap on the defense mechanisms of phytoplankton and the consequential effects on ecological interactions within freshwater ecosystems, providing insight into the complex impacts of pollutants on phytoplankton-zooplankton relationships. Therefore, it is necessary to consider interspecific interactions when assessing the potential negative effects of environmental pollutants on aquatic ecosystems.
Collapse
Affiliation(s)
- Yueqiang Pan
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuanhe Jia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Ruowen Ding
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Siyu Xia
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Xuexia Zhu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China; College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China; The First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, 6 Xianxialing Road, Qingdao 266061, China.
| |
Collapse
|
2
|
Wang X, Zhao Y, Zhao L, Wan Q, Ma L, Liang J, Li H, Dong J, Zhang M. Effects of microplastics on the growth, photosynthetic efficiency and nutrient composition in freshwater algae Chlorella vulgaris Beij. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106615. [PMID: 37364300 DOI: 10.1016/j.aquatox.2023.106615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Microplastics, plastic particles and fragments smaller than 5 mm are ubiquitous in various aquatic environments, but the hazards of microplastics with different particle sizes, concentrations and materials are not well understood. This study investigated the toxicity of polyethylene microplastics (PE-MPs) with different concentrations and particle sizes or polystyrene microplastics (PS-MPs) on freshwater algae Chlorella vulgaris Beij (C. vulgaris) for 11 days. Results indicated that the growth, colony formation, photosynthetic pigment contents and soluble intracellular polysaccharides were unaffected, whereas the photosynthetic efficiency and the total soluble protein (TSP) contents were remarkably decreased at 11 d with the increased concentration of PE-MP exposure. The growth, photosynthetic efficiency, soluble intracellular polysaccharides and TSP contents were unaffected after exposure to PE-MPs with different particle sizes or PS-MPs. By contrast, the colony formation and photosynthetic pigment contents were remarkably decreased after exposure to PS-MPs compared with the control or PE-MPs with the same particle size. The C. vulgaris colonization on microplastics was proven by scanning electron microscopy, indicating that the adsorption effects were the main harmful pathways of different microplastics to algal. Our results suggested that microplastics have limited harmful effects on algae, mainly in adsorption and shading.
Collapse
Affiliation(s)
- Xianfeng Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Yiman Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lifeng Zhao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Qingru Wan
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Liangliang Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Junping Liang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Hui Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Jing Dong
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China
| | - Man Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang 474450, China.
| |
Collapse
|
3
|
Zhang L, Sun Y, Cheng J, Cui G, Huang Y, Yang Z. Warming mitigates the enhancement effect of elevated air CO 2 on anti-grazer morphological defense in Scenedesmus obliquus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145341. [PMID: 33517020 DOI: 10.1016/j.scitotenv.2021.145341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
Atmospheric CO2 and temperature are increasing, which will have substantial impacts on interactions among organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects on the interspecies interaction. In order to reveal how warming and elevated CO2 interact on the induced defense of phytoplankton, we investigated the combined influences of elevated CO2 (750 ppm vs 390 ppm) and high temperature (28 °C and 31 °C vs 25 °C) on grazer Daphnia-induced morphological defense in Scenedesmus obliquus. Results showed that S. obliquus formed big-sized colonies (e.g., four- and eight-celled colonies) as response to Daphnia infochemicals, resulting in an increase in the number of cells per particle. Elevated CO2 further decreased the proportion of unicells from >40% in the populations growing at 390 ppm CO2 without Daphnia filtrate to <7% in the populations growing at 750 ppm CO2 with Daphnia filtrate, with the formation of more than 90% colonies, thus enhancing this morphological defense in S. obliquus. However, under elevated CO2, increasing temperature up to 31 °C remarkably increased the four-celled colonies by at least 159% but decreased the eight-celled colonies by 37% compared with 25 °C. As a result, the maximum cells per particle were significantly decreased to the 390 ppm CO2-grown level at high temperature. The time to reach the maximum cells per particle was also shortened by high temperature under elevated CO2. These results suggest that high temperature has an overwhelming inhibitory effect on the enhanced anti-grazer defense by elevated CO2, which provides significant implications for forecasting the predator-prey interaction changes in freshwater ecosystem under future climate regimes.
Collapse
Affiliation(s)
- Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiahui Cheng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Guilian Cui
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhu X, Wang Z, Sun Y, Gu L, Zhang L, Wang J, Huang Y, Yang Z. Surfactants at environmentally relevant concentrations interfere the inducible defense of Scenedesmus obliquus and the implications for ecological risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114131. [PMID: 32066053 DOI: 10.1016/j.envpol.2020.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 05/07/2023]
Abstract
The ecotoxicology of surfactants is attracting wide attention due to the rapidly expanding global application. As interspecific relationships play one of the central roles in structuring biological communities, it is necessary to take it into risk assessments on surfactants. With this aim, our study investigated the interference of three common surfactants on the inducible defense of a freshwater phytoplankton Scenedesmus obliquus. Nonlethal environmentally relevant concentrations (10 and 100 μg L-1) of several surfactants were set up. Results showed that growth and photosynthetic efficiency of Scenedesmus were inhibited during first 96 h, but recovered in the later stage. Surfactants interfered inducible defense of Scenedesmus against Daphnia grazing, and the interference was related to chemical characteristics of surfactants. The anionic surfactant sodium dodecyl sulfate (SDS) enhanced the colony formation even without grazing cues, whereas fewer defensive colonies were formed under the effects of cationic surfactant benzalkonium bromide (BZK) and nonionic surfactant polyoxyethylene (40) nonylphenol ether (NPE). These findings highlighted the sensitivity of grazer-induced morphological defense of Scenedesmus to surfactants even at nonlethal concentrations, which potentially affects the energy and information flow between trophic levels. This study appeals for more attention to take interspecific relationships into consideration in assessing the potential ecological risk of pollutants.
Collapse
Affiliation(s)
- Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing 210098, China
| | - Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lei Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
5
|
Sun Y, Zhang X, Zhang L, Huang Y, Yang Z, Montagnes D. UVB Radiation Suppresses Antigrazer Morphological Defense in Scenedesmus obliquus by Inhibiting Algal Growth and Carbohydrate-Regulated Gene Expression. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4495-4503. [PMID: 32108484 DOI: 10.1021/acs.est.0c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solar ultraviolet-B (UVB) radiation reaching the earth's surface is increasing due to stratospheric ozone depletion. How the elevated UVB affects the trophic interactions is critical for predicting the ecosystem functioning under this global-scale stressor. Usually, inducible defenses in phytoplankton stabilize community dynamics within aquatic environments. To assess the effects of elevated UVB on induced defense, we examined the changes in antigrazer colony formation in Scenedesmus obliquus under environmentally relevant UVB. S. obliquus exposed to Daphnia infochemicals consistently formed multicelled colonies, traits confirmed to be adaptive under predation risk. However, the suppressed photochemical activity and the metabolic cost from colony formation resulted in the severer reductions in algal growth by UVB under predation risk. The transcriptions of key enzyme-encoding genes, regulating the precursor synthesis during polysaccharide production, were also inhibited by UVB. Combination of the reduced production of daughter cells and the ability of daughter cells to remain attached, the antigrazing colony formation was interrupted, leading to the dominant morphs of algal population shifting from larger-sized colonies to smaller ones at raised UVB. The present study revealed that elevated UVB will not only reduce the phytoplankton growth but also increase their vulnerability to predation, probably leading to potential shifts in plankton food webs.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xingxing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - David Montagnes
- Institute of Integrative Biology, Biosciences Building, University of Liverpool, Liverpool L69 7ZB, U.K
| |
Collapse
|
6
|
Kapsetaki SE, West SA. The costs and benefits of multicellular group formation in algae. Evolution 2019; 73:1296-1308. [PMID: 30883720 DOI: 10.1111/evo.13712] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/20/2019] [Indexed: 11/30/2022]
Abstract
The first step in the evolution of complex multicellular organisms involves single cells forming a cooperative group. Consequently, to understand multicellularity, we need to understand the costs and benefits associated with multicellular group formation. We found that in the facultatively multicellular algae Chlorella sorokiniana: (1) the presence of the flagellate Ochromonas danica or the crustacean Daphnia magna leads to the formation of multicellular groups; (2) the formation of multicellular groups reduces predation by O. danica, but not by the larger predator D. magna; (3) under conditions of relatively low light intensity, where competition for light is greater, multicellular groups grow slower than single cells; (4) in the absence of live predators, the proportion of cells in multicellular groups decreases at a rate that does not vary with light intensity. These results can explain why, in cases such as this algae species, multicellular group formation is facultative, in response to the presence of predators.
Collapse
Affiliation(s)
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| |
Collapse
|
7
|
Zhu X, Wang Y, Hou X, Kong Q, Sun Y, Wang J, Huang Y, Yang Z. High temperature promotes the inhibition effect of Zn 2+ on inducible defense of Scenedesmus obliquus. CHEMOSPHERE 2019; 216:203-212. [PMID: 30368085 DOI: 10.1016/j.chemosphere.2018.10.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Morphological defense is assumed to be an effective anti-grazer strategy in phytoplankton. Scenedesmus obliquus, a globally widespread freshwater chlorophyte, can form colonies in response to the infochemicals of herbivorous zooplankton and survive in coexistence with grazers. However, the inducible defense response is often disturbed by abiotic or biotic factors, especially under the increasing global warming and environmental pollution. In this study, two nonlethal environmental factors, namely, elevated temperature and environmentally relevant Zn2+ concentrations, decreased colony formation of S. obliquus induced by Daphnia grazing infochemicals. Elevated temperature (30 °C) reduced the inducible colony size and shortened the maintenance time of defensive colonies. Decreased colony size was detected with increased Zn2+ concentration. Colony formation was inhibited even at low Zn2+ concentration (0.131 μmol L-1), which neither retarded growth nor affected photosynthesis. Warming promoted the inhibition effect of Zn2+ on inducible colony formation of S. obliquus. Warming also enhanced Zn2+ toxicity, which caused the growth rate of S. obliquus to be hindered by high Zn2+ concentrations at elevated temperature. Specially, S. obliquus which formed inducible colonies under the condition of Daphnia infochemicals had higher tolerance to Zn2+ toxicity and thus likely exerted protective effects against heavy metals. The results indicated the combined effects of global warming and heavy-metal pollution result in more severe impact on the inducible defense of S. obliquus.
Collapse
Affiliation(s)
- Xuexia Zhu
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China; Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuanyuan Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xinying Hou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingdan Kong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jun Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
8
|
Hou X, Zhou Q, Wang Z, Kong Q, Sun Y, Zhang L, Zhu X, Huang Y, Yang Z. Magnesium depletion suppresses the anti-grazer colony formation in Scenedesmus obliquus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:34228-34235. [PMID: 30291607 DOI: 10.1007/s11356-018-3191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/10/2018] [Indexed: 06/08/2023]
Abstract
In aquatic ecosystems, many phytoplankton species have evolved various inducible defense mechanisms against the predation. The expression of these defenses is affected by environmental conditions such as nutrient availability. Here, we investigated the anti-grazer colony formation in Scenedesmus obliquus at different magnesium concentrations (0-7.3 mg L-1 Mg2+) in the presence of zooplankton (Daphnia)-derived infochemicals. Results showed that at adequate Mg2+, S. obliquus formed high proportions of multi-celled (e.g., four- and eight-celled) colonies, resulting in significantly increased number of cells per colony in response to Daphnia filtrate. On the other hand, in Mg2+-deficient treatment, the proportion of multi-celled colonies decreased, together with reduced algal growth rate and photosynthetic efficiency. Finally, the treatment without Mg2+ strongly suppressed the formation of large colony (mainly eight-celled colonies), whereas the algal growth rate was comparable to that in Mg2+ sufficient treatment. Despite the inhibition of colony formation, the time reaching the maximum number of cells per colony was not affected by the Mg2+ concentration, which generally took three days in all groups. Our results indicate that Mg2+ deficient/absent environments significantly reduced anti-grazing colony formation but not the algal growth, suggesting strong dependability of this morphological defensive trait to magnesium fluctuation in S. obliquus.
Collapse
Affiliation(s)
- Xinying Hou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qiming Zhou
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zeshuang Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qingdan Kong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xuexia Zhu
- Department of Marine Biology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China.
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
9
|
Peng Q, Zhao M, Shen G, Gan X, Li M. Linear alkylbenzene sulfonate (LAS) promotes sedimentation and lipid accumulation in Scenedesmus obliquus. RSC Adv 2017. [DOI: 10.1039/c6ra27664d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Linear alkylbenzene sulfonate promotes sedimentation by inducing colony formation of Scenedesmus obliquus. It also promotes lipid accumulation in S. obliquus.
Collapse
Affiliation(s)
- Qiang Peng
- College of Food Science
- Northwest Agriculture and Forestry University
- Yangling 712100
- PR China
| | - Miaomiao Zhao
- College of Resources and Environment
- Northwest Agriculture and Forestry University
- Yangling 712100
- PR China
| | - Guangzhu Shen
- College of Resources and Environment
- Northwest Agriculture and Forestry University
- Yangling 712100
- PR China
| | - Xinyu Gan
- College of Resources and Environment
- Northwest Agriculture and Forestry University
- Yangling 712100
- PR China
| | - Ming Li
- College of Resources and Environment
- Northwest Agriculture and Forestry University
- Yangling 712100
- PR China
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China
| |
Collapse
|
10
|
Zhu X, Sun Y, Zhang X, Heng H, Nan H, Zhang L, Huang Y, Yang Z. Herbicides interfere with antigrazer defenses in Scenedesmus obliquus. CHEMOSPHERE 2016; 162:243-251. [PMID: 27501311 DOI: 10.1016/j.chemosphere.2016.07.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
The extensive application of herbicides has led to a serious threat of herbicide contamination to aquatic ecosystem. Herbicide exposure affects aquatic communities not only by exerting toxicity on single species but also by changing interspecific interactions. This study investigated the antigrazer defenses of the common green alga Scenedesmus obliquus against different herbicides [glyphosate, 2,4-dichlorophenoxyacetic acid (2,4-D), and atrazine] at various concentrations (0-2.0 mg L(-1)). In the presence of grazer (Daphnia)-derived cues, S. obliquus populations without herbicides formed high proportions of multicelled (e.g., four- and eight-celled) colonies. This result confirms that S. obliquus exhibits a morphological defense against grazing risk. At the low concentration range of 0.002-0.02 mg L(-1), the three herbicides exerted no influence on the growth and photosynthetic efficiency of S. obliquus, and multicelled colonies showed constant proportions. At the high concentration range of 0.20-2.0 mg L(-1), atrazine significantly inhibited the algal growth and photosynthesis whereas glyphosate or 2,4-D did not. Nonetheless, these levels of glyphosate or 2,4-D remarkably decreased the proportion of multicelled colonies, with reduced numbers of cells per particle in Daphnia filtrate-treated population. No eight-celled colony was formed after treatment with atrazine at 0.20-2.0 mg L(-1) despite the addition of Daphnia filtrate. These results suggest that herbicide exposure impairs antigrazer colonial morphs in phytoplankton although it is not sufficient to hamper algal growth. This phenomenon can increase the risk of predation by herbivores, thereby disrupting the inducible phytoplankton community. Furthermore, the predator-prey interactions between herbivores and phytoplankton can be potentially changed more seriously than previously considered.
Collapse
Affiliation(s)
- Xuexia Zhu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xingxing Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Hailu Heng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Haihong Nan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Lu Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
11
|
Low temperature and Daphnia-associated infochemicals promote colony formation of Scenedesmus obliquus and its harvesting. Biotechnol Lett 2016; 39:85-90. [PMID: 27654822 DOI: 10.1007/s10529-016-2223-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass. RESULTS A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced-colony formation of Scenedesmus. The maximum colony size at 15-25 °C was significantly larger than those at 30-35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass. CONCLUSION Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15-25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
Collapse
|
12
|
Roccuzzo S, Beckerman AP, Pandhal J. The use of natural infochemicals for sustainable and efficient harvesting of the microalgae Scenedesmus spp. for biotechnology: insights from a meta-analysis. Biotechnol Lett 2016; 38:1983-1990. [PMID: 27565669 PMCID: PMC5075343 DOI: 10.1007/s10529-016-2192-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/18/2016] [Indexed: 10/30/2022]
Abstract
Open raceway ponds are regarded as the most economically viable option for large-scale cultivation of microalgae for low to mid-value bio-products, such as biodiesel. However, improvements are required including reducing the costs associated with harvesting biomass. There is now a growing interest in exploiting natural ecological processes within biotechnology. We review how chemical cues produced by algal grazers induce colony formation in algal cells, which subsequently leads to their sedimentation. A statistical meta-analysis of more than 80 studies reveals that Daphnia grazers can induce high levels of colony formation and sedimentation in Scenedesmus obliquus and that these natural, infochemical induced sedimentation rates are comparable to using commercial chemical equivalents. These data suggest that natural ecological interactions can be co-opted in biotechnology as part of a promising, low energy and clean harvesting method for use in large raceway systems.
Collapse
Affiliation(s)
- Sebastiana Roccuzzo
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
| |
Collapse
|