1
|
Tomal A, Szłapka-Kosarzewska J, Mironiuk M, Michalak I, Marycz K. Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions improves insulin sensitivity and reduces systemic inflammation in equine metabolic affected horses. Front Endocrinol (Lausanne) 2024; 15:1382844. [PMID: 38689728 PMCID: PMC11058661 DOI: 10.3389/fendo.2024.1382844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024] Open
Abstract
Equine metabolic syndrome (EMS) is a critical endocrine condition in horses, characterized by hyperinsulinemia, hyperlipidemia, and insulin resistance, posing a significant threat to their health. This study investigates the efficacy of supplementing EMS-affected horses with Arthrospira platensis enriched with Cr(III), Mg(II), and Mn(II) ions using biosorption process in improving insulin sensitivity and glucose tolerance, reducing inflammation, and mitigating obesity-related fat accumulation. Our results demonstrate that Arthrospira supplementation reduces baseline insulin and glucose levels, contributing to decreased adipose tissue inflammation. Furthermore, Arthrospira supplementation results in a decrease in body weight and improvements in overall body condition scores and cresty neck scores. Additionally, administration of Arthrospira leads to reduced levels of triglycerides and aspartate aminotransferase, indicating a decrease in hepatic adiposity and inflammation. These findings suggest that Arthrospira, enriched with essential micro- and macroelements, can be an advanced feed additive to enhance insulin sensitivity, promote weight reduction, and alleviate inflammatory processes, thereby improving the overall condition of horses affected by EMS. The use of Arthrospira as a feed additive has the potential to complement conventional management strategies for EMS.
Collapse
Affiliation(s)
- Artur Tomal
- International Institute of Translational Medicine, Wisznia Mała, Poland
| | | | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Krzysztof Marycz
- International Institute of Translational Medicine, Wisznia Mała, Poland
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Application of Green Technology to Extract Clean and Safe Bioactive Compounds from Tetradesmus obliquus Biomass Grown in Poultry Wastewater. Molecules 2023; 28:molecules28052397. [PMID: 36903642 PMCID: PMC10005368 DOI: 10.3390/molecules28052397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Microalgae are capable of assimilating nutrients from wastewater (WW), producing clean water and biomass rich in bioactive compounds that need to be recovered from inside the microalgal cell. This work investigated subcritical water (SW) extraction to collect high-value compounds from the microalga Tetradesmus obliquus after treating poultry WW. The treatment efficiency was evaluated in terms of total Kjeldahl nitrogen (TKN), phosphate, chemical oxygen demand (COD) and metals. T. obliquus was able to remove 77% TKN, 50% phosphate, 84% COD, and metals (48-89%) within legislation values. SW extraction was performed at 170 °C and 30 bar for 10 min. SW allowed the extraction of total phenols (1.073 mg GAE/mL extract) and total flavonoids (0.111 mg CAT/mL extract) with high antioxidant activity (IC50 value, 7.18 µg/mL). The microalga was shown to be a source of organic compounds of commercial value (e.g., squalene). Finally, the SW conditions allowed the removal of pathogens and metals in the extracts and residues to values in accordance with legislation, assuring their safety for feed or agriculture applications.
Collapse
|
3
|
Nighojkar A, Sangal VK, Dixit F, Kandasubramanian B. Sustainable conversion of saturated adsorbents (SAs) from wastewater into value-added products: future prospects and challenges with toxic per- and poly-fluoroalkyl substances (PFAS). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78207-78227. [PMID: 36184702 DOI: 10.1007/s11356-022-23166-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Following circular economy principles, the reuse or recycling of saturated adsorbents (SAs or adsorbate-laden adsorbents) into a low-cost engineered product is a valuable alternative to eliminate secondary pollution after adsorption. This review evaluates the application of SAs for the generation of products that can serve as (i) antimicrobial agents or disinfectants, (ii) materials for civil construction, (iii) catalysts, (iv) fertilizers, and (v) secondary adsorbents. The importance of SAs configuration in terms of functional groups, surface area and pore morphology played a crucial role in their reutilization. The SAs-laden silver ions (Ag+) strongly inhibit (~ 99%) the growth of Escherichia coli and Staphylococcus aureus microbes found in drinking and wastewaters. The intra-solidification of SAs containing toxic metal pollutants (As3+ and F-) with cementitious materials can effectively reduce their leaching below permissible limits of USEPA standards for their utility as additives in construction work. The existence of transition metal ions (Cu2+, Cr3+/6+, Ni2+) on the surface of SAs boosted activity and selectivity towards the desired product during catalytic oxidation, degradation, and conversion processes. The thermally recycled SAs can assist in the secondary adsorption of pollutants from another waste solution due to a larger surface area (> 1000 m2g-1). However, there are chances that the SAs discussed above will contain traces of PFAS. The article summarizes the challenges, performance efficacy, and future prospects at the end of each value-added product. We also highlight critical challenges for managing PFAS-laden SAs and stimulate new perspectives to minimize PFAS in air, water, and soils.
Collapse
Affiliation(s)
- Amrita Nighojkar
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India
| | - Vikas Kumar Sangal
- Department of Chemical Engineering, Malaviya National Institute of Technology (MNIT), Jaipur, India
| | - Fuhar Dixit
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, Canada
| | - Balasubramanian Kandasubramanian
- Nano Surface Texturing Lab, Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (D.U.), Pune, India.
| |
Collapse
|
4
|
Ligas B, Izydorczyk G, Mikula K, Skrzypczak D, Konkol D, Korczyński M, Witek-Krowiak A, Chojnacka K. Valorization of postextraction residues-analysis of the influence of new feed additives with micronutrients on eggs quality parameters. Poult Sci 2021; 100:101416. [PMID: 34607152 PMCID: PMC8493587 DOI: 10.1016/j.psj.2021.101416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 12/03/2022] Open
Abstract
This paper presents attempts to enrich hens eggs with ions of copper, manganese, and zinc through the use of new feed additives (19 mg Cu2+; 124 mg Mn2+ and 85 mg Zn2+) such as biomass of alfalfa and goldenrod after extraction with supercritical carbon dioxide enriched with microelements via biosorption. Mechanical parameters of eggs (shell thickness and strength, Haugh unite), hen's laying performance, microelements content in albumen and yolk were examined and the transfer factor from feed to eggs was determined. The highest transfer of microelements content in albumen occurred in the group of hens fed with enriched goldenrod in a 100% dose (daily dose of microelements from biomass; Cu2+ 106%; Mn2+ 104%; Zn2+ 104% more in comparison to the inorganic salt group), while the highest yolk enrichment with microelements manifested itself for hens fed with enriched goldenrod in a 50% dose (daily dose of microelements from biomass; Cu2+ 32%; Zn2+ 22% more in comparison to the inorganic salt group). These groups also had the highest total microelements concentration. Mechanical properties of eggs varied insignificantly during the trial. Production parameters did not differ statistically among all experimental group. Eggs produced with need additives had better organoleptic parameters than fed with conventional premixes, which is why they were preferred by the respondents. The presented technology allows obtaining low-cost feed materials characterized by high bioavailability of components. The produced feed additives can serve as potential material for biofortification of eggs with nutrients.
Collapse
Affiliation(s)
- Bartosz Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland.
| | - Grzegorz Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Katarzyna Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Dawid Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Damian Konkol
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wroclaw, Poland
| | - Mariusz Korczyński
- Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 38C, 51-630 Wroclaw, Poland
| | - Anna Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wroclaw, Poland
| |
Collapse
|
5
|
Chaves AAM, Martins CF, Carvalho DFP, Ribeiro DM, Lordelo M, Freire JPB, de Almeida AM. A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding-a special emphasis on tropical regions. Trop Anim Health Prod 2021; 53:396. [PMID: 34247303 DOI: 10.1007/s11250-021-02800-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/30/2021] [Indexed: 01/17/2023]
Abstract
With the current increase in meat and animal products consumption, there is a need to make production systems more sustainable. The use of microalgae in monogastric feeds, replacing widely used conventional feedstuffs such corn and soybean, can be a solution to overcome this problem. Several studies have shown promising results in the use of microalgae in feeding of both pigs and poultry. However, there are several important constraints associated to the production of microalgae. Such constraints are particularly limiting in the context of tropical regions. Research and scientific development on microalgae production systems are thus essential so that may be widely used in monogastric feeding. Herein, we conduct an overview of the major findings in the use of microalgae in the context of monogastric feeding and analyse the major constraints associated to its production and use, particularly in the specific context of tropical regions.
Collapse
Affiliation(s)
- Andreia A M Chaves
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Cátia F Martins
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Daniela F P Carvalho
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - David M Ribeiro
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Madalena Lordelo
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - João P B Freire
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - André M de Almeida
- LEAF - LEAF, Instituto Superior de Agronomia Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| |
Collapse
|
6
|
Kowalczyk P, Ligas B, Skrzypczak D, Mikula K, Izydorczyk G, Witek-Krowiak A, Moustakas K, Chojnacka K. Biosorption as a method of biowaste valorization to feed additives: RSM optimization. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115937. [PMID: 33158622 DOI: 10.1016/j.envpol.2020.115937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to prepare an innovative microelemental feed additive for laying hens, based on waste biomass from the agricultural sector (alfalfa and goldenrod after CO2 extraction in supercritical state). The process was optimized by Response Surface Methodology (RSM) and the most favourable enrichment conditions were selected for Cu(II), Mn(II) and Zn(II) ions: pH - 5, sorbate concentration of Cu(II), Mn(II), Zn(II) - 10.0 mg/L for alfalfa and 10.7 mg/L for goldenrod and biomass dose - 0.1 g/L. Physicochemical properties of biomass were studied and functional groups involved in the binding of Cu(II), Mn(II), Zn(II) ions were determined (mainly carboxylic and hydroxylic groups). An interesting and unique element of this work is the verification of the properties of prepared feed additives in conditions simulating the digestive tract of animals. The release of components in solutions simulating conditions in the intestine and stomach (pH 11 and pH 1) was tested (in vitro tests). The best desorption results were achieved at a strongly acidic pH which corresponds to the stomach environment: 9.80, 14.4% Cu(II), 69.0, 66.9% (Zn), 46.5, 31.9 Mn(II) for alfalfa and goldenrod, respectively. It was concluded that the biomass enriched with micronutrients in biosorption has the potential as a feed additive for sustainable agriculture.
Collapse
Affiliation(s)
- P Kowalczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - B Ligas
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - D Skrzypczak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland.
| | - K Mikula
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - G Izydorczyk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - A Witek-Krowiak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| | - K Moustakas
- School of Chemical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - K Chojnacka
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372, Wrocław, Poland
| |
Collapse
|
7
|
Alagawany M, Elnesr SS, Farag MR, Tiwari R, Yatoo MI, Karthik K, Michalak I, Dhama K. Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health - a comprehensive review. Vet Q 2020; 41:1-29. [PMID: 33250002 PMCID: PMC7755404 DOI: 10.1080/01652176.2020.1857887] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/08/2023] Open
Abstract
Nutraceuticals have gained immense importance in poultry science recently considering the nutritional and beneficial health effects of their constituents. Besides providing nutritional requirements to birds, nutraceuticals have beneficial pharmacological effects, for example, they help in establishing normal physiological health status, prevent diseases and thereby improve production performance. Nutraceuticals include amino acids, vitamins, minerals, enzymes, etc. which are important for preventing oxidative stress, regulating the immune response and maintaining normal physiological, biochemical and homeostatic mechanisms. Nutraceuticals help in supplying nutrients in balanced amounts for supporting the optimal growth performance in modern poultry flocks, and as a dietary supplement can reduce the use of antibiotics. The application of antibiotic growth enhancers in poultry leads to the propagation of antibiotic-resistant microbes and drug residues; therefore, they have been restricted in many countries. Thus, there is a demand for natural feed additives that lead to the same growth enhancement without affecting the health. Nutraceuticals substances have an essential role in the development of the animals' normal physiological functions and in protecting them against infectious diseases. In this review, the uses of amino acids, vitamins and minerals as well as their mode of action in growth promotion and elevation of immune system are discussed.
Collapse
Affiliation(s)
- Mahmoud Alagawany
- Faculty of Agriculture, Department of Poultry, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Faculty of Agriculture, Department of Poultry Production, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Faculty of Veterinary Medicine, Forensic Medicine and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mohd. Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wrocław University of Science and Technology, Wrocław, Poland
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
8
|
Semjon B, Dudriková E, Jaďďuttová I, Bartkovský M, Klempová T, Marcinčáková D, Slaný O, Marcinčák S. Effect of supplementation with solid-state fermented feed in the diet of laying hens on egg qualitative variables. POTRAVINARSTVO 2020. [DOI: 10.5219/1337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this experiment was to evaluate the effect of the supplementation of laying hens diet with solid-state fermented feed on egg qualitative variables. The diet of laying hens was supplemented with 10% and 15% of solid-state feed fermented by the low filamentous fungal strain Mortierella alpina CCF 2861. For the trial, 30 Lohmann Brown classic layers, aged 17 weeks, were selected and individually weighed and divided into three groups (control and two experimental groups). The control group of laying hens was fed with basic feed mixture and the experimental groups received the same diet as a control group, but enriched with supplementation of solid-state fermented feed. The first experimental group was fed a diet supplemented with 10% of fermented feed and the second experimental group with 15% supplementation. The following egg qualitative variables were observed: the egg weight, Haugh units, quality grade, air cell depth, percentage of the shell, yolk and albumen, eggshell breaking force, pH of egg yolk and albumen, egg yolk colour, and antioxidant activity with the extent of lipid oxidation in egg yolk samples. The pH of yolk and albumen did not show differences between all examined eggs originating from the experimental groups of laying hens (p >0.05). The eggs from both experimental groups had a significantly higher eggshell hardness than eggs produced by the hens of the control group (p <0.05). Antioxidant activity of egg yolk of experimental samples increased with the supplementation of fermented feed in the diet of laying hens (p <0.05). The specific lightness of egg yolk colour increased significantly in the experimental group with 15% of supplementation (p <0.01). The obtained results showed that feeding laying hens with fermented feed positively affected the quality of produced eggs. This was the first study and further investigation before using the fermented feed in commercial laying hen farms is necessary.
Collapse
|
9
|
Michalak I, Andrys M, Korczyński M, Opaliński S, Łęska B, Konkol D, Wilk R, Rój E, Chojnacka K. Biofortification of Hens Eggs with Polyunsaturated Fatty Acids by New Dietary Formulation: Supercritical Microalgal Extract. Animals (Basel) 2020; 10:ani10030499. [PMID: 32192036 PMCID: PMC7143336 DOI: 10.3390/ani10030499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/25/2020] [Accepted: 03/15/2020] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to evaluate the effect of Spirulina platensis, formulation containing microalgal extract, post-extraction residue, and formulation without algal extract (containing only emulsifier) on the content of FAs in the eggs of laying hens. The experiment was conducted on 90 laying hens (ISA Brown) as a completely randomized design. Hens were assigned to five experimental groups (six replicates). The FAs content in eggs was determined after 30, 60, 90, and 120 days of the experiment. There were no statistically significant differences in FA profiles after 30 days of the experiment. It was shown that after 60, 90, and 120 days of the experiment, the investigated additives had a significant impact on the content of such acids as: dodecanoic acid (C12:0), C15:0, nonadecanoic acid (C19:0), myristoleic acid (C14:1 n-5), α-linolenic acid (ALA, C18:3 n-3), DPA, C20:2 n-6, and decosahexaenoic acid (DHA C22:6 n-6). There were also significant differences in total PUFA n-3, PUFA n-6, and n-6/n-3 ratio in eggs. The obtained results suggest that the use of algae extract and emulsifier in laying hens nutrition has the greatest impact on the FA profile in the eggs.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (I.M.); (R.W.); (K.C.)
| | - Marita Andrys
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (M.A.); (M.K.); (S.O.)
| | - Mariusz Korczyński
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (M.A.); (M.K.); (S.O.)
| | - Sebastian Opaliński
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (M.A.); (M.K.); (S.O.)
| | - Bogusława Łęska
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznań, Poland;
| | - Damian Konkol
- Department of Environment Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, Chełmońskiego 38C, 51-630 Wrocław, Poland; (M.A.); (M.K.); (S.O.)
- Correspondence:
| | - Radosław Wilk
- Department of Advanced Material Technologies, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (I.M.); (R.W.); (K.C.)
| | - Edward Rój
- Supercritical Extraction Department, Łukasiewicz Research Network—New Chemical Syntheses Institute, Aleja Tysiąclecia Państwa Polskiego 13a, 24-110 Puławy, Poland;
| | - Katarzyna Chojnacka
- Department of Advanced Material Technologies, Wrocław University of Science and Technology, Smoluchowskiego 25, 50-372 Wrocław, Poland; (I.M.); (R.W.); (K.C.)
| |
Collapse
|
10
|
Michalak I, Mironiuk M, Godlewska K, Trynda J, Marycz K. Arthrospira (Spirulina) platensis: An effective biosorbent for nutrients. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
12
|
Michalak I, Mironiuk M, Marycz K. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One 2018; 13:e0205590. [PMID: 30321205 PMCID: PMC6188872 DOI: 10.1371/journal.pone.0205590] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Abstract
In the present study, a comprehensive approach to the biosorption process was proposed. Biosorption of Cr(III), Mn(II) and Mg(II) ions by a freshwater macroalga Cladophora glomerata was examined using several advanced techniques including FTIR (Fourier Transform Infrared Spectroscopy), ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry) and SEM-EDX (Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy). The enriched biomass can become a valuable, bioactive feed additive for different breeds of animals. Additionally, the collected algal biomass was soaked in water in order to reduce the content of carbohydrate, what is especially important for animals with metabolic disorders. The content of starch was reduced by 22% but additionally some elements-mainly Si, K and P were removed from the biomass. It was shown that the natural macroalga had better biosorption properties than soaked. Cr(III) ions were sorbed by the biomass in the highest extent, then Mn(II) and finally Mg(II) ions. The content of chromium in the enriched algal biomass increased almost ~200 000 times, manganese ~75 times and magnesium ~4.5 times (both for Mg(II) ions used from magnesium sulphate, as well as from magnesium chloride) when compared to the natural Cladophora glomerata. In the case of the soaked biomass the increase of the content of elements in the enriched biomass was as follows ~17 165 times for Cr, ~25 times for Mn and for Mg ~3.5 times for chloride and 3.8 times for sulphate. The type of magnesium salt (chloride or sulphate) had no significant effect on the algal sorption capacity. The proposed mechanism of the biosorption is ion exchange in which mainly potassium participated. The applied FTIR analysis enabled the identification of the functional groups that participated in the biosorption process-mainly carboxyl and hydroxyl. The main changes in the appearance of the spectra were observed for the following wavenumbers- 3300-3400; 2900; 1700; 1400-1500 and 1200-1300 cm-1. The application of SEM-EDX proved that the metal ions were sorbed on the surface of both tested algae.
Collapse
Affiliation(s)
- Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
- * E-mail:
| | - Małgorzata Mironiuk
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | - Krzysztof Marycz
- Department of Experimental Biology, The Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Faculty of Veterinary Medicine, Equine Clinic—Equine Surgery, Justus-Liebig-University, Gießen, Germany
| |
Collapse
|
13
|
Feed Additives Produced on the Basis of Organic Forms of Micronutrients as a Means of Biofortification of Food of Animal Origin. J CHEM-NY 2018. [DOI: 10.1155/2018/8084127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In recent years, there has been a steadily growing demand for animal protein. Consumer awareness is also growing every year, which is why breeders are obliged to provide animals with the best possible environmental conditions that will determine the productivity of animals and the quality of raw materials obtained from them. Today's consumer is looking for not only the highest quality food but also the one that will characterize health-promoting properties. Therefore, food is sought, which will be characterized by a favorable profile of fatty acids and a high content of biologically active ingredients, such as vitamins or minerals. One of the most effective methods of enriching food with these ingredients is their supplementation in feed. However, it should be remembered that the form in which such a component will be delivered is very important. High hopes are associated with the possibility of using organic forms of macro- and micronutrients, which are sometimes better absorbed than inorganic salts. The aim of the work was to collect and systematize knowledge related to the possibility of enriching food of animal origin with micronutrients using additional feed containing these ingredients in organic form.
Collapse
|
14
|
Using agro-industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnol Adv 2018; 36:1238-1254. [PMID: 29673973 PMCID: PMC7125918 DOI: 10.1016/j.biotechadv.2018.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/12/2018] [Accepted: 04/12/2018] [Indexed: 12/17/2022]
Abstract
Aquatic organisms, such as microalgae (Chlorella, Arthrospira (Spirulina), Tetrasselmis, Dunalliela etc.) and duckweed (Lemna spp., Wolffia spp. etc.) are a potential source for the production of protein-rich biomass and for numerous other high-value compounds (fatty acids, pigments, vitamins etc.). Their cultivation using agro-industrial wastes and wastewater (WaW) is of particular interest in the context of a circular economy, not only for recycling valuable nutrients but also for reducing the requirements for fresh water for the production of biomass. Recovery and recycling of nutrients is an unavoidable long-term approach for securing future food and feed production. Agro-industrial WaW are rich in nutrients and have been widely considered as a potential nutrient source for the cultivation of microalgae/duckweed. However, they commonly contain various hazardous contaminants, which could potentially taint the produced biomass, raising various concerns about the safety of their consumption. Herein, an overview of the most important contaminants, including heavy metals and metalloids, pathogens (bacteria, viruses, parasites etc.), and xenobiotics (hormones, antibiotics, parasiticides etc.) is given. It is concluded that pretreatment and processing of WaW is a requisite step for the removal of several contaminants. Among the various technologies, anaerobic digestion (AD) is widely used in practice and offers a technologically mature approach for WaW treatment. During AD, various organic and biological contaminants are significantly removed. Further removal of contaminants could be achieved by post-treatment and processing of digestates (solid/liquid separation, dilution etc.) to further decrease the concentration of contaminants. Moreover, during cultivation an additional removal may occur through various mechanisms, such as precipitation, degradation, and biotransformation. Since many jurisdictions regulate the presence of various contaminants in feed or food setting strict safety monitoring processes, it would be of particular interest to initiate a multi-disciplinary discussion whether agro-industrial WaW ought to be used to cultivate microalgae/duckweed for feed or food production and identify most feasible options for doing this safely. Based on the current body of knowledge it is estimated that AD and post-treatment of WaW can lower significantly the risks associated with heavy metals and pathogens, but it is yet unclear to what extent this is the case for certain persistent xenobiotics.
Collapse
|
15
|
Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Adv Colloid Interface Sci 2017; 242:35-58. [PMID: 28256201 DOI: 10.1016/j.cis.2016.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/18/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023]
Abstract
Adsorption is a facile, economic, eco-friendly and low-energy requiring technology that aims to separate diverse compounds (ions and molecules) from one phase to another using a wide variety of adsorbent materials. To date, this technology has been used most often for removal/recovery of pollutants from aqueous solutions; however, emerging post-sorption technologies are now enabling the manufacture of value-added key adsorption products that can subsequently be used for (i) fertilizers, (ii) catalysis, (iii) carbonaceous metal nanoparticle synthesis, (iv) feed additives, and (v) biologically active compounds. These new strategies ensure the sustainable valorisation of post-sorption materials as an economically viable alternative to the engineering of other green chemical products because of the ecological affability, biocompatibility, and widespread accessibility of post-sorption materials. Fertilizers and feed additives manufactured using sorption technology contain elements such as N, P, Cu, Mn, and Zn, which improve soil fertility and provide essential nutrients to animals and humans. This green and effective approach to managing post-sorption materials is an important step in reaching the global goals of sustainability and healthy human nutrition. Post-sorbents have also been utilized for the harvesting of metal nanoparticles via modern catalytic pyrolysis techniques. The resulting materials exhibited a high surface area (>1000m2/g) and are further used as catalysts and adsorbents. Together with the above possibilities, energy production from post-sorbents is under exploration. Many of the vital 3E (energy, environment, and economy) problems can be addressed using post-sorption materials. In this review, we summarize a new generation of applications of post-adsorbents as value-added green chemical products. At the end of each section, scientific challenges, further opportunities, and issues related to toxicity are discussed. We believe this critical evaluation not only delivers essential contextual information to researchers in the field but also stimulates new ideas and applications to further advance post-sorbent applications.
Collapse
|