1
|
Hull T, King KJ, Kruger JS, Christensen ED, Chamas A, Pienkos PT, Dong T. Nutrient Recovery from Algae Using Mild Oxidative Treatment and Ion Exchange. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:8573-8580. [PMID: 38845760 PMCID: PMC11151276 DOI: 10.1021/acssuschemeng.4c02658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024]
Abstract
Valorization of algal biomass to fuels and chemicals frequently requires pretreatment to lyse cells and extract lipids, leaving behind an extracted solid residue as an underutilized intermediate. Mild oxidative treatment (MOT) is a promising route to simultaneously convert nitrogen contained in these residues to easily recyclable ammonium and to convert carbon in the same fraction to biofuel precursor carboxylates. We show that for a Nannochloropsis algae under certain oxidation conditions, nearly all the nitrogen in the residues can be converted to ammonium and recovered by cation exchange, while up to ∼20% of the carbon can be converted to short chain carboxylates. At the same time, we also show that soluble phosphorus in the form of phosphate can be selectively recovered by anion exchange, leaving a clean aqueous carbon stream for further upgrading.
Collapse
Affiliation(s)
- Tobias
C. Hull
- Advanced
Energy Systems Graduate Program, Colorado
School of Mines, Golden, Colorado 80401, United
States
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Kameron J. King
- Department
of Civil and Environmental Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Jacob S. Kruger
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Earl D. Christensen
- Catalytic
Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ali Chamas
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Philip T. Pienkos
- Matereal,
Inc. 1007 Savannah Avenue, Pittsburgh, Pennsylvania 15227, United States
| | - Tao Dong
- Catalytic
Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Kruger J, Schutter S, Knoshaug EP, Panczak B, Alt H, Sowell A, Van Wychen S, Fowler M, Hirayama K, Thakkar A, Kumar S, Dong T. De-risking Pretreatment of Microalgae To Produce Fuels and Chemical Co-products. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:8804-8816. [PMID: 38774063 PMCID: PMC11103650 DOI: 10.1021/acs.energyfuels.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Conversion of microalgae to renewable fuels and chemical co-products by pretreating and fractionation holds promise as an algal biorefinery concept, but a better understanding of the pretreatment performance as a function of algae strain and composition is necessary to de-risk algae conversion operations. Similarly, there are few examples of algae pretreatment at scales larger than the bench scale. This work aims to de-risk algal biorefinery operations by evaluating the pretreatment performance across nine different microalgae samples and five different pretreatment methods at small (5 mL) scale and further de-risk the operation by scaling pretreatment for one species to the 80 L scale. The pretreatment performance was evaluated by solubilization of feedstock carbon and nitrogen [as total organic carbon (TOC) and total nitrogen (TN)] into the aqueous hydrolysate and extractability of lipids [as fatty acid methyl esters (FAMEs)] from the pretreated solids. A range of responses was noted among the algae samples across pretreatments, with the current dilute Brønsted acid pretreatment using H2SO4 being the most consistent and robust. This pretreatment produced TOC yields to the hydrolysate ranging from 27.7 to 51.1%, TN yields ranging from 12.3 to 76.2%, and FAME yields ranging from 57.9 to 89.9%. In contrast, the other explored pretreatments (other dilute acid pretreatments, dilute alkali pretreatment with NaOH, enzymatic pretreatment, and flash hydrolysis) produced lower or more variable yields across the three metrics. In light of the greater consistency across samples for dilute acid pretreatment, this method was scaled to 80 L to demonstrate scalability with microalgae feedstocks.
Collapse
Affiliation(s)
- Jacob
S. Kruger
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Skylar Schutter
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Eric P. Knoshaug
- BioSciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Bonnie Panczak
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Hannah Alt
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Alicia Sowell
- BioSciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Stefanie Van Wychen
- Renewable
Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Matthew Fowler
- BioSciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Kyoko Hirayama
- Department
of Civil and Environmental Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Anuj Thakkar
- Department
of Civil and Environmental Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sandeep Kumar
- Department
of Civil and Environmental Engineering, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Tao Dong
- Catalytic
Carbon Transformation & Scale-Up Center, National Renewable Energy Laboratory, 15013, Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
3
|
Rowland S, Van Wychen S, Dong T, Leach R, Laurens LML. High-Resolution Lipidomics Reveals Influence of Biomass and Pretreatment Process on the Composition of Extracted Algae Oils As Feedstock for Sustainable Aviation Fuels. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:6547-6552. [PMID: 38595993 PMCID: PMC11000214 DOI: 10.1021/acs.energyfuels.3c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/11/2024]
Abstract
The increasing demand for sustainable aviation fuel (SAF) creates a need for innovative biomass and lipid sources with compositions that are compatible with refineries. Algae-derived oils present an opportunity to supply a process-compatible lipid feedstock at yields higher than those of conventional oilseed crops. With few documented reports on chemical composition, the process readiness remains elusive. We present data on extraction efficiency, yield, and purity of lipids from algae with and without the application of a low-concentration sulfuric acid pretreatment of the biomass. The pretreatment process increased the oil yield and positively impacted the quality of the extracted oils. Results from fatty acid and lipidomics analysis revealed that the low-lipid biomass sources extracted 70-80% of the available lipids, and the non-fatty acid co-extractants exceeded 40% of the extracted oils. For a high-lipid algae sample, derived from a genetically engineered strain, we show >90% extraction yield with >85% FAME purity. This work provides insights into the composition of algae-derived oils and quality metrics that are essential to determining the viability of lipid hydroprocessing to SAF.
Collapse
Affiliation(s)
- Steven
M. Rowland
- Bioenergy
Science and Technology Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Stefanie Van Wychen
- Bioenergy
Science and Technology Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Tao Dong
- Bioenergy
Science and Technology Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Roger Leach
- Viridos
(formerly Synthetic Genomics), 11149 N Torrey Pines Road, La Jolla, California 92037, United States
| | - Lieve M. L. Laurens
- Bioenergy
Science and Technology Directorate, National
Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
4
|
Wahlen BD, Wendt LM, St Germain CC, Traynor SM, Barboza C, Dempster T, Gerken H, McGowen J, You Y. Effect of nitrogen management in cultivation on the stability and microbial community of post-harvest Monoraphidium sp. algae biomass. J Ind Microbiol Biotechnol 2023; 50:kuad004. [PMID: 36928716 PMCID: PMC10548854 DOI: 10.1093/jimb/kuad004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023]
Abstract
Long-term storage is necessary to mitigate for seasonal variation in algae productivity, to preserve biomass quality and to guarantee a constant biomass supply to a conversion facility. While ensiling has shown promise as a solution, biomass attributes for successful storage are poorly understood. Storage studies of Monoraphidium sp. biomass indicate a strong correlation between nitrogen management in algae cultivation and stability of post-harvest algae biomass. Algae cultivated with periodic nitrogen addition were stored poorly (>20% loss, dry basis) compared to biomass from nitrogen depleted cultivation (8% loss, dry basis). A follow-up study compared the post-harvest stability of Monoraphidium biomass cultivated in nitrogen-deplete or nitrogen-replete conditions. Replete biomass experienced the largest degradation (24%, dry basis), while deplete biomass experienced the least (10%, dry basis). Dry matter loss experienced among blends of each correlated positively with nitrogen-replete biomass content. The composition of the post-storage algae microbial community was also affected by cultivation conditions, with Clostridia species being more prevalent in stored biomass obtained from nitrogen-replete cultivations. Nitrogen management has long been known to influence algae biomass productivity and biochemical composition; here, we demonstrate that it also strongly influences the stability of post-harvest algae biomass in anaerobic storage.
Collapse
Affiliation(s)
- Bradley D Wahlen
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Lynn M Wendt
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | | | - Sarah M Traynor
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Caitlin Barboza
- Biological Processing, Idaho National Laboratory, Idaho Falls 83415, USA
| | - Thomas Dempster
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Henri Gerken
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - John McGowen
- Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa 85212, USA
| | - Yaqi You
- SUNY College of Environmental Science and Forestry, State University of New York, Syracuse 13210, USA
| |
Collapse
|
5
|
Huesemann M, Gao S, Edmundson S, Laurens LM, Van Wychen S, Beirne N, Gutknecht A, Kruk R, Pittman K, Greer M, Graham S, Mueller T. DISCOVR strain pipeline screening – Part II: Winter and summer season areal productivities and biomass compositional shifts in climate-simulation photobioreactor cultures. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Kruger JS, Wiatrowski M, Davis RE, Dong T, Knoshaug EP, Nagle NJ, Laurens LML, Pienkos PT. Enabling Production of Algal Biofuels by Techno-Economic Optimization of Co-Product Suites. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2021.803513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent techno-economic analysis (TEA) has underscored that for algal biofuels to be cost competitive with petroleum fuels, co-products are necessary to offset the cost of fuel production. The co-product suite must scale with fuel production while also maximizing value from the non-fuel precursor components. The co-product suite also depends on algal biomass composition, which is highly dynamic and depends on environmental conditions during cultivation. Intentional shifts in composition during cultivation are often associated with reduced biomass productivity, which can increase feedstock production costs for the algae-based biorefinery. The optimal algae-based biorefinery configuration is thus a function of many factors. We have found that comprehensive TEA, which requires the construction of process models with detailed mass and energy balances, along with a complete accounting of capital and operating expenditures for a commercial-scale production facility, provides invaluable insight into the viability of a proposed biorefinery configuration. This insight is reflected in improved viability for one biorefining approach that we have developed over the last 10 years, namely, the Combined Algal Processing (CAP) approach. This approach fractionates algal biomass into carbohydrate-, lipid-, and protein-rich fractions, and tailors upgrading chemistry to the composition of each fraction. In particular, transitioning from valorization of only the lipids to a co-product suite from multiple components of high-carbohydrate algal biomass can reduce the minimum fuel selling price (MFSP) from more than $8/gallon of gasoline equivalent (GGE) to $2.50/GGE. This paper summarizes that progress and discusses several surprising implications in this optimization approach.
Collapse
|
7
|
Growth Performance, Biochemical Composition and Nutrient Recovery Ability of Twelve Microalgae Consortia Isolated from Various Local Organic Wastes Grown on Nano-Filtered Pig Slurry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020422. [PMID: 35056737 PMCID: PMC8781922 DOI: 10.3390/molecules27020422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 11/17/2022]
Abstract
This paper demonstrated the growth ability of twelve algae-microbial consortia (AC) isolated from organic wastes when a pig slurry-derived wastewater (NFP) was used as growth substrate in autotrophic cultivation. Nutrient recovery, biochemical composition, fatty acid and amino acid profiles of algae consortia were evaluated and compared. Three algae-microbial consortia, i.e., a Chlorella-dominated consortium (AC_1), a Tetradesmus and Synechocystis co-dominated consortium (AC_10), and a Chlorella and Tetradesmus co-dominated consortium (AC_12) were found to have the best growth rates (µ of 0.55 ± 0.04, 0.52 ± 0.06, and 0.58 ± 0.03 d−1, respectively), which made them good candidates for further applications. The ACs showed high carbohydrates and lipid contents but low contents of both proteins and essential amino acids, probably because of the low N concentration of NFP. AC_1 and AC_12 showed optimal ω6:ω3 ratios of 3.1 and 3.6, which make them interesting from a nutritional point of view.
Collapse
|
8
|
You K, Ge F, Wu X, Song K, Yang Z, Zhang Q, Liu Y, Ruan R, Zheng H. Nutrients recovery from piggery wastewater and starch wastewater via microalgae-bacteria consortia. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102551] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Bhushan S, Rana MS, Bhandari M, Sharma AK, Simsek H, Prajapati SK. Enzymatic pretreatment of algal biomass has different optimal conditions for biogas and bioethanol routes. CHEMOSPHERE 2021; 284:131264. [PMID: 34216928 DOI: 10.1016/j.chemosphere.2021.131264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic pretreatment is emerging as an efficient tool for the extraction of biofuel precursors from algal biomass. However, yardsticks for end-use directed selection of optimal pretreatment conditions are not yet identified. The present study, for the first time, reveals different optimal conditions for algal biomass solubilization and sugar release. Algal biomass pretreatment optimization was carried out using the Taguchi method. Crude enzyme from Aspergillus fischeri was found effective for pretreatment of Chlorella pyrenoidosa. Maximum sugar yield (190 mg g-1 biomass) from algal biomass was observed at a substrate concentration of 4 g L-1, with a 5% enzyme load at temperature 60°C, pH 5.5, and shaking speed of 80 rpm. In contrast, maximum sCOD (1350 mg g-1 biomass) was obtained at 2 g L-1 substrate concentration with enzyme load of 20% v/v, at 60°C, pH 4, and shaking speed of 100 rpm. Hence, the first set of conditions would be more beneficial for bioethanol production. Whereas another set of conditions would improve the biofuel production that requires maximum solubilization of algal biomass, such as fermentative methane production. Overall, the present observations established that process conditions required for enzymatic pretreatment of algal biomass should be selected according to the desired biofuel type.
Collapse
Affiliation(s)
- Shashi Bhushan
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India; Department of Agricultural and Biosystem Engineering, North Dakota State University (NDSU), North Dakota, 58102, USA
| | - Mohit Singh Rana
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Mamta Bhandari
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Ashwini Kumar Sharma
- Department of Chemical Engineering, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India
| | - Halis Simsek
- Department of Agricultural and Biosystem Engineering, North Dakota State University (NDSU), North Dakota, 58102, USA
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Lab (EBRL), Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee (IIT-R), Uttarakhand, 247667, India.
| |
Collapse
|
10
|
de Medeiros VPB, de Souza EL, de Albuquerque TMR, da Costa Sassi CF, dos Santos Lima M, Sivieri K, Pimentel TC, Magnani M. Freshwater microalgae biomasses exert a prebiotic effect on human colonic microbiota. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
11
|
A Recommendation for a Pre-Standardized Marine Microalgal Dry Weight Determination Protocol for Laboratory Scale Culture Using Ammonium Formate as a Washing Agent. BIOLOGY 2021; 10:biology10080799. [PMID: 34440031 PMCID: PMC8389616 DOI: 10.3390/biology10080799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Simple Summary Microalgae are increasingly recognized as a source of valuable biomass with numerous health benefits. Cleaning of marine microalgal biomass is very crucial for microalgal studies as the salt on the microalgae cells will lead to overestimation of biomass determination. Incomplete washing of salt from microalgae could also interfere with the nutritional analyses. The biomass, especially dry weight, has been utilized for nutritional or compositional evaluation. Although standard methods of marine microalgal dry weight determination are available, these methods did not provide comprehensive details, and the parameters vary among themselves. Without a standard method, a comparison of results among previous studies can be misleading and unreliable. Therefore, the current study aimed to investigate and determine the ideal setting of several parameters in the marine microalgal dry weight determination for laboratory-scale culture. The present findings could assist in developing a standardized protocol to ensure a high quality of biomass for microalgal studies. Abstract Microalgal biomass is one of the crucial criteria in microalgal studies. Many reported methods, even the well-established protocol on microalgal dry weight (DW) determination, vary greatly, and reliable comparative assessment amongst published results could be problematic. This study aimed to determine the best condition of critical parameters in marine microalgal DW determination for laboratory-scale culture using four different marine microalgal species. These parameters included the washing process, grades of glass microfiber filter (GMF), GMF pretreatment conditions, washing agent (ammonium formate) concentrations, culture: washing agent ratios (v:v) and washing cycles. GMF grade GF/A with precombustion at 450 °C provided the most satisfactory DW and the highest ash-free dry weight (AFDW)/DW ratio. Furthermore, 0.05 M ammonium formate with 1:2 culture: washing agent ratio and a minimum of two washing cycles appeared to be the best settings of microalgal DW determination. The present treatment increased the AFDW/DW ratio of the four respective microalgae by a minimum of 19%. The findings of this study could serve as a pivotal reference in developing a standardized protocol of marine microalgal DW determination to obtain veracious and reliable marine microalgal DW.
Collapse
|
12
|
Yirgu Z, Leta S, Hussen A, Khan MM, Aragaw T. Optimization of microwave-assisted carbohydrate extraction from indigenous Scenedesmus sp. grown in brewery effluent using response surface methodology. Heliyon 2021; 7:e07115. [PMID: 34136690 PMCID: PMC8178074 DOI: 10.1016/j.heliyon.2021.e07115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/07/2022] Open
Abstract
The use of wastewater as a nutrient source for microalgae cultivation is considered as a cost-effective approach for algal biomass and biofuel production. The microalgal biomass contains carbohydrates that can be processed into bioethanol through different extraction methods. The objective of this study is to optimize the microwave-assisted extraction (MAE) of carbohydrates from the indigenous Scenedesmus sp. grown on brewery effluent. Optimization of independent variables, such as acid concentration (0.1–5 N), microwave power (800–1200 W), temperature (80–180 °C) and extraction time (5–30 min) performed by response surface methodology. It was found that all independent variables had a significant and positive effect on microwave-assisted carbohydrate extraction. The quadratic model developed on the basis of carbohydrate yield had F value of 112.05 with P < 0.05, indicating that the model was significant to predict the carbohydrate yield. The model had a high value of R2 (0.9899) and adjusted R2 (0.9811), indicating that the fitted model displayed a good agreement between the predicted and actual carbohydrate yield. An optimum carbohydrate yield obtained was 260.54 mg g−1 under the optimum conditions of acid concentration (2.8 N), microwave power (1075 W), temperature (151 °C) and extraction time (22 min). The validation test showed that the model has adequately described the microwave-assisted extraction (MAE) of carbohydrates from microalgal biomass. This study demonstrated that the indigenous Scenedesmus sp. grown on brewery effluent provides a promising result in carbohydrate production for bioethanol feedstock.
Collapse
Affiliation(s)
- Zenebe Yirgu
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Environmental Science, Wolaita Sodo University, Wolaita Sodo, Ethiopia
| | - Seyoum Leta
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ahmed Hussen
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Temesgen Aragaw
- Center for Environmental Science, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
J T ML, T PJ, D MP, T S K, G D. A critical look into different salt removal treatments for the production of high value pigments and fatty acids from marine microalgae Chlorella vulgaris (NIOT-74). BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00627. [PMID: 34036053 PMCID: PMC8138460 DOI: 10.1016/j.btre.2021.e00627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/23/2020] [Accepted: 05/05/2021] [Indexed: 10/26/2022]
Abstract
The prime challenge in seawater culture of microalgae for high value biomolecules production is presence of salt. Hence, twelve different salt removal treatments were evaluated for their impact on the lutein, total carotenoid, chlorophyll yields and fatty acid profile of marine microalgae Chlorella vulgaris (NIOT-74). The effectiveness of different treatments on salt removal was also visualized with the aid of Scanning Electron Microscope (SEM). Among the tested treatments, washing the algal biomass with 0.5 % HCl augmented the lutein (11.56 mg/g) and total carotenoid yield (60.88 mg/g) 1.82 and 1.86 fold respectively, in comparison to untreated control. Highest chlorophyll content (30.64 mg/g) was noticed in the distilled water wash treatment. Different salt removal treatments also impacted the fatty acid profile and degree of unsaturation of the fatty acids significantly. This study thus, signified the importance of salt removal treatments for the commercial production of biomolecules from marine microalgae cultured in natural seawater.
Collapse
Affiliation(s)
- Mary Leema J T
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Persia Jothy T
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Magesh Peter D
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Kumar T S
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| | - Dharani G
- Marine Biotechnology Division, National Institute of Ocean Technology, (Ministry of Earth Sciences, Government of India), Velachery - Tambaram Main Road, Pallikaranai, Chennai, 600 100, India
| |
Collapse
|
14
|
Kruger JS, Knoshaug EP, Dong T, Hull TC, Pienkos PT. Catalytic Hydroprocessing of Single-Cell Oils to Hydrocarbon Fuels : Converting microbial lipids to fuels is a promising approach to replace fossil fuels. JOHNSON MATTHEY TECHNOLOGY REVIEW 2021. [DOI: 10.1595/205651321x16024905831259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial lipids hold great promise as biofuel precursors, and research efforts to convert such lipids to renewable diesel fuels have been increasing in recent years. In contrast to the numerous literature reviews on growing, characterising and extracting lipids from oleaginous microbes,
and on converting vegetable oils to hydrocarbon fuels, this review aims to provide insight into aspects that are specific to hydroprocessing microbial lipids. While standard hydrotreating catalysts generally perform well with terrestrial oils, differences in lipid speciation and the presence
of co-extracted compounds, such as chlorophyll and sterols, introduce additional complexities into the process for microbial lipids. Lipid cleanup steps can be introduced to produce suitable feedstocks for catalytic upgrading.
Collapse
Affiliation(s)
- Jacob S. Kruger
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Eric P. Knoshaug
- Bioscience Center, National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Tao Dong
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Tobias C. Hull
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 USA
| | | |
Collapse
|
15
|
Martin Juárez J, Martínez-Páramo S, Maté-González M, García Encina PA, Muñoz Torre R, Bolado Rodríguez S. Evaluation of pretreatments for solubilisation of components and recovery of fermentable monosaccharides from microalgae biomass grown in piggery wastewater. CHEMOSPHERE 2021; 268:129330. [PMID: 33359992 DOI: 10.1016/j.chemosphere.2020.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Microalgae-bacteria biomass cultured in wastewater is an interesting renewable material capable of metabolising nutrients from wastes into carbohydrates, proteins, and lipids through photosynthesis. Despite the interest in the valorisation of this biomass to improve the viability of microalgae-based wastewater treatment processes, very scarce research has been devoted to the fractional recovery of its components. This work evaluates the effect of different pretreatments coupled with enzymatic hydrolysis on the solubilisation of biomass components and on the recovery of fermentable monosaccharides (glucose and xylose) from Scenedesmaceae based biomass grown in a thin layer reactor feed with piggery wastewater. Chemical pretreatments generated high concentrations of byproducts, mainly organic acids. No bacterial DNA was found in these pretreated biomasses. The acid pretreatment provided the highest carbohydrate solubilisation (98%) and monosaccharide recovery (81%). Enzymatic hydrolysis coupled with alkaline NaOH 2 M pretreatment achieved almost complete solubilisation of the biomass components, but high carbohydrate losses. Physical pretreatments remarkably increased the solubilisation of the biomass components during the enzymatic hydrolysis step, especially bead milling, which achieved solubilisation yields of 83% of carbohydrates, 43% of proteins, and 60% of lipids. The presence of viable bacteria in these pretreated biomasses could be related to the high carbohydrate losses and the generation of methanol and ethanol in addition to organic acids as byproducts.
Collapse
Affiliation(s)
- Judit Martin Juárez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Sonia Martínez-Páramo
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - María Maté-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Pedro A García Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Raúl Muñoz Torre
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Silvia Bolado Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| |
Collapse
|
16
|
Pendyala B, Hanifzadeh M, Abel GA, Viamajala S, Varanasi S. Production of Organic Acids via Autofermentation of Microalgae: A Promising Approach for Sustainable Algal Biorefineries. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brahmaiah Pendyala
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - MohammadMatin Hanifzadeh
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Godwin Ameh Abel
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Sridhar Viamajala
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Sasidhar Varanasi
- Department of Chemical Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
17
|
Knoshaug EP, Dong T, Spiller R, Nagle N, Pienkos PT. Pretreatment and fermentation of salt-water grown algal biomass as a feedstock for biofuels and high-value biochemicals. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Howlader MS, Rai N, Todd French W. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. BIORESOURCE TECHNOLOGY 2018; 267:743-755. [PMID: 30064900 DOI: 10.1016/j.biortech.2018.07.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Lipid extraction directly from the wet oleaginous microorganisms for biodiesel production is preferred as it reduces the energy input for traditional processes which require extensive drying of the biomass prior to the extraction. The high water content (≥80% on cell dry weight) in the wet biomass hinders the extraction efficiency due to the mass transfer limitation. This limitation can be overcome by pretreating wet biomass prior to the lipid extraction using pressurized gas that can be used alone or combined with other pretreatments to disrupt the cell wall. In this review, an extensive discussion on different pretreatments and the subsequent lipid extraction using these pretreatments is presented. Furthermore, a detailed account of the cell disruption using pressurized gas (e.g., CO2) treatment for microbial cell lysing is also presented. Finally, a new technique on lipid extraction directly from wet biomass using the combination of pressurized CO2 and microwave pretreatment is proposed.
Collapse
Affiliation(s)
- Md Shamim Howlader
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States; Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States
| | - William Todd French
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
19
|
Mishra P, Balachandar G, Das D. Improvement in biohythane production using organic solid waste and distillery effluent. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 66:70-78. [PMID: 28456457 DOI: 10.1016/j.wasman.2017.04.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
Biohythane is a two-stage anaerobic fermentation process consisting of biohydrogen production followed by biomethanation. This serves as an environment friendly and economically sustainable approach for the improved valorization of organic wastes. The characteristics of organic wastes depend on their respective sources. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. The present study assess the suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers' dried grain with solubles (DDGS) and algal biomass (AB) as a co-substrate for the biohythane process. Results showed that maximum gaseous energy of 23.93, 16.63, 23.44 and 16.21kcal/L were produced using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB. The maximum cumulative hydrogen and methane production of 150 and 64mmol/L were achieved using GDOC. 98% reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.
Collapse
Affiliation(s)
- Preeti Mishra
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - G Balachandar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Debabrata Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, India.
| |
Collapse
|
20
|
Solé-Bundó M, Carrère H, Garfí M, Ferrer I. Enhancement of microalgae anaerobic digestion by thermo-alkaline pretreatment with lime (CaO). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|