1
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
2
|
Alhajeri NS, Tawfik A, Elsamadony M, Al-Fadhli FM, Meng F. Synergistic algal/bacterial interaction in membrane bioreactor for detoxification of 1,2-dichloroethane-rich petroleum wastewater. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134125. [PMID: 38565016 DOI: 10.1016/j.jhazmat.2024.134125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 04/04/2024]
Abstract
The study addressed the challenge of treating petroleum industry wastewater with high concentrations of 1,2-dichloroethane (1,2-DCA) ranging from 384 to 1654 mg/L, which poses a challenge for bacterial biodegradation and algal photodegradation. To overcome this, a collaborative approach using membrane bioreactors (MBRs) that combine algae and bacteria was employed. This synergistic method effectively mitigated the toxicity of 1,2-DCA and curbed MBR fouling. Two types of MBRs were tested: one (B-MBR) used bacterial cultures and the other (AB-MBR) incorporated a mix of algal and bacterial cultures. The AB-MBR significantly contributed to 1,2-DCA removal, with algae accounting for over 20% and bacteria for approximately 49.5% of the dechlorination process. 1,2-DCA metabolites, including 2-chloroethanol, 2-chloro-acetaldehyde, 2-chloroacetic acid, and acetic acid, were partially consumed as carbon sources by algae. Operational efficiency peaked at a 12-hour hydraulic retention time (HRT) in AB-MBR, enhancing enzyme activities crucial for 1,2-DCA degradation such as dehydrogenase (DH), alcohol dehydrogenase (ADH), and acetaldehyde dehydrogenase (ALDH). The microbial diversity in AB-MBR surpassed that in B-MBR, with a notable increase in Proteobacteria, Bacteroidota, Planctomycetota, and Verrucomicrobiota. Furthermore, AB-MBR showed a significant rise in the dominance of 1,2-DCA-degrading genus such as Pseudomonas and Acinetobacter. Additionally, algal-degrading phyla (e.g., Nematoda, Rotifera, and Streptophyta) were more prevalent in AB-MBR, substantially reducing the issue of membrane fouling.
Collapse
Affiliation(s)
- Nawaf S Alhajeri
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Ahmed Tawfik
- Department of Environmental Sciences, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Mohamed Elsamadony
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Fahad M Al-Fadhli
- Department of Chemical Engineering, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Fangang Meng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Fahrina A, Fahrurrozi F, Munandar H, Fahmi V, Thongratkaew S, Faungnawakij K, Roil Bilad M. Harvesting marine microalgae Tetraselmis sp. using cellulose acetate membrane. BIORESOURCE TECHNOLOGY 2024; 399:130622. [PMID: 38518877 DOI: 10.1016/j.biortech.2024.130622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), North Lombok 83756, Indonesia
| | - Fahrurrozi Fahrurrozi
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), North Lombok 83756, Indonesia
| | - Hendra Munandar
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), North Lombok 83756, Indonesia
| | - Varian Fahmi
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Muhammad Roil Bilad
- Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), North Lombok 83756, Indonesia; Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong, BE 1410, Brunei Darussalam; Faculty of Applied Science and Engineering, Universitas Pendidikan Mandalika UNDIKMA, Jl. Pemuda No. 59A, Mataram 83126, Indonesia.
| |
Collapse
|
4
|
Chen H, Yu S, Yu Z, Ma M, Liu M, Pei H. Phycoremediation Potential of Salt-Tolerant Microalgal Species: Motion, Metabolic Characteristics, and Their Application for Saline-Alkali Soil Improvement in Eco-Farms. Microorganisms 2024; 12:676. [PMID: 38674620 PMCID: PMC11052205 DOI: 10.3390/microorganisms12040676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae have great potential for remediating salt-affected soil. In this study, the microalgae species Coelastrella sp. SDEC-28, Dunaliella salina SDEC-36, and Spirulina subsalsa FACHB-351 were investigated for their potential to rehabilitate salt-affected soils. Nylon screens with optimal aperture sizes and layer numbers were identified to efficiently intercept and harvest biomass, suggesting a correlation between underflow capability and the tough cell walls, strong motility, and intertwining characteristics of the algae. Our investigations proved the feasibility of incorporating monosodium glutamate residue (MSGR) into soil extracts at dilution ratios of 1/200, 1/2000, and 1/500 to serve as the optimal medium for the three microalgae species, respectively. After one growth period of these three species, the electrical conductivities of the media decreased by 0.21, 1.18, and 1.78 mS/cm, respectively, and the pH remained stable at 7.7, 8.6, and 8.4. The hypotheses that microalgae can remediate soil and return profits have been verified through theoretical calculations, demonstrating the potential of employing specific microalgal strains to enhance soil conditions in eco-farms, thereby broadening the range of crops that can be cultivated, including those that are intolerant to saline-alkali environments.
Collapse
Affiliation(s)
- Huiying Chen
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Siteng Yu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Ze Yu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
| | - Meng Ma
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Mingyan Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
| | - Haiyan Pei
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; (H.C.); (S.Y.); (M.M.); (M.L.)
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China;
- Shandong Provincial Engineering Center on Environmental Science and Technology, Jinan 250061, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| |
Collapse
|
5
|
Mushtaq A, Cho H, Batool A, Fazal MT, Aslam M, Rehman MSU, Lam JCH, Han JI. Optimizing electroactive membrane performance for microalgae harvesting: A response surface methodology study of membrane formulation and operating parameters for electro filtration. CHEMOSPHERE 2024; 349:140967. [PMID: 38122939 DOI: 10.1016/j.chemosphere.2023.140967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 11/25/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Developing electroactive membranes for filtration has gained importance owing to their effectiveness in mitigating the long-lasting issue of fouling faced with traditional membranes. Here, we developed thin electroactive metallic films on to stainless steel mesh (SSM) using electrodeposition method and evaluated their performance for microalgae harvesting via electro filtration. The effect of electrodeposition parameters on membrane formulation and operating parameters for electro filtration, both in continuous and intermittent modes, were evaluated and optimum values were obtained using response surface methodology (RSM). The optimal combination of electrodeposition parameters is 1000 μA/cm2 and 5 min for deposition current density and time, respectively. Whereas the electric field strength of 20 V/mm with an application time of 1 min is suggested to be the optimal combination of electro filtration parameters for maximized flux recovery and corresponding experimental rejection efficiency of more than 90%. Overall, this research contributes to a better understanding of the parameters governing electro-filtration and offers insights for improving the performance of membrane-based microalgae harvesting systems.
Collapse
Affiliation(s)
- Azeem Mushtaq
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hoon Cho
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Asma Batool
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong
| | - Muhammad Tahir Fazal
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan; Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, Hong Kong
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
6
|
Ennaceri H, Mkpuma VO, Moheimani NR. Nano-clay modified membranes: A promising green strategy for microalgal antifouling filtration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166479. [PMID: 37611702 DOI: 10.1016/j.scitotenv.2023.166479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Membrane fouling is a major challenge which limits the sustainable application of membrane filtration-based microalgal harvesting at industrial level. Membrane fouling leads to increased operational and maintenance costs and represents a major obstacle to microalgal downstream processing. Nano-clays are promising naturally occurring nanoparticles in membrane fabrication due to their low-cost, facile preparation, and their superior properties in terms of surface hydrophilicity, mechanical stability, and resistance against chemicals. The membrane surface modification using nano-clays is a sustainable promising approach to improve membranes mechanical properties and their fouling resistance. However, the positive effects of nano-clay particles on membrane fouling are often limited by aggregation and poor adhesion to the base polymeric matrix. This review surveys the recent efforts to achieve anti-fouling behavior using membrane surface modification with nano-clay fillers. Further, strategies to achieve a better incorporation of nano-clay in the polymer matrix of the membrane are summarised, and the factors that govern the membrane fouling, stability, adhesion, agglomeration and leaching are discussed in depth.
Collapse
Affiliation(s)
- Houda Ennaceri
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia.
| | - Victor Okorie Mkpuma
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Water Energy and Waste, Harry Butler Institute, Murdoch University, Perth 6150, Australia
| |
Collapse
|
7
|
Yushkin AA, Balynin AV, Nebesskaya AP, Chernikova EV, Muratov DG, Efimov MN, Karpacheva GP. Acrylonitrile-Acrylic Acid Copolymer Ultrafiltration Membranes for Selective Asphaltene Removal from Crude Oil. MEMBRANES 2023; 13:775. [PMID: 37755197 PMCID: PMC10538228 DOI: 10.3390/membranes13090775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023]
Abstract
In this study, ultrafiltration membranes were developed via a nonsolvent-induced phase separation method for the removal of asphaltenes from crude oil. Polyacrylonitrile (PAN) and acrylonitrile copolymers with acrylic acid were used as membrane materials. Copolymerizing acrylonitrile with acrylic acid resulted in an improvement in the fouling resistance of the membranes. The addition of 10% of acrylic acid to the polymer chain decreases the water contact angle from 71° to 43°, reducing both the total fouling and irreversible fouling compared to membranes made from a PAN homopolymer. The obtained membranes with a pore size of 32-55 nm demonstrated a pure toluene permeance of 84.8-130.4 L/(m2·h·bar) and asphaltene rejection from oil/toluene solutions (100 g/L) of 33-95%. An analysis of the asphaltene rejection values revealed that the addition of acrylic acid increases the rejection values in comparison to PAN membranes with the same pore size. Our results suggest that the acrylonitrile-acrylic acid copolymer ultrafiltration membranes have promising potential for the efficient removal of asphaltenes from crude oil.
Collapse
Affiliation(s)
- Alexey A. Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexey V. Balynin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Alexandra P. Nebesskaya
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Elena V. Chernikova
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
- Faculty of Chemistry, Moscow State University, 119991 Moscow, Russia
| | - Dmitriy G. Muratov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Mikhail N. Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| | - Galina P. Karpacheva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.V.B.); (A.P.N.); (E.V.C.); (D.G.M.); (M.N.E.); (G.P.K.)
| |
Collapse
|
8
|
Wang Y, Jiao Z, Li W, Zeng S, Deng J, Wang M, Ren L. Superhydrophilic membrane with photo-Fenton self-cleaning property for effective microalgae anti-fouling. CHINESE CHEM LETT 2023; 34:108020. [DOI: 10.1016/j.cclet.2022.108020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
10
|
Cui J, Niu X, Zhang D, Ma J, Zhu X, Zheng X, Lin Z, Fu M. The novel chitosan-amphoteric starch dual flocculants for enhanced removal of Microcystis aeruginosa and algal organic matter. Carbohydr Polym 2023; 304:120474. [PMID: 36641191 DOI: 10.1016/j.carbpol.2022.120474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/29/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
A novel flocculation strategy for simultaneously removing Microcystis aeruginosa and algal organic matter (AOM) was proposed using chitosan-amphoteric starch (C-A) dual flocculants in an efficient, cost-effective and ecologically friendly way, providing new insights for harmful algal blooms (HABs) control. A dual-functional starch-based flocculant, amphoteric starch (AS) with high anion degree of substitution (DSA) and cation degree of substitution (DSC), was prepared using a cationic moiety of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CTA) coupled with an anion moiety of chloroacetic acid onto the backbone of starch simultaneously. In combination of the results of FTIR, XPS, 1H NMR, 13C NMR, GPC, EA, TGA and SEM, it was evidenced that the successfully synthesized AS with excellent structural characteristics contributed to the enhanced flocculation of M. aeruginosa. Furthermore, the novel C-A dual flocculants could achieve not only the removal of >99.3 % of M. aeruginosa, but also the efficacious flocculation of algal organic matter (AOM) at optimal concentration of (0.8:24) mg/L, within a wide pH range of 3-11. The analysis of zeta potential and cellular morphology revealed that the dual effects of both enhanced charge neutralization and notable netting-bridging played a vital role in efficient M. aeruginosa removal.
Collapse
Affiliation(s)
- Jingshu Cui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Jinling Ma
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Xiaoxian Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
11
|
Mohanadas D, Nordin PMI, Rohani R, Dzulkharnien NSF, Mohammad AW, Mohamed Abdul P, Abu Bakar S. A Comparison between Various Polymeric Membranes for Oily Wastewater Treatment via Membrane Distillation Process. MEMBRANES 2022; 13:46. [PMID: 36676853 PMCID: PMC9864798 DOI: 10.3390/membranes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Oily wastewater (OW) is detrimental towards the environment and human health. The complex composition of OW needs an advanced treatment, such as membrane technology. Membrane distillation (MD) gives the highest rejection percentage of pollutants in wastewater, as the membrane only allows the vapor to pass its microporous membrane. However, the commercial membranes on the market are less efficient in treating OW, as they are prone to fouling. Thus, the best membrane must be identified to treat OW effectively. This study tested and compared the separation performance of different membranes, comparing the pressure-driven performance between the membrane filtration and MD. In this study, several ultrafiltration (UF) and nanofiltration (NF) membranes (NFS, NFX, XT, MT, GC and FILMTEC) were tested for their performance in treating OW (100 ppm). The XT and MT membranes (UF membrane) with contact angles of 70.4 ± 0.2° and 69.6 ± 0.26°, respectively, showed the best performance with high flux and oil removal rate. The two membranes were then tested for long-term performance for two hours with 5000 ppm oil concentration using membrane pressure-filtration and MD. The XT membrane displayed a better oil removal percentage of >99%. MD demonstrated a better removal percentage; the flux reduction was high, with average flux reduction of 82% compared to the membrane pressure-filtration method, which experienced a lower flux reduction of 25%. The hydrophilic MT and XT membranes have the tendency to overcome fouling in both methods. However, for the MD method, wetting occurred due to the feed penetrating the membrane pores, causing flux reduction. Therefore, it is important to identify the performance and characteristics of the prepared membrane, including the best membrane treatment method. To ensure that the MD membrane has good anti-fouling and anti-wetting properties, a simple and reliable membrane surface modification technique is required to be explored. The modified dual layer membrane with hydrophobic/hydrophilic properties is expected to produce effective separation in MD for future study.
Collapse
Affiliation(s)
- Dharshini Mohanadas
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Puteri Mimie Isma Nordin
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Rosiah Rohani
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Nur Syafiqah Farhanah Dzulkharnien
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Chemical and Water Desalination Engineering Program, College of Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Peer Mohamed Abdul
- Department of Chemical & Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
- Research Centre for Sustainable Process Technology, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Selangor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| |
Collapse
|
12
|
Ricceri F, Malaguti M, Derossi C, Zanetti M, Riggio V, Tiraferri A. Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration. CHEMOSPHERE 2022; 307:135724. [PMID: 35850220 DOI: 10.1016/j.chemosphere.2022.135724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study is to advance means for microalgae dewatering with the simultaneous reuse of water as new cultivation medium, specifically through ceramic membrane filtration. Three algae, namely, Spirulina platensis, Scenedesmus obliquus, and Chlorella sorokiniana were tested by filtering suspensions with four ceramic membranes having nominal pore sizes of 0.8 μm, 0.14 μm, 300 kDa, 15 kDa. The observed flux values and organic matter removal rates were related to the membrane pore size and cake layer properties, with some differences in productivity between algae types, likely due to cell size and shape. Interestingly, similar near steady-state fluxes (70-120 L m-2h-1) were measured using membranes with nominal pore size above 15 kDa, suggesting the dominance of cake layer filtration independently of the initial flux. Virtually complete algae cells rejections and high nutrient passage (>75%) were observed in all combinations. When the permeate streams were used as media for new growth cycles of the various algae, no or little growth was observed with Spirulina p., while Chlorella s. (permeate from 300 kDa membrane) and especially Scenedesmus o. (permeate from 0.14 μm membrane) showed the fastest growth rates, almost comparable to those observed with ideal fresh media.
Collapse
Affiliation(s)
- Francesco Ricceri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy; CleanWaterCenter@PoliTo, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Marco Malaguti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Clara Derossi
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Mariachiara Zanetti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Vincenzo Riggio
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy; CleanWaterCenter@PoliTo, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy.
| |
Collapse
|
13
|
Oxley A, Livingston AG. Anti-fouling membranes for organic solvent nanofiltration (OSN) and organic solvent ultrafiltration (OSU): graft modified polybenzimidazole (PBI). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Zhao Z, Blockx J, Muylaert K, Thielemans W, Szymczyk A, Vankelecom IF. Exploiting flocculation and membrane filtration synergies for highly energy-efficient, high-yield microalgae harvesting. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Lina R, Lepine O, Jaouen P, Masse A. Recovery of Water-Soluble Compounds from Tisochrysis lutea. MEMBRANES 2022; 12:766. [PMID: 36005681 PMCID: PMC9416754 DOI: 10.3390/membranes12080766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
This work aims at studying the techno-economic feasibility to produce an extract, at a small industrial-production scale, from a Tisochrysis lutea's paste, in view of cosmetic applications. The paste was first thawed, diluted and centrifuged to get a crude water extract. Then, two successive stages of membrane filtration were carried out: the first one to essentially remove/retain the particles (cellular debris) by microfiltration and the second one to concentrate (ultrafiltration) the soluble compounds of the permeate from the previous step. The robustness of the processing chain has been demonstrated following the production of three similar extracts with more than 30 L input material each. Around 54% of the final extract was composed of proteins and carbohydrates. The final ingredient was assessed for genomic activity and showed multiple positive responses. Finally, an economic analysis was performed, which demonstrated that the major cost is linked to centrifugation step. The total manpower represents the highest cost of the OPEX categories.
Collapse
Affiliation(s)
- Robin Lina
- AlgoSource, 7 rue Eugene Cornet, F-44600 Saint-Nazaire, France
| | - Olivier Lepine
- AlgoSource, 7 rue Eugene Cornet, F-44600 Saint-Nazaire, France
| | - Pascal Jaouen
- Nantes Université, Oniris, Centre National de la Recherche Scientifique, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| | - Anthony Masse
- Nantes Université, Oniris, Centre National de la Recherche Scientifique, GEPEA, UMR 6144, F-44600 Saint-Nazaire, France
| |
Collapse
|
16
|
Yushkin AA, Balynin AV, Efimov MN, Muratov DG, Karpacheva GP, Volkov AV. Formation of Multilayer Membranes from One Polymer Using IR Treatment. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622040114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Mkpuma VO, Moheimani NR, Fischer K, Schulze A, Ennaceri H. Membrane surface zwitterionization for an efficient microalgal harvesting: A review. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Yushkin A, Balynin A, Efimov M, Pochivalov K, Petrova I, Volkov A. Fabrication of Polyacrylonitrile UF Membranes by VIPS Method with Acetone as Co-Solvent. MEMBRANES 2022; 12:membranes12050523. [PMID: 35629849 PMCID: PMC9146048 DOI: 10.3390/membranes12050523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
For the first time, a systematic study was carried out of the replacement of the low-volatility solvents N-methyl-2-pyrrolidone (NMP) or dimethylsulfoxide (DMSO) with the high-volatility solvent acetone in the casting solution of polyacrylonitrile (PAN). The effect of acetone’s presence in the casting solution on the performance of ultrafiltration membranes fabricated via vapor-induced phase separation (VIPS) was investigated. It was possible to replace 40% of NMP and 50% of DMSO with acetone, which resulted in the reduction of the casting solution viscosity from 70.6 down to 41.3 Pa∙s (20% PAN, NMP), and from 68.3 down to 20.6 Pa∙s (20% PAN, DMSO). It was found that 20 min of exposure to water vapor (relative humidity—85%) was sufficient to govern the phase separation, which was mainly induced by the water vapor. Regardless of the casting solution composition (15 or 20% PAN; DMSO or NMP), all membranes formed via VIPS possessed a sponge-like porous structure. The addition of acetone to the casting solution allowed the reduction of the transport pore size from 35–48 down to 8.5–25.6, depending on the casting solution composition. By varying the acetone content at constant polymer concentration, it was possible to decrease the molecular weight cut-off (MWCO) from 69 to 10 kg/mol. Membranes prepared from 20% PAN solution in an acetone/DMSO mixture had the lowest MWCO of 10 kg/mol with a water permeance of 5.1 L/(m2·h·bar).
Collapse
Affiliation(s)
- Alexey Yushkin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
- Correspondence: ; Tel.: +7-(495)-647-59-27 (ext. 2-02)
| | - Alexey Balynin
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
| | - Mikhail Efimov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
| | - Konstantin Pochivalov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 1 ul. Akademicheskaja, 153045 Ivanovo, Russia
| | - Inna Petrova
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
| | - Alexey Volkov
- A.V. Topchiev Institute of Petrochemical Synthesis RAS, 29 Leninsky Prospekt, 119991 Moscow, Russia; (A.B.); (M.E.); (K.P.); (I.P.); (A.V.)
| |
Collapse
|
19
|
Tan FHP, Nadir N, Sudesh K. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Front Bioeng Biotechnol 2022; 10:879476. [PMID: 35646848 PMCID: PMC9133917 DOI: 10.3389/fbioe.2022.879476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Collapse
Affiliation(s)
| | | | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
20
|
Li J, Yu Y, Zhou P, Li H, Liu Y. Dependency of polyacrylonitrile membrane structures on Hansen solubility parameters during
non‐solvent
induced phase separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.52383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jin Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yuxiu Yu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
| | - Pucha Zhou
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
| | - Haojie Li
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing China
| | - Yaodong Liu
- CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan Shanxi Province China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
21
|
Van Goethem C, Op de Beeck D, Ilyas A, Thijs M, Koeckelberghs G, Aerts PE, Vankelecom IF. Ultra-thin and highly porous PVDF-filters prepared via phase inversion for potential medical (COVID-19) and industrial use. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Separation of microalgae using a compacted magnetite-containing gel bed. Bioprocess Biosyst Eng 2021; 45:321-331. [PMID: 34741657 DOI: 10.1007/s00449-021-02662-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
Separation of microalgae of various sizes and shapes is an important process that enables subsequent production of useful compounds. Herein, the separation of microalgae was accomplished using a magnetite-containing gel (42 μm) packed into a column. An algal suspension was injected into the top of the gel bed, after which water was passed through the column. The pressure generated during the process caused the lower domain of the gel bed to deform, resulting in narrowed gaps between the gel beads. When a suspension of Nannochloropsis sp. (0.0069-0.69 g L-1) was loaded and water was passed through the column at an applied pressure of 0.01-0.10 MPa, the majority of microalgae were captured within the upper domain of the gel bed, while only 20% were captured within the lower domain. The amount of Nannochloropsis sp. captured was expressed by an ordinary differential equation to determine the capture coefficient, K, and the maximum capture amount, Qmax. As pressure increased, gel gaps narrowed, K increased, and Qmax decreased because of a reduction in the number of effective capture sites upon compaction of the gel. When a mixed suspension of Anabaena sp., Monoraphidium sp., and Desmodesmus sp. (0.069 g L-1 each) was injected into the gel bed at an applied pressure of 0.01 MPa, only Anabaena sp. was captured at the bottom of the gel bed. This device can be applied for the separation of microalgae in rivers and the sea.
Collapse
|
23
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
24
|
Choi DH, Ryu DC, Lee JC, Yi T. Effect of seasonal succession of algal communities on fouling of MF membrane. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:912-919. [PMID: 34279191 DOI: 10.1080/10934529.2021.1941557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
An emerging threat to membrane application is the seasonal proliferation of algae in water sources such as rivers, reservoirs and lakes. This study investigated the link between feed parameters and the membrane performance of a pilot-scale microfiltration (MF) plant for 7 months. The seasonal succession of algae in relation to temperature dynamics was monitored. Temperature-dependent seasonal patterns for algae species were observed. The water temperatures during the dominance of cyanobacteria, especially Microcystis, were relatively higher (over 25 °C) than those during the dominance of diatoms. Diatoms did not much affect membrane performance (less than 0.2 kgf/cm2), however, under the cyanobacterial dominance condition, especially Microcystis sp., transmembrane pressure (TMP) reached up to the limited level (0.4 kgf/cm2) within one month. Concurrently UV absorbance at 254 nm wavelength and dissolved organic carbon values increased significantly during the Microcystis bloom and the build-up rate of TMP increased up to 0.005 kgf/cm2/day. Membrane autopsy also showed that during the dominance of diatom, application of cleaning agents can fully remove foulants on the membrane surface. However, during the dominance of cyanobacteria, there is a lot of Al, Si and organic complex on the fouled membrane, indicating the formation of Al-organic complexes that contributed to the residual membrane fouling. It is suggested that the irrecoverable fouling layer still contained some Al, mostly in complex with organics. Thus, organic matter originated from cyanobacteria may cause a serious impact on membrane fouling by forming the complex with metal ions originated from coagulant.
Collapse
Affiliation(s)
| | | | - Jung-Chul Lee
- Hanwha Engineering and Construction, Daejeon, Republic of Korea
| | - Taewoo Yi
- National Institute of Ecology, Choongnam, Republic of Korea
| |
Collapse
|
25
|
Kim S, Romero-Lozano A, Hwang DS, Yoon JY. A guanidinium-rich polymer as a new universal bioreceptor for multiplex detection of bacteria from environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125338. [PMID: 33592489 DOI: 10.1016/j.jhazmat.2021.125338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 05/25/2023]
Abstract
Protamine, a guanidinium rich polymer, is proposed as a universal bioreceptor for bacteria, towards rapid and handheld bacteria detection from complex environmental water samples without the need for specific antibodies or primers. Escherichia coli K12, Salmonella Typhimurium, and Staphylococcus aureus (MSSA) were assayed, representing gram-negative, gram-positive, rod- and round-shaped bacteria. Samples and the protamine conjugated fluorescent particles were sequentially loaded to the paper microfluidic chips and flowed through the channels spontaneously via capillary action. The particles were aggregated via protamine-bacteria membrane interactions and unbound particles were rinsed via capillary action. A low-cost smartphone fluorescence microscope was designed, fabricated, and imaged the paper channels. A unique image processing algorithm isolated only the aggregated particles to detect all three bacteria (p < 0.05) with a detection limit of 101-102 CFU/mL. Protamine did not induce any particle aggregation with a model protein, algae, and virus. Successful bacteria detection was also demonstrated with environmental field water samples. Total assay time was < 10 min with neither extraction nor enrichment steps. In summary, a guanidinium-rich polymer showed a promise as a universal bioreceptor for bacteria and can be used on a paper microfluidic chip and smartphone quantification towards rapid and handheld detection.
Collapse
Affiliation(s)
- Sangsik Kim
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Anakaren Romero-Lozano
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States
| | - Dong Soo Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea; Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongsangbuk-do 37673, Republic of Korea.
| | - Jeong-Yeol Yoon
- Department of Biosystems Engineering, The University of Arizona, Tucson, AZ 85721, United States; Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
26
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|
27
|
Lin MZ, Li WX, Hu T, Bu H, Li ZL, Wu T, Wu XX, Sun C, Li Y, Jiang GB. One-step removal of harmful algal blooms by dual-functional flocculant based on self-branched chitosan integrated with flotation function. Carbohydr Polym 2021; 259:117710. [PMID: 33673989 DOI: 10.1016/j.carbpol.2021.117710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/06/2021] [Accepted: 01/23/2021] [Indexed: 01/21/2023]
Abstract
Harmful algal blooms induce severe environmental problems. It is challenging to remove algae by the current available treatments involving complicate process and costly instruments. Here, we developed a CaO2@PEG-loaded water-soluble self-branched chitosan (CP-SBC) system, which can remove algae from water in one-step without additional instrumentation. This approach utilizes a novel flocculant (self-branched chitosan) integrated with flotation function (induced by CaO2@PEG). CP-SBC exhibited better flocculation performance than commercial flocculants, which is attributed to the enhanced bridging and sweeping effect of branched chitosan. CP-SBC demonstrated outstanding biocompatibility, which was verified by zebrafish test and algae activity test. CaO2@PEG-loaded self-branched chitosan can serve as an "Air flotation system" to spontaneous float the flocs after flocculation by sustainably released O2. Furthermore, CP-SBC can improve water quality through minimizing dissolved oxygen depletion and reducing total phosphorus concentrations.
Collapse
Affiliation(s)
- Min-Zhao Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wei-Xiong Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tian Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Huaitian Bu
- Department of Materials and Nanotechnology, SINTEF Industry, Forskningsveien 1, Oslo, 0373, Norway
| | - Zeng-Lin Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Tianfu Wu
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xia-Xiao Wu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Chao Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Gang-Biao Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
28
|
Vahabisani A, An C. Use of biomass-derived adsorbents for the removal of petroleum pollutants from water: a mini-review. ENVIRONMENTAL SYSTEMS RESEARCH 2021; 10:25. [PMID: 34804763 PMCID: PMC8591771 DOI: 10.1186/s40068-021-00229-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 06/01/2023]
Abstract
Over the past decades, a large amount of petroleum pollutants has been released into the environment resulting from various activities related to petrochemicals. The discharge of wastewater with petrochemicals can pose considerable risk of harm to the human health and the environment. The use of adsorbents has received much consideration across the environmental field as an effective approach for organic pollutant removal. There is a particular interest in the use of biomass adsorbent as a promising environmentally-friendly and low-cost option for removing pollutants. In this article, we present a review of biomass-derived adsorbents for the removal of petroleum pollutants from water. The features of different adsorbents such as algae, fungi, and bacteria biomasses are summarized, as is the process of removing oil and PAHs using biomass-derived adsorbents. Finally, recommendations for future study are proposed.
Collapse
Affiliation(s)
- Azar Vahabisani
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8 Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8 Canada
| |
Collapse
|
29
|
Yushkin AA, Efimov MN, Malakhov AO, Karpacheva GP, Bondarenko G, Marbelia L, Vankelecom IF, Volkov AV. Creation of highly stable porous polyacrylonitrile membranes using infrared heating. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2020.104793] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Zhao Z, Muylaert K, Szymczyk A, Vankelecom IFJ. Harvesting microalgal biomass using negatively charged polysulfone patterned membranes: Influence of pattern shapes and mechanism of fouling mitigation. WATER RESEARCH 2021; 188:116530. [PMID: 33125997 DOI: 10.1016/j.watres.2020.116530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
Membranes have a lot of potential for harvesting microalgae, but membrane fouling is hampering their breakthrough. In this study, the effects of charge and corrugated surface on membrane filtration performance were investigated. The clean water permeance (CWP), the microalgae harvesting efficiency and the membrane flux for a microalgal broth were determined using patterned polysulfone (PSf) membranes with different shapes of the surface patterns and containing different charge densities by blending sulfonated polysulfone (sPSf). The flow behavior near the patterned membrane surface, as well as the interaction energy between membrane and microalgae were investigated using computational fluid dynamics (CFD) simulation and the improved extended "Derjaguin, Landau, Verwey, Overbeek" (XDLVO) theory, respectively. Membrane charge and pattern shape significantly improve the membrane performance. The critical pressures of all sPSf blend patterned membranes were higher than 2.5 bar. A 4.5w% sPSf blend patterned membranes with wave patterns showed the highest CWP (2300 L/m2 h bar) and membrane flux in the microalgal broth (1000 L/m2 h bar) with 100% harvesting efficiency. XDLVO analysis showed that sPSf blend patterned membranes prepared obtained the lowest interaction energy and highest energy barrier for microalgal attachment. CFD simulation showed a higher velocity and wall shear on the pattern apexes.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Koenraad Muylaert
- Lab Aquatic Biology, Microbial en Molecular Systems, KU Leuven KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Anthony Szymczyk
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, 263 Avenue du Ge'ral Leclerc, 35042 Rennes, cedex, France
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
31
|
Zhao Z, Liu B, Ilyas A, Vanierschot M, Muylaert K, Vankelecom IF. Harvesting microalgae using vibrating, negatively charged, patterned polysulfone membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118617] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
32
|
Harvesting of Microcystis aeruginosa using membrane filtration: Influence of pore structure on fouling kinetics, algogenic organic matter retention and cake formation. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Purnima M, Arul Manikandan N, Pakshirajan K, Pugazhenthi G. Recovery of microalgae from its broth solution using kaolin based tubular ceramic membranes prepared with different binders. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117212] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Huang R, Liu Z, Yan B, Li Y, Li H, Liu D, Wang P, Cui F, Shi W. Interfacial catalytic oxidation for membrane fouling mitigation during algae-laden water filtration: Higher efficiency without algae integrity loss. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, Show PL. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020; 11:116-129. [PMID: 31909681 PMCID: PMC6999644 DOI: 10.1080/21655979.2020.1711626] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
Collapse
Affiliation(s)
- Jia Sen Tan
- Department of Biotechnology, Faculty of Applied Science, UCSI University, Kuala Lumpur, Malaysia
| | - Sze Ying Lee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Kajang, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Selangor, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak, Malaysia.,Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Jun Wei Lim
- Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia.,Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
36
|
Meng S, Meng X, Fan W, Liang D, Wang L, Zhang W, Liu Y. The role of transparent exopolymer particles (TEP) in membrane fouling: A critical review. WATER RESEARCH 2020; 181:115930. [PMID: 32470713 DOI: 10.1016/j.watres.2020.115930] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Transparent exopolymer particles (TEP) as gel-like particulate acidic polysaccharide have been commonly found in marine, surface water and wastewater. Currently, increasing interest has been devoted to TEP-associated membrane fouling in different membrane systems for water and wastewater treatment, thus this review attempts to provide a holistic view and critical analysis with regard to the definition, formation, detection and properties of TEP, which could ultimately determine its fouling potential. It appears that there is not a common consensus on the actual role of TEP in membrane fouling development due to the subjective definition and highly debatable detection method of TEP. It was clearly demonstrated in this review that the formation of TEP was largely related to cations in water and wastewater which indeed determined the cross-linking degree of precursor materials (e.g. polysaccharides) via intermolecular interactions, and subsequently the quantity of TEP formed. The binding between cations ions (e.g. monovalent, divalent and trivalent cations) and polysaccharide not only depends on the functional groups of polysaccharide, but also its spatial configuration. These in turn suggest that the formation, property and ultimate fouling potential of TEP would be closely related to the type and concentration of cations, while well explaining the controversial reports on TEP-associated fouling in the literature. In addition, the fouling mechanisms of TEP are also elucidated with details in this review, including (i) the formation of TEP-associated gel layer on membrane surface; (ii) carrying microorganisms to membrane surface via protobiofilm and (iii) trapping of deformable TEP in membrane pores. Consequently, it is apparent that TEP is an ignored determinant of membrane fouling, which has not yet been seriously addressed in the design and operation of membrane systems for water and wastewater treatment.
Collapse
Affiliation(s)
- Shujuan Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China.
| | - Xianghao Meng
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Dawei Liang
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | - Wenxiang Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China.
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
37
|
Zhao Z, Ilyas A, Muylaert K, Vankelecom IFJ. Optimization of patterned polysulfone membranes for microalgae harvesting. BIORESOURCE TECHNOLOGY 2020; 309:123367. [PMID: 32305852 DOI: 10.1016/j.biortech.2020.123367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Membranes with a wave pattern on the membrane surface are now proposed for the first time to alleviate microalgal fouling and increase the membrane flux. The membrane morphology was observed via scanning electron microscope, and the clean water permeance, microalgae harvesting efficiency and membrane flux in a real broth were determined to investigate the effects of polysulfone (PSF) and polyethylene glycol (PEG) concentrations in the membrane casting solution. Furthermore, the influence of the height of the patterned waves and the inter-pattern distance on the fouling prevention were investigated. Higher PSF and PEG concentrations resulted in better pronounced patterns. Patterned membrane showed higher fluxes and critical pressures than the corresponding flat membranes. Larger patterns gave higher membrane fluxes and less fouling. Computational fluid dynamics simulation showed a higher velocity and shear on the pattern apexes.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Ayesha Ilyas
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Koenraad Muylaert
- Lab Aquatic Biology, Microbial en Molecular Systems, KU Leuven KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
38
|
Lu W, Asraful Alam M, Liu S, Xu J, Parra Saldivar R. Critical processes and variables in microalgae biomass production coupled with bioremediation of nutrients and CO 2 from livestock farms: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:135247. [PMID: 31839294 DOI: 10.1016/j.scitotenv.2019.135247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Development of renewable and clean energy as well as bio-based fine chemicals technologies are the keys to overcome the problems such as fossil depletion, global warming, and environment pollution. To date, cultivation of microalgae using wastewater is regarded as a promising approach for simultaneous nutrients bioremediation and biofuels production due to their high photosynthesis efficiency and environmental benefits. However, the efficiency of nutrients removal and biomass production strongly depends on wastewater properties and microalgae species. Moreover, the high production cost is still the largest limitation to the commercialization of microalgae biofuels. In this review paper, the state-of-the-art algae species employed in livestock farm wastes have been summarized. Further, microalgae cultivation systems and impact factors in livestock wastewater to microalgae growth have been thoroughly discussed. In addition, technologies reported for microalgal biomass harvesting and CO2 mass transfer enhancement in the coupling process were presented and discussed. Finally, this article discusses the potential benefits and challenges of coupling nutrient bioremediation, CO2 capture, and microalgal production. Possible engineering measures for cost-effective nutrients removal, carbon fixation, microalgal biofuels and bioproducts production are also proposed.
Collapse
Affiliation(s)
- Weidong Lu
- School of Chemistry and Environmental Engineering, Shaoguan University, Shaoguan 512005, China; Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY 13210, United States
| | - Jinliang Xu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Roberto Parra Saldivar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849, Monterrey, NL., Mexico
| |
Collapse
|
39
|
Soydemir G, Gurol MD, Hocaoğlu SM, Karagündüz A. Fouling mechanisms of membrane filtration of mixed microalgal biomass grown in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2127-2139. [PMID: 32701491 DOI: 10.2166/wst.2020.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling mechanisms of the filtration of a mixed-culture microalgal biomass grown in real wastewater were investigated using crossflow filtration experiments. The results of flux measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses for three membranes, two microfiltration (PES01 and PES003) and one ultrafiltration (UC030), showed that the UC030 membrane may be more appropriate for microalgae harvesting due to its higher steady flux rate and lower flux reduction during filtration compared to the initial flux (44% for UC030, compared to 86% for PES01 and 79% for PES003). It was also observed that the membrane resistance due to concentration polarization was the dominant membrane resistance in this study for all three membranes, constituting about 67%, 61% and 51% for PES01, PES003, and UC030, respectively. The next largest membrane resistance was provided by pore blocking, while the resistance provided by cake formation was found to be very small for all membranes (3%, 15% and 18% for PES01, PES003 and UC030, respectively), which were also supported by SEM and AFM analyses.
Collapse
Affiliation(s)
- Gülfem Soydemir
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470, Gebze, Kocaeli, Turkey E-mail:
| | - Mirat D Gurol
- Department of Environmental Engineering, Gebze Technical University, TR-41400, Kocaeli, Turkey
| | - Selda Murat Hocaoğlu
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470, Gebze, Kocaeli, Turkey E-mail:
| | - Ahmet Karagündüz
- Department of Environmental Engineering, Gebze Technical University, TR-41400, Kocaeli, Turkey
| |
Collapse
|
40
|
Rouquié C, Liu S, Rabiller-Baudry M, Riaublanc A, Frappart M, Couallier E, Szymczyk A. Electrokinetic leakage as a tool to probe internal fouling in MF and UF membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Zhao Z, Mertens M, Li Y, Muylaert K, Vankelecom IFJ. A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae. BIORESOURCE TECHNOLOGY 2020; 300:122688. [PMID: 31901780 DOI: 10.1016/j.biortech.2019.122688] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
The optimal operational parameters of a second generation magnetically induced membrane vibration (MMV) system were determined using the response surface methodology (RSM) combined with single-factor experiments. The membrane surfaces were characterized by scanning electron microscopy (SEM) and algae cell states by inverted microscopy. The effect of an intermittent vibration strategy on filtration performance and energy consumption was studied. The results showed that the responses could be fitted by RSM models. High membrane flux, low energy consumption, efficient fouling control and no damage to the microalgae could thus be realized. The filtration strategy tests suggested that an intermittent cycle time of 4 min with 50% vibration rate could be the best vibration strategy for harvesting the microalgae under investigation.
Collapse
Affiliation(s)
- Zhenyu Zhao
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Matthias Mertens
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Yun Li
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium
| | - Koenraad Muylaert
- Lab Aquatic Biology, Microbial en Molecular Systems, KU Leuven KULAK, E. Sabbelaan 53, B-8500 Kortrijk, Belgium
| | - Ivo F J Vankelecom
- Membrane Technology Group (MTG), Division cMACS, Faculty of Bio-Science Engineering, KU Leuven, Celestijnenlaan 200F, PO Box 2454, 3001 Leuven, Belgium.
| |
Collapse
|
42
|
Marbelia L, Ilyas A, Dierick M, Qian J, Achille C, Ameloot R, Vankelecom IF. Preparation of patterned flat-sheet membranes using a modified phase inversion process and advanced casting knife construction techniques. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117621] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Matveev DN, Plisko TV, Volkov VV, Vasilevskii VP, Bazhenov SD, Shustikov AA, Chernikova EV, Bildyukevich AV. Ultrafiltration Membranes Based on Various Acrylonitrile Copolymers. MEMBRANES AND MEMBRANE TECHNOLOGIES 2019. [DOI: 10.1134/s2517751619060015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
|
45
|
Chong WC, Mohammad AW, Mahmoudi E, Chung YT, Kamarudin KF, Takriff MS. Nanohybrid membrane in algal-membrane photoreactor: Microalgae cultivation and wastewater polishing. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2019.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
46
|
Heat-treated optimized polysulfone electrospun nanofibrous membranes for high performance wastewater microfiltration. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.097] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Harvesting of Isochrysis zhanjiangensis using ultrafiltration: Changes in the contribution ratios of cells and algogenic organic matter to membrane fouling under different cross-flow velocities. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Rouquié C, Dahdouh L, Ricci J, Wisniewski C, Delalonde M. Immersed membranes configuration for the microfiltration of fruit-based suspensions. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.01.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Xu Y, Tognia M, Guo D, Shen L, Li R, Lin H. Facile preparation of polyacrylonitrile-co-methylacrylate based integrally skinned asymmetric nanofiltration membranes for sustainable molecular separation: An one-step method. J Colloid Interface Sci 2019; 546:251-261. [DOI: 10.1016/j.jcis.2019.03.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/23/2022]
|
50
|
Rouquié C, Dahdouh L, Delalonde M, Wisniewski C. New prospects for immersed hollow-fiber membranes in fruit juices microfiltration: Case of grapefruit juice. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|