1
|
Mofijur M, Hasan MM, Sultana S, Kabir Z, Djavanroodi F, Ahmed SF, Jahirul MI, Badruddin IA, Khan TMY. Advancements in algal membrane bioreactors: Overcoming obstacles and harnessing potential for eliminating hazardous pollutants from wastewater. CHEMOSPHERE 2023:139291. [PMID: 37353165 DOI: 10.1016/j.chemosphere.2023.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
This paper offers a comprehensive analysis of algal-based membrane bioreactors (AMBRs) and their potential for removing hazardous and toxic contaminants from wastewater. Through an identification of contaminant types and sources, as well as an explanation of AMBR operating principles, this study sheds light on the promising capabilities of AMBRs in eliminating pollutants like nitrogen, phosphorus, and organic matter, while generating valuable biomass and energy. However, challenges and limitations, such as the need for process optimization and the risk of algal-bacterial imbalance, have been identified. To overcome these obstacles, strategies like mixed cultures and bioaugmentation techniques have been proposed. Furthermore, this study explores the wider applications of AMBRs beyond wastewater treatment, including the production of value-added products and the removal of emerging contaminants. The findings underscore the significance of factors such as appropriate algal-bacterial consortia selection, hydraulic and organic loading rate optimization, and environmental factor control for the success of AMBRs. A comprehensive understanding of these challenges and opportunities can pave the way for more efficient and effective wastewater treatment processes, which are crucial for safeguarding public health and the environment.
Collapse
Affiliation(s)
- M Mofijur
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia.
| | - M M Hasan
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia; School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Sabrina Sultana
- Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zobaidul Kabir
- School of Environmental and Life Sciences, University of Newcastle, NSW, 2258, Australia
| | - F Djavanroodi
- Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Shams Forruque Ahmed
- Science and Math Program, Asian University for Women, Chattogram, 4000, Bangladesh
| | - M I Jahirul
- School of Engineering and Technology, Central Queensland University, QLD, 4701, Australia
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - T M Yunus Khan
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| |
Collapse
|
2
|
Zhang B, Peng C, Zhang S, Zhang M, Li D, Wang X, Mao B. Comprehensive analysis of the combined flocculation and filtration process for microalgae harvesting at various operating parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159658. [PMID: 36302440 DOI: 10.1016/j.scitotenv.2022.159658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
The combined process of flocculation and filtration can improve algae harvesting performance by combining the benefits of both and overcoming the drawbacks. The entire process was thoroughly examined in this study, considering technical and economic feasibility under a variety of operating situations. Dead-end filtration was performed to evaluate the harvesting performance, the removal of extracellular organic matter and the changes of flocs. Cross-flow filtration was then carried out to explore the effect of operating parameters on permeate flux and assess the technical and economic feasibility. The optimum operating condition was to use 5 mg/L cationic polyacrylamide with 25 μm pore size and 0.1 m/s cross-flow velocity, under which a high harvesting efficiency of 95.2 %, a high average permeate flux of 55.5 m3/(m2 h) and a volumetric reduction factor of 118.9 were achieved. Algal floc analysis revealed that flocs formed by ferric chloride and polyaluminium sulfate tended to partially deconstruct into smaller pieces during the filtration process. In contrast, flocs formed by cationic polyacrylamide tended to aggregate into bigger flocs, which, when paired with the effect of flocculant dosage and membrane pore size, could explain the difference in filtration performance and membrane permeance. No negative effect on downstream technology was observed for the combined process. A significantly lowered estimated total cost of 0.139 $/kg under optimum operating condition was obtained compared to filtration without flocculation assisted (0.206 $/kg).
Collapse
Affiliation(s)
- Bingcong Zhang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Cheng Peng
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Shuangshuang Zhang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Miao Zhang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Dan Li
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Xin Wang
- Department of Water Resource and Environmental Engineering, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China
| | - Bifei Mao
- Department of Chemistry, Biology and Materials, East China University of Technology, Guanglan Blvd 418, Nanchang, Jiangxi 330013, China.
| |
Collapse
|
3
|
Goh PS, Ahmad NA, Lim JW, Liang YY, Kang HS, Ismail AF, Arthanareeswaran G. Microalgae-Enabled Wastewater Remediation and Nutrient Recovery through Membrane Photobioreactors: Recent Achievements and Future Perspective. MEMBRANES 2022; 12:1094. [PMID: 36363649 PMCID: PMC9699475 DOI: 10.3390/membranes12111094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The use of microalgae for wastewater remediation and nutrient recovery answers the call for a circular bioeconomy, which involves waste resource utilization and ecosystem protection. The integration of microalgae cultivation and wastewater treatment has been proposed as a promising strategy to tackle the issues of water and energy source depletions. Specifically, microalgae-enabled wastewater treatment offers an opportunity to simultaneously implement wastewater remediation and valuable biomass production. As a versatile technology, membrane-based processes have been increasingly explored for the integration of microalgae-based wastewater remediation. This review provides a literature survey and discussion of recent progressions and achievements made in the development of membrane photobioreactors (MPBRs) for wastewater treatment and nutrient recovery. The opportunities of using microalgae-based wastewater treatment as an interesting option to manage effluents that contain high levels of nutrients are explored. The innovations made in the design of membrane photobioreactors and their performances are evaluated. The achievements pave a way for the effective and practical implementation of membrane technology in large-scale microalgae-enabled wastewater remediation and nutrient recovery processes.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Nor Akalili Ahmad
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, India
| | - Yong Yeow Liang
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan 26300, Pahang, Malaysia
| | - Hooi Siang Kang
- Marine Technology Centre, Institute for Vehicle System & Engineering, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli 620015, India
| |
Collapse
|
4
|
Ricceri F, Malaguti M, Derossi C, Zanetti M, Riggio V, Tiraferri A. Microalgae biomass concentration and reuse of water as new cultivation medium using ceramic membrane filtration. CHEMOSPHERE 2022; 307:135724. [PMID: 35850220 DOI: 10.1016/j.chemosphere.2022.135724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The aim of this study is to advance means for microalgae dewatering with the simultaneous reuse of water as new cultivation medium, specifically through ceramic membrane filtration. Three algae, namely, Spirulina platensis, Scenedesmus obliquus, and Chlorella sorokiniana were tested by filtering suspensions with four ceramic membranes having nominal pore sizes of 0.8 μm, 0.14 μm, 300 kDa, 15 kDa. The observed flux values and organic matter removal rates were related to the membrane pore size and cake layer properties, with some differences in productivity between algae types, likely due to cell size and shape. Interestingly, similar near steady-state fluxes (70-120 L m-2h-1) were measured using membranes with nominal pore size above 15 kDa, suggesting the dominance of cake layer filtration independently of the initial flux. Virtually complete algae cells rejections and high nutrient passage (>75%) were observed in all combinations. When the permeate streams were used as media for new growth cycles of the various algae, no or little growth was observed with Spirulina p., while Chlorella s. (permeate from 300 kDa membrane) and especially Scenedesmus o. (permeate from 0.14 μm membrane) showed the fastest growth rates, almost comparable to those observed with ideal fresh media.
Collapse
Affiliation(s)
- Francesco Ricceri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy; CleanWaterCenter@PoliTo, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Marco Malaguti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Clara Derossi
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Mariachiara Zanetti
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Vincenzo Riggio
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Alberto Tiraferri
- Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy; CleanWaterCenter@PoliTo, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy.
| |
Collapse
|
5
|
El Bouaidi W, Libralato G, Douma M, Ounas A, Yaacoubi A, Lofrano G, Albarano L, Guida M, Loudiki M. A review of plant-based coagulants for turbidity and cyanobacteria blooms removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42601-42615. [PMID: 35384538 PMCID: PMC9148277 DOI: 10.1007/s11356-022-20036-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
In recent years, the proliferation of Harmful Cyanobacterial Blooms (CyanoHABs) has increased with water eutrophication and climate change, impairing human health and the environment in relation to water supply. In drinking water treatment plants (DWTPs), the bio-coagulation based on natural coagulants has been studied as an eco-friendly alternative technology to conventional coagulants for both turbidity and CyanoHABs removal. Plant-based coagulants have demonstrated their coagulation efficiency in turbidity removal, as reported in several papers but its ability in cyanobacterial removal is still limited. This paper mainly reviewed the application of plant-based coagulants in DWTPs, with focus on turbidity removal, including cyanobacterial cells. The future potential uses of these green coagulants to reduce noxious effects of cyanobacterial proliferation are presented. Green coagulants advantages and limitations in DWTPs are reviewed and discussed summarizing more than 10 years of knowledge.
Collapse
Affiliation(s)
- Widad El Bouaidi
- Laboratory of Water, Biodiversity and Climate Change; Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Department of Biology, Cadi Ayyad University, Av. Prince My Abdellah, P. O Box 2390, 40000 Marrakesh, Morocco
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Mountasser Douma
- Polydisciplinary Faculty of Khouribga (FPK), Sultan Moulay Slimane University, 25000 Khouribga, Morocco
| | - Abdelaziz Ounas
- Laboratory of Applied Organic Chemistry, Faculty of Sciences Semlalia, Department of Chemistry, Cadi Ayyad University, 40000 Marrakesh, Morocco
| | - Abdelrani Yaacoubi
- Laboratory of Applied Organic Chemistry, Faculty of Sciences Semlalia, Department of Chemistry, Cadi Ayyad University, 40000 Marrakesh, Morocco
| | - Giusy Lofrano
- Dipartimento Di Scienze Motorie, Umane E Della Salute, Università Degli Studi Di Roma Foro Italico, Piazza Lauro De Bosis, 15, 00135 Roma, Italy
| | - Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario Di Monte Sant’Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Mohammed Loudiki
- Laboratory of Water, Biodiversity and Climate Change; Phycology, Biotechnology and Environmental Toxicology Research Unit, Faculty of Sciences Semlalia, Department of Biology, Cadi Ayyad University, Av. Prince My Abdellah, P. O Box 2390, 40000 Marrakesh, Morocco
| |
Collapse
|
6
|
Yang Z, Yu H, Wei G, Ye L, Fan G, Fang Q, Rong H, Qu F. Oxidation-enhanced ferric coagulation for alleviating ultrafiltration membrane fouling by algal organic matter: A comparison of moderate and strong oxidation. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
7
|
Castro-Muñoz R, García-Depraect O. Membrane-Based Harvesting Processes for Microalgae and Their Valuable-Related Molecules: A Review. MEMBRANES 2021; 11:membranes11080585. [PMID: 34436347 PMCID: PMC8400455 DOI: 10.3390/membranes11080585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022]
Abstract
The interest in microalgae production deals with its role as the third generation of feedstock to recover renewable energy. Today, there is a need to analyze the ultimate research and advances in recovering the microalgae biomass from the culture medium. Therefore, this review brings the current research developments (over the last three years) in the field of harvesting microalgae using membrane-based technologies (including microfiltration, ultrafiltration and forward osmosis). Initially, the principles of membrane technologies are given to outline the main parameters influencing their operation. The main strategies adopted by the research community for the harvesting of microalgae using membranes are subsequently addressed, paying particular attention to the novel achievements made for improving filtration performance and alleviating fouling. Moreover, this contribution also gives an overview of the advantages of applying membrane technologies for the efficient extraction of the high added-value compounds in microalgae cells, such as lipids, proteins and carbohydrates, which together with the production of renewable biofuels could boost the development of more sustainable and cost-effective microalgae biorefineries.
Collapse
Affiliation(s)
- Roberto Castro-Muñoz
- Tecnologico de Monterrey, Campus Toluca, Avenida Eduardo Monroy Cárdenas 2000 San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., 80-233 Gdansk, Poland
- Correspondence: (R.C.-M.); (O.G.-D.)
| | - Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
- Correspondence: (R.C.-M.); (O.G.-D.)
| |
Collapse
|
8
|
Novoa AF, Vrouwenvelder JS, Fortunato L. Membrane Fouling in Algal Separation Processes: A Review of Influencing Factors and Mechanisms. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.687422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of algal biotechnologies in the production of biofuels, food, and valuable products has gained momentum in recent years, owing to its distinctive rapid growth and compatibility to be coupled to wastewater treatment in membrane photobioreactors. However, membrane fouling is considered a main drawback that offsets the benefits of algal applications by heavily impacting the operation cost. Several fouling control strategies have been proposed, addressing aspects related to characteristics in the feed water and membranes, operational conditions, and biomass properties. However, the lack of understanding of the mechanisms behind algal biofouling and control challenges the development of cost-effective strategies needed for the long-term operation of membrane photobioreactors. This paper reviews the progress on algal membrane fouling and control strategies. Herein, we summarize information in the composition and characteristics of algal foulants, namely algal organic matter, cells, and transparent exopolymer particles; and review their dynamic responses to modifications in the feedwater, membrane surface, hydrodynamics, and cleaning methods. This review comparatively analyzes (i) efficiency in fouling control or mitigation, (ii) advantages and drawbacks, (iii) technological performance, and (iv) challenges and knowledge gaps. Ultimately, the article provides a primary reference of algal biofouling in membrane-based applications.
Collapse
|
9
|
Huang R, Liu Z, Yan B, Li Y, Li H, Liu D, Wang P, Cui F, Shi W. Interfacial catalytic oxidation for membrane fouling mitigation during algae-laden water filtration: Higher efficiency without algae integrity loss. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Novoa AF, Fortunato L, Rehman ZU, Leiknes T. Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. BIORESOURCE TECHNOLOGY 2020; 309:123348. [PMID: 32305017 DOI: 10.1016/j.biortech.2020.123348] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Coupling algal biomass growth to wastewater treatment is a promising alternative for the simultaneous removal and recovery of nutrients. This study aims to evaluate the effects of the Hydraulic Retention Time (HRT) on the fouling behavior and biomass characteristics of C. Vulgaris in a Membrane Photobioreactor (MPBR), fed with a secondary synthetic wastewater effluent. The changes in the algal cell characteristics and in their metabolic products were assessed at three different HRTs (12 h, 24 h and 36 h). Experimental results showed that higher loading rates led to a broader Particle Size Distribution (PSD) resulting from looser and less stable algal flocs. In contrast, bigger and homogeneously distributed particles observed at lower loading rates, led to a porous layer with lower fouling rates and organic removal. The presence of smaller particles and dissolved organics resulted in a more compact and less porous layer that increased the removal of small-MW organics.
Collapse
Affiliation(s)
- Andres Felipe Novoa
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luca Fortunato
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Zahid Ur Rehman
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Soydemir G, Gurol MD, Hocaoğlu SM, Karagündüz A. Fouling mechanisms of membrane filtration of mixed microalgal biomass grown in wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:2127-2139. [PMID: 32701491 DOI: 10.2166/wst.2020.268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane fouling mechanisms of the filtration of a mixed-culture microalgal biomass grown in real wastewater were investigated using crossflow filtration experiments. The results of flux measurements, scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses for three membranes, two microfiltration (PES01 and PES003) and one ultrafiltration (UC030), showed that the UC030 membrane may be more appropriate for microalgae harvesting due to its higher steady flux rate and lower flux reduction during filtration compared to the initial flux (44% for UC030, compared to 86% for PES01 and 79% for PES003). It was also observed that the membrane resistance due to concentration polarization was the dominant membrane resistance in this study for all three membranes, constituting about 67%, 61% and 51% for PES01, PES003, and UC030, respectively. The next largest membrane resistance was provided by pore blocking, while the resistance provided by cake formation was found to be very small for all membranes (3%, 15% and 18% for PES01, PES003 and UC030, respectively), which were also supported by SEM and AFM analyses.
Collapse
Affiliation(s)
- Gülfem Soydemir
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470, Gebze, Kocaeli, Turkey E-mail:
| | - Mirat D Gurol
- Department of Environmental Engineering, Gebze Technical University, TR-41400, Kocaeli, Turkey
| | - Selda Murat Hocaoğlu
- TUBITAK Marmara Research Center, Environment and Cleaner Production Institute, 41470, Gebze, Kocaeli, Turkey E-mail:
| | - Ahmet Karagündüz
- Department of Environmental Engineering, Gebze Technical University, TR-41400, Kocaeli, Turkey
| |
Collapse
|
12
|
Fortunato L, Lamprea AF, Leiknes T. Evaluation of membrane fouling mitigation strategies in an algal membrane photobioreactor (AMPBR) treating secondary wastewater effluent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 708:134548. [PMID: 31791793 DOI: 10.1016/j.scitotenv.2019.134548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/21/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Microalgae-based advanced wastewater treatment has gained momentum due to the possibility of recovering nutrients for the production of fertilizers, biofuels and fine chemicals from microalgal biomass. The objective of this study is to evaluate the effect of different fouling control strategies on the development of Chlorella vulgaris in a membrane photobioreactor (AMPMBR) treating a secondary wastewater effluent. The experimental results showed a decrease in the fouling rate (bar/hours) of 50% for backwash and relaxation and 60% for nitrogen bubble scouring. Additionally, in-situ non-destructive real time monitoring was employed to visualize and assess the change in morphology of the algae formed on the membrane surface. The use of fouling mitigation led to substantial changes in the biomass morphologies impacting the performance of the AMPMBR. The lowest biomass deposition (5-10 µm) was observed when nitrogen bubble scouring was employed, while the application of relaxation led to the thickest (180 µm), most heterogeneous and porous structure. The use of backwash led to a partial temporary biomass detachment from the membrane surface. This study, provided a better understanding of the impact of fouling mitigation strategies on the biomass formed on the membrane of AMPMBR.
Collapse
Affiliation(s)
- Luca Fortunato
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Andrés Felipe Lamprea
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - TorOve Leiknes
- Water Desalination and Reuse Center (WDRC), Division of Biological & Environmental Science & Engineering (BESE), 4700 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
13
|
Cui Z, Hao Ngo H, Cheng Z, Zhang H, Guo W, Meng X, Jia H, Wang J. Hysteresis effect on backwashing process in a submerged hollow fiber membrane bioreactor (MBR) applied to membrane fouling mitigation. BIORESOURCE TECHNOLOGY 2020; 300:122710. [PMID: 31923875 DOI: 10.1016/j.biortech.2019.122710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Hysteresis effect on backwashing in a submerged MBR was investigated with dead-end hollow fiber membranes. The out-of-step changes in TMP and flux is the real hysteresis effect which is common but easily overlooked. Methods of visualization and ultrasonic spectrum analysis were implemented. The results showed that fouling layer is just the culprit of hysteresis effect. Fouling level and fiber length were determined as two key factors that affect hysteresis effect by data and model derivation. Moreover, a hysteresis evaluation index "τbw" is proposed to quantify the result of TMP vs time. The relationship between influence factors and "τbw" is interactive. A linear relationship between fouling level and "τbw" was found as well as an extreme value between fiber length and "τbw". A lower fouling level (lower backwashing flow) and optimal backwashing duration will be helpful for an effective backwashing no matter for membrane fouling control or energy cost reduce.
Collapse
Affiliation(s)
- Zhao Cui
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Zhiyang Cheng
- School of Materials Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongwei Zhang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Xia Meng
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Jia
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- School of Environmental Science and Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
14
|
Xiao F, Xiao P, Wang D. Influence of allochthonous organic matters on algae removal: Organic removal and floc characteristics. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123995] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Ashok V, Shriwastav A, Bose P, Gupta SK. Phycoremediation of wastewater using algal-bacterial photobioreactor: Effect of nutrient load and light intensity. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2019.100205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Kim D, Kwak M, Kim K, Chang YK. Turbulent jet-assisted microfiltration for energy efficient harvesting of microalgae. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Jian Z, Bai Y, Chang Y, Liang J, Qu J. Removal of micropollutants and cyanobacteria from drinking water using KMnO 4 pre-oxidation coupled with bioaugmentation. CHEMOSPHERE 2019; 215:1-7. [PMID: 30300806 DOI: 10.1016/j.chemosphere.2018.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/30/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Increasing micropollutant and cyanobacterial contamination of drinking water threatens human health worldwide. However, these contaminates are not efficiently removed by common drinking water treatment processes, and thus additional treatments are frequently required. Recent investigations have demonstrated that KMnO4 pre-oxidation can efficiently remove some micropollutants and cyanobacteria but the release of cyanobacterial toxins and Mn2+ limit its use. To overcome these problems, we proposed a KMnO4 pre-oxidation coupled with bioaugmentation (e.g., sand filtration) method to treat micropollutant- and cyanobacteria-laden water. We used 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (BP-4, a common micropollutant in drinking water sources) and Microcystis aeruginosa (a widely distributed cyanobacterial species) as model pollutants to verify the feasibility of the proposed method. Results revealed that KMnO4 pre-oxidation efficiently removed existing natural organic matter and Microcystis aeruginosa but failed to remove BP-4 and released Mn2+ and microcystin-LR (MC-LR) during treatment. Following the addition of a manganese-oxidizing bacterial strain (Pseudomonas sp. QJX-1) to the KMnO4-treated solution, we found that the bacteria could transform Mn2+ to Mn(III&IV) oxides, with the formed Mn oxides then able to remove BP-4 and MC-LR. Overall, the proposed method exhibited advantages in the removal of natural organic matter (i.e., decreasing disinfection byproduct formation), micropollutants, and cyanobacteria as well as preventing the release of Mn2+, and thus may be considered a good alternative for treating polluted drinking water.
Collapse
Affiliation(s)
- Zhiyu Jian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yangyang Chang
- School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jinsong Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
18
|
Kang S, Heo S, Lee JH. Techno-economic Analysis of Microalgae-Based Lipid Production: Considering Influences of Microalgal Species. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Seongwhan Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongmin Heo
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jay H. Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Cui Z, Wang J, Zhang H, Ngo HH, Jia H, Guo W, Gao F, Yang G, Kang D. Investigation of backwashing effectiveness in membrane bioreactor (MBR) based on different membrane fouling stages. BIORESOURCE TECHNOLOGY 2018; 269:355-362. [PMID: 30195993 DOI: 10.1016/j.biortech.2018.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
In this study the effect of different fouling stages of hollow fiber membranes on effective backwashing length in MBR has been investigated. Computational fluid dynamics (CFD) is imported to simulate backwashing process. A multi-physics coupling model for free porous media flow, convective mass transfer and diluted species transport was established. The laser bijection sensors (LBS) were imported to monitor the backwashing solution position inside fiber lumen. Simulation results indicated that membrane fouling degree could change the velocity of backwash solution inside fiber lumen and make a further effect on effective backwash length. The signal variations of LBS are in accordance with the simulation results. The backwashing process can only play an active role when the filtration pressure is below the critical TMP. It can be concluded that backwash duration in industrial applications need to be set based on changes in TMP.
Collapse
Affiliation(s)
- Zhao Cui
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Hongwei Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Australia
| | - Fei Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guang Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dejun Kang
- Department of Municipal Engineering, College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
20
|
Liao Y, Bokhary A, Maleki E, Liao B. A review of membrane fouling and its control in algal-related membrane processes. BIORESOURCE TECHNOLOGY 2018; 264:343-358. [PMID: 29983228 DOI: 10.1016/j.biortech.2018.06.102] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 06/23/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Membrane technologies have received much attention in microalgae biorefinery for nutrients removal from wastewater, carbon dioxide abatement from the air as well as the production of value-added products and biofuel in recent years. This paper provides a state-of-the-art review on membrane fouling issues and its control in membrane photobioreactors (MPBRs) and other algal-related membrane processes (harvesting, dewatering, and biofuel production). The mechanisms of membrane fouling and factors affecting membrane fouling in algal-related membrane processes are systematically reviewed. Also, strategies to control membrane fouling in algal-related membrane processes are summarized and discussed. Finally, the gaps, challenges, and opportunities in membrane fouling control in algal-related membrane technologies are identified and discussed.
Collapse
Affiliation(s)
- Yichen Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Alnour Bokhary
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Esmat Maleki
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Baoqiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| |
Collapse
|
21
|
Zhang Y, Fu Q. Algal fouling of microfiltration and ultrafiltration membranes and control strategies: A review. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.04.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
García-Cubero R, Wang W, Martín J, Bermejo E, Sijtsma L, Togtema A, Barbosa MJ, Kleinegris DM. Milking exopolysaccharides from Botryococcus braunii CCALA778 by membrane filtration. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Microwell-assisted filtration with anodic aluminum oxide membrane for Raman analysis of algal cells. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Membrane fouling of forward osmosis in dewatering of soluble algal products: Comparison of TFC and CTA membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.02.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|