1
|
González-Portela RE, Romero-Villegas GI, Kapoore RV, Alammari ZM, Malibari RA, Shaikhi AA, Al Hafedh Y, Aljahdali AH, Banjar RE, Mhedhbi E, Filimban A, Padri M, Fuentes-Grünewald C. Cultivation of Limnospira maxima under extreme environmental conditions in Saudi Arabia: Salinity adaptation and scaling-up from laboratory culture to large-scale production. BIORESOURCE TECHNOLOGY 2024; 406:131089. [PMID: 38986884 DOI: 10.1016/j.biortech.2024.131089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Limnospira maxima has been adapted to grow in high salinity and in an economically alternative medium using industrial-grade fertilizers under harsh environmental conditions in Saudi Arabia. A sequence of scaling-up processes, from the laboratory to large-scale open raceways, was conducted along with gradual adaptation to environmental stress (salinity, light, temperature, pH). High biomass concentration at harvest point and areal productivity were achieved during the harsh summer season (1.122 g L-1 and 60.35 g m-2 day-1, respectively). The average protein content was found to be above 40 % of dry weight. Changes in the color and morphological appearance of the L. maxima culture were observed after direct exposure to sunlight in the outdoor raceways. These results demonstrate a successful and robust adaptation method for algal cultivation at outdoor large-scale in harsh environment (desert conditions) and also prove the feasibility of using hypersaline seawater (42 g kg-1) as an algal growth medium.
Collapse
Affiliation(s)
- Ricardo E González-Portela
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| | - Gabriel I Romero-Villegas
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rahul V Kapoore
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Zain M Alammari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Raghdah A Malibari
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Ali Al Shaikhi
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Yousef Al Hafedh
- Ministry of Environment, Water and Agriculture (MEWA), King Abdulaziz Rd., Riyadh 11195, Kingdom of Saudi Arabia
| | - Abdulaziz H Aljahdali
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Rana E Banjar
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Emna Mhedhbi
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Akram Filimban
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Mohamad Padri
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia
| | - Claudio Fuentes-Grünewald
- King Abdullah University of Science and Technology, Beacon Development Department (KAUST- KBD), Thuwal, Makkah 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
2
|
Hussin AA, Hidayah Ahmad NA, Mohd Asri NF, Nik Malek NAN, Mohd Amin MF, Kamaroddin MF. Cultivation of Arthrospira platensis and harvesting using edible fungi isolated from mould soybean cake. BIORESOURCE TECHNOLOGY 2023; 373:128743. [PMID: 36791974 DOI: 10.1016/j.biortech.2023.128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
In this study, the cultivation and harvesting of Arthrospira platensis biomass were proposed via simple, safe, and efficient techniques for direct consumption. Cultivation of microalgae in a covered macrobubble column under outdoor conditions resulted in significant differences (p < 0.05) with a maximum dry cell weight (Xm) of 0.959 ± 0.046 g/L. Notably, outdoor cultures resulted in approximately twofold biomass compared to indoor cultures. This outcome shows that the developed outdoor setup integrated with solar panels while utilising Malaysia's weather and atmospheric air as carbon sources is viable. Meanwhile, for harvesting, the screening showed that the fungus isolated from mould soybean cake (tempeh) starter indicated the highest harvesting efficiency, which was then further identified as Rhizopus microsporus, microscopically and molecularly. Overall, the economical and portable setup of outdoor cultivation coupled with safe harvesting via locally isolated fungus from tempeh as a bioflocculant would provide sustainability to produce A. platensis biomass.
Collapse
Affiliation(s)
- Aimi Alina Hussin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Amira Hidayah Ahmad
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nur Fakhira Mohd Asri
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | - Nik Ahmad Nizam Nik Malek
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| | | | - M Farizal Kamaroddin
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia.
| |
Collapse
|
3
|
Teng Z, Zheng L, Yang Z, Li L, Zhang Q, Li L, Chen W, Wang G, Song L. Biomass production and astaxanthin accumulation of Haematococcus pluvialis in large-scale outdoor culture based on year-round survey: Influencing factors and physiological response. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Thevarajah B, Nishshanka GKSH, Premaratne M, Nimarshana P, Nagarajan D, Chang JS, Ariyadasa TU. Large-scale production of Spirulina-based proteins and c-phycocyanin: A biorefinery approach. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Long-Term Cultivation of a Native Arthrospira platensis (Spirulina) Strain in Pozo Izquierdo (Gran Canaria, Spain): Technical Evidence for a Viable Production of Food-Grade Biomass. Processes (Basel) 2021. [DOI: 10.3390/pr9081333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microalgae cultivation is a promising alternative to traditional agriculture in arid—semi-arid areas. The aim of this study is to assess the viability of long-term cultivation of native Arthrospira platensis in Gran Canaria. Maximum culture productivity (0.08 g/L/day) and optimal concentration range (0.6–0.9 g/L) were firstly determined in 8000 L raceway under a greenhouse. Afterwards, a stable productivity of 0.06 g/L/day (6.0 g/m2/day) was obtained by reusing the culture medium during 26 days of cultivation, with consistent biomass biochemical composition. Outdoor temperature and daily solar irradiation ranged between 17.9–30.7 °C and 79.2–274.8 W/m2, while culture pH and salinity were in the range 9.42–10.77 and 11.2–14.9 g/L, respectively. Protein (>60%), potassium (1.8 g/100 g) and C-phycocyanin (7.2%) content is in the high-range of commercial Spirulina, which makes BEA 1257B promising for food and extraction of natural pigments/antioxidants. The dried biomass complies with international standards for human consumption, because of low heavy metal content and no pathogens presence. Product quality can be improved by reducing ash (≃12%) and sodium (1.5%) content through biomass washing optimization and/or further dewatering step. Other microorganisms can be prevented by high alkaline conditions and mild chemical treatments. These results pave the way for a sustainable microalgae-based blue bioeconomy in the Canary Islands.
Collapse
|
6
|
Abstract
Since the 1950s, microalgae have been grown commercially in man-made cultivation units and used for biomass production as a source of food and feed supplements, pharmaceuticals, cosmetics and lately biofuels, as well as a means for wastewater treatment and mitigation of atmospheric CO2 build-up. In this work, photosynthesis and growth affecting variables—light intensity, pH, CO2/O2 exchange, nutrient supply, culture turbulence, light/dark cell cycling, biomass density and culture depth (light path)—are reviewed as concerns in microalgae mass cultures. Various photosynthesis monitoring techniques were employed to study photosynthetic performance to optimize the growth of microalgae strains in outdoor cultivation units. The most operative and reliable techniques appeared to be fast-response ones based on chlorophyll fluorescence and oxygen production monitoring, which provide analogous results.
Collapse
|
7
|
Immobilising Microalgae and Cyanobacteria as Biocomposites: New Opportunities to Intensify Algae Biotechnology and Bioprocessing. ENERGIES 2021. [DOI: 10.3390/en14092566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
There is a groundswell of interest in applying phototrophic microorganisms, specifically microalgae and cyanobacteria, for biotechnology and ecosystem service applications. However, there are inherent challenges associated with conventional routes to their deployment (using ponds, raceways and photobioreactors) which are synonymous with suspension cultivation techniques. Cultivation as biofilms partly ameliorates these issues; however, based on the principles of process intensification, by taking a step beyond biofilms and exploiting nature inspired artificial cell immobilisation, new opportunities become available, particularly for applications requiring extensive deployment periods (e.g., carbon capture and wastewater bioremediation). We explore the rationale for, and approaches to immobilised cultivation, in particular the application of latex-based polymer immobilisation as living biocomposites. We discuss how biocomposites can be optimised at the design stage based on mass transfer limitations. Finally, we predict that biocomposites will have a defining role in realising the deployment of metabolically engineered organisms for real world applications that may tip the balance of risk towards their environmental deployment.
Collapse
|
8
|
Cui J, Xie Y, Sun T, Chen L, Zhang W. Deciphering and engineering photosynthetic cyanobacteria for heavy metal bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:144111. [PMID: 33352345 DOI: 10.1016/j.scitotenv.2020.144111] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Environmental pollution caused by heavy metals has received worldwide attentions due to their ubiquity, poor degradability and easy bioaccumulation in host cells. As one potential solution, photosynthetic cyanobacteria have been considered as promising remediation chassis and widely applied in various bioremediation processes of heavy-metals. Meanwhile, deciphering resistant mechanisms and constructing tolerant chassis towards heavy metals could greatly contribute to the successful application of the cyanobacteria-based bioremediation in the future. In this review, first we summarized recent application of cyanobacteria in heavy metals bioremediation using either live or dead cells. Second, resistant mechanisms and strategies for enhancing cyanobacterial bioremediation of heavy metals were discussed. Finally, potential challenges and perspectives for improving bioremediation of heavy metals by cyanobacteria were presented.
Collapse
Affiliation(s)
- Jinyu Cui
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Yaru Xie
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China.
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China.
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China; Law School of Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
9
|
García-López DA, Olguín EJ, González-Portela RE, Sánchez-Galván G, De Philippis R, Lovitt RW, Llewellyn CA, Fuentes-Grünewald C, Parra Saldívar R. A novel two-phase bioprocess for the production of Arthrospira (Spirulina) maxima LJGR1 at pilot plant scale during different seasons and for phycocyanin induction under controlled conditions. BIORESOURCE TECHNOLOGY 2020; 298:122548. [PMID: 31837580 DOI: 10.1016/j.biortech.2019.122548] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
A two-phase outdoor cultivation bioprocess for Arthrospira maxima LJGR1 combined with phycocyanin induction in concentrated cultures under controlled conditions was evaluated using a modified low-cost Zarrouk medium. Growth was monitored during 4 cycles in 2018 and 4 cycles in 2019. Biomass was harvested and concentrated using membrane technology at the end of each cycle for further phycocyanin induction using blue LED light (controlled conditions, 24 h). The highest biomass productivity was observed during spring and summer cycles (13.63-18.97 gDWm-2 d-1); during mid-fall and mid-end fall, a decrease was observed (9.93-7.76 gDWm-2 d-1). Under favorable growth conditions, phycocyanin induction was successful. However, during cycles with unfavorable growth condition, phycocyanin induction was not observed. Reactive-grade phycocyanin (3.72 ± 0.14) was recovered and purified using microfiltration and ultrafiltration technologies.
Collapse
Affiliation(s)
- D A García-López
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - E J Olguín
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico.
| | - R E González-Portela
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - G Sánchez-Galván
- Environmental Biotechnology Group, Institute of Ecology (INECOL), Carretera Antigua a Coatepec 351, Xalapa, Veracruz 91073, Mexico
| | - R De Philippis
- Department of Agriculture, Environment, Food and Forestry (DAGRI), University of Florence, Piazzale delle Cascine 18, Florence 50144, Italy
| | - R W Lovitt
- Membranology Ltd., Swansea Enterprise Park, Rainbow Business Centre, Llansamlet, Swansea, Wales SA79PF, United Kingdom
| | - C A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, Wales SA28PP, United Kingdom
| | - C Fuentes-Grünewald
- Department of Biosciences, Swansea University, Singleton Park, Swansea, Wales SA28PP, United Kingdom
| | - R Parra Saldívar
- Tecnológico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
| |
Collapse
|
10
|
Papalia T, Sidari R, Panuccio MR. Impact of Different Storage Methods on Bioactive Compounds in Arthrospira platensis Biomass. Molecules 2019; 24:molecules24152810. [PMID: 31374946 PMCID: PMC6696024 DOI: 10.3390/molecules24152810] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Arthrospira platensis (spirulina) is considered a source of natural molecules with nutritional and health benefits. As the different storage forms can affect the quantity and quality of bioactive ingredients, the aim of the present work was to evaluate the effects of freezing, oven-drying and freeze-drying on chemical composition of spirulina biomass. Total proteins, photosynthetic pigments and antioxidants, were analyzed and compared to respective quantities in fresh biomass. The frozen sample exhibited the highest content of phycocyanin-C, phenols, and ascorbic acid, also respect to the fresh biomass. The highest total flavonoid amount was in the freeze-dried biomass. HPLC-DAD analysis of phenolic acids revealed the presence of the isoflavone genistein, known for its therapeutic role, in all the spirulina samples. The phosphomolybdenum method (TAC) and DPPH scavenging activity were applied to determine the antioxidant activity of different samples. The highest DPPH scavenging activity was detected in fresh and freeze-dried biomass and it was positively related to carotenoid content. A positive correlation indicated that carotenoids, chlorophyll, ascorbic acid and all phenolic compounds were the major contributors to the TAC activity in spirulina biomass. The results highlighted a different functional value of spirulina biomass, depending on the processing methods used for its storage.
Collapse
Affiliation(s)
- Teresa Papalia
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy
| | - Rossana Sidari
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy
| | - Maria Rosaria Panuccio
- Department of Agricultural Science, "Mediterranea" University, Feo di Vito, 89124 Reggio Calabria, Italy.
| |
Collapse
|
11
|
Liu Q, Yao C, Sun Y, Chen W, Tan H, Cao X, Xue S, Yin H. Production and structural characterization of a new type of polysaccharide from nitrogen-limited Arthrospira platensis cultivated in outdoor industrial-scale open raceway ponds. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:131. [PMID: 31143244 PMCID: PMC6533678 DOI: 10.1186/s13068-019-1470-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Carbohydrates are major biomass source in fuel-targeted biorefinery. Arthrospira platensis is the largest commercialized microalgae with good environmental tolerance and high biomass production. However, the traditional target of A. platensis cultivation is the protein, which is the downstream product of carbohydrates. Aiming to provide the alternative non-food carbohydrates source, the feasible manipulation technology on the cultivation is needed, as well as new separation methodology to achieve maximum utilization of overall biomass. RESULTS The present study aimed to demonstrate the feasibility of industrially producing carbohydrate-enriched A. platensis and characterize the structure of the polysaccharide involved. Cultivated in industrial-scale outdoor open raceway ponds under nitrogen limitation, A. platensis accumulated maximally 64.3%DW of carbohydrate. The maximum biomass and carbohydrate productivity reached 27.5 g m-2 day-1 and 26.2 g m-2 day-1, respectively. The efficient extraction and purification of the polysaccharides include a high-pressure homogenization-assisted hot water extraction followed by flocculation with a non-toxic flocculant ZTC1 + 1, with the polysaccharide purity and total recovery reaching 81% and 75%, respectively. The purified polysaccharide was mainly composed of (1→3)(1→4)- or (1→3)(1→2)-α-glucan with a molecular weight of 300-700 kDa, which differed from the commonly acknowledged glycogen. CONCLUSIONS By the way of controlled nitrogen limitation, the high carbohydrate production of A. platensis in the industrial scale was achieved. The α-glucan from A. platensis could be a potential glucose source for industrial applications. A non-toxic separation method of carbohydrate was applied to maintain the possibility of utilization of residue in high-value field.
Collapse
Affiliation(s)
- Qishun Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Changhong Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongxin Sun
- Dalian Biotechnology Research Institute, Liaoning Academy of Agricultural Sciences, Dalian, 116024 China
| | - Wei Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Haidong Tan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Xupeng Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Song Xue
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Heng Yin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
- Liaoning Provincial Key Laboratory of Carbohydrates; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| |
Collapse
|
12
|
Sui Y, Muys M, Vermeir P, D'Adamo S, Vlaeminck SE. Light regime and growth phase affect the microalgal production of protein quantity and quality with Dunaliella salina. BIORESOURCE TECHNOLOGY 2019; 275:145-152. [PMID: 30583115 DOI: 10.1016/j.biortech.2018.12.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The microalga Dunaliella salina has been widely studied for carotenogenesis, yet its protein production for human nutrition has rarely been reported. This study unveils the effects of growth phase and light regime on protein and essential amino acid (EAA) levels in D. salina. Cultivation under 24-h continuous light was compared to 12-h/12-h light/dark cycle. The essential amino acid index (EAAI) of D. salina showed accumulating trends up to 1.53 in the stationary phase, surpassing FAO/WHO standard for human nutrition. Light/dark conditions inferred a higher light-usage efficiency, yielding 5-97% higher protein and 18-28% higher EAA mass on light energy throughout the growth, accompanied by 138% faster growth during the light phase of the light/dark cycle, compared to continuous light. The findings revealed D. salina to be especially suitable for high-quality protein production, particularly grown under light/dark conditions, with nitrogen limitation as possible trigger, and harvested in the stationary phase.
Collapse
Affiliation(s)
- Yixing Sui
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Maarten Muys
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Pieter Vermeir
- Laboratory of Chemical Analysis, Department of Green Chemistry and Technology, Gent University, Valentin Vaerwyckweg 1, 9000 Gent, Belgium
| | - Sarah D'Adamo
- Bioprocess Engineering, Wageningen University & Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| |
Collapse
|
13
|
Levasseur W, Taidi B, Lacombe R, Perré P, Pozzobon V. Impact of seconds to minutes photoperiods on Chlorella vulgaris growth rate and chlorophyll a and b content. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|