1
|
Zhang ZX, Wu HX, Lin YC, Xu YS, Ma W, Sun XM, Huang H. Polyketide Synthase Acyltransferase Domain Swapping for Enhanced EPA Recognition and Efficient Coproduction of EPA and DHA in Schizochytrium sp. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39715527 DOI: 10.1021/acs.jafc.4c10465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are important polyunsaturated fatty acids (PUFAs) used as nutritional supplements. The natural EPA content in Schizochytrium sp. is low, and traditional strategies to increase EPA levels often compromise DHA content or lipid accumulation, hindering industrial coproduction. This study aims to modify the PUFA synthase pathway in Schizochytrium sp. to enable high levels of EPA accumulation while maintaining high levels of DHA production. The native acyltransferase (AT) domain in the PKSB subunit was replaced with an EPA-specific AT, increasing the EPA content nearly five-fold (3.94%). Additionally, adding food-grade phenolic compounds to boost EPA accumulation and overexpressing C16 elongase to alleviate lipid synthesis inhibition increased the EPA content from 0.80 to 7.86% in a 5L bioreactor. Ultimately, EPA and DHA titers reached 3.79 and 22.06 g/L, respectively. These findings highlight the potential of Schizochytrium sp. as an efficient cell factory for sustainable EPA and DHA coproduction on an industrial scale.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Hong-Xuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Yan-Cheng Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, China
| |
Collapse
|
2
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
3
|
Liu Y, Han X, Chen Z, Yan Y, Chen Z. Selectively superior production of docosahexaenoic acid in Schizochytrium sp. through engineering the fatty acid biosynthetic pathways. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:75. [PMID: 38831337 PMCID: PMC11145866 DOI: 10.1186/s13068-024-02524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Schizochytrium sp. is commercially used for production of docosahexaenoic acid (DHA). Schizochytrium sp. utilizes the polyketide synthase complex (PKS) and a single type I fatty acid synthase (FAS) to synthesize polyunsaturated fatty acids and saturated fatty acids, respectively. The acyl carrier protein (ACP) domains of FAS or PKS are used to load acyl groups during fatty acids biosynthesis. Phosphopantetheinyl transferase (PPTase) transfers the pantetheine moiety from Coenzyme A to the conserved serine residue of an inactive ACP domain to produce its active form. RESULTS In this study, in order to improve production and content of DHA, we decreased the expression of fas, strengthened the expression of the PKS pathway, and enhanced the supply of active ACP in Schizochytrium sp. ATCC20888. Weakening the expression of fas or disruption of orfA both led to growth defect and reduction of lipid yields in the resulting strains WFAS and DPKSA, indicating that both FAS and PKS were indispensable for growth and lipid accumulation. Although WFAS had a higher DHA content in total fatty acids than the wild-type strain (WT), its growth defect and low DHA yield hinders its use for DHA production. Overexpression of the orfAB, orfC, orfC-DH (truncated orfC), or ppt promoted DHA and lipid production, respectively. The yields and contents of DHA were further increased by combined overexpression of these genes. Highest values of DHA yield (7.2 g/L) and DHA content (40.6%) were achieved in a recombinant OPKSABC-PPT, ⁓56.5% and 15.3% higher than the WT values, respectively. CONCLUSIONS This study demonstrates that genetic engineering of the fatty acid biosynthetic pathways provides a new strategy to enhance DHA production in Schizochytrium.
Collapse
Affiliation(s)
- Yana Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiao Han
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zongcheng Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yihan Yan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Ou Y, Qin Y, Feng S, Yang H. Dual stress factors adaptive evolution for high EPA production in Schizochytrium sp. and metabolomics mechanism analysis. Bioprocess Biosyst Eng 2024; 47:863-875. [PMID: 38687387 DOI: 10.1007/s00449-024-03013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Eicosapentaenoic acid (EPA) is a vital ɷ-3 polyunsaturated fatty acid (PUFA) for human body with various physiological functions. In this study, we proposed an adaptive evolutionary strategy based on high-temperature and high-oxygen two-factor stress to increase the EPA production capacity of Schizochytrium. High-temperature stress was used to increase EPA yield, and high oxygen was implemented to continuously stimulate cell growth and lipid accumulation. The biomass and EPA production of ALE-D50 reached 35.33 g/L and 1.54 g/L, which were 43.85% and 71.11% higher than that of the original strain, respectively. Lower in vivo reactive oxygen species levels indicated that the evolved strain possessed stronger antioxidant activity. Liquid chromatography-mass spectrometry metabolomics showed that enhanced glucose consumption and glycolysis metabolism, as well as a weakened tricarboxylic acid cycle and reduced amino acid metabolic tributaries in the evolved strain, might be associated with increased growth and EPA synthesis. Finally, the lipid production and EPA production in a fed-batch fermentation were further increased to 48.93 g/L and 3.55 g/L, improving by 54.30% and 90.86%, respectively. This study provides a novel pathway for promoting EPA biosynthesis in Schizochytrium.
Collapse
Affiliation(s)
- Ying Ou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, People's Republic of China
| | - Yu Qin
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, People's Republic of China
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, People's Republic of China
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, People's Republic of China.
| |
Collapse
|
5
|
Ou Y, Li Y, Feng S, Wang Q, Yang H. Transcriptome Analysis Reveals an Eicosapentaenoic Acid Accumulation Mechanism in a Schizochytrium sp. Mutant. Microbiol Spectr 2023; 11:e0013023. [PMID: 37093006 PMCID: PMC10269799 DOI: 10.1128/spectrum.00130-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023] Open
Abstract
Eicosapentaenoic acid (EPA) is an omega-3 long-chain polyunsaturated fatty acid (PUFA) essential for human health. Schizochytrium is a marine eukaryote that has been widely utilized for the synthesis of PUFAs. The current low potency and performance of EPA production by fermentation of Schizochytrium spp. limits its prospect in commercial production of EPA. Since the synthesis pathway of EPA in Schizochytrium spp. is still unclear, mutagenesis combined with efficient screening methods are still desirable. In this study, a novel screening strategy was developed based on a two-step progressive mutagenesis method based on atmospheric and room temperature plasma (ARTP) and diethyl sulfate (DES) after multiple stresses (sethoxydim, triclosan and 2,2'-bipyridine) compound screening. Finally, the mutant strain DBT-64 with increased lipid (1.57-fold, 31.71 g/L) and EPA (5.64-fold, 1.86 g/L) production was screened from wild-type (W) strains; the docosahexaenoic acid (DHA) content of mutant DBT-64 (M) was 11.41% lower than that of wild-type strains. Comparative transcriptomic analysis showed that the expression of genes related to the polyketide synthase, fatty acid prolongation, and triglyceride synthesis pathways was significantly upregulated in the mutant strain, while the expression of genes involved in the β-oxidation pathway and fatty acid degradation pathway was downregulated in favor of EPA biosynthesis in Schizochytrium. This study provides an effective strain improvement method to enhance EPA accumulation in Schizochytrium spp. IMPORTANCE Schizochytrium, a marine eukaryotic microorganism, has emerged as a candidate for the commercial production of PUFAs. EPA is an omega-3 PUFA with preventive and therapeutic effects against cardiovascular diseases, schizophrenia, and other disorders. Currently, the low potency and performance of EPA production by Schizochytrium spp. limits its commercialization. In this study, we performed two-step progressive mutagenesis based on ARTP and DES and screened multiple stresses (sethoxydim, triclosan, and 2,2'-bipyridine) to obtain the EPA-high-yielding Schizochytrium mutant. In addition, high expression of the polyketide synthase pathway, fatty acid elongation pathway, and triglyceride synthesis pathway in the mutants was confirmed by transcriptomic analysis. Therefore, the multistress screening platform established in this study is important for breeding EPA-producing Schizochytrium spp. and provides valuable information for regulating the proportion of EPA in microalgal lipids by means of genetic engineering.
Collapse
Affiliation(s)
- Ying Ou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Yaqi Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Shoushuai Feng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| | - Qiong Wang
- Department of Clinical Laboratory, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, People’s Republic of China
| | - Hailin Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, Jiangsu Province, People’s Republic of China
| |
Collapse
|
6
|
Wang T, Wang F, Zeng L, Guo P, Wu Y, Chen L, Zhang W. Propanol and 1, 3-propanediol enhance fatty acid accumulation synergistically in Schizochytrium ATCC 20888. Front Microbiol 2023; 13:1106265. [PMID: 36845976 PMCID: PMC9947470 DOI: 10.3389/fmicb.2022.1106265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 02/11/2023] Open
Abstract
The effects of propanol and 1, 3-propanediol on fatty acid and biomass accumulation in Schizochytrium ATCC 20888 were explored. Propanol increased the contents of saturated fatty acids and total fatty acids by 55.4 and15.3%, while 1, 3-propanediol elevated the polyunsaturated fatty acids, total fatty acids and biomass contents by 30.7, 17.0, and 6.89%. Although both of them quench ROS to increase fatty acids biosynthesis, the mechanisms are different. The effect of propanol did not reflect on metabolic level while 1, 3-propanediol elevated osmoregulators contents and activated triacylglycerol biosynthetic pathway. The triacylglycerol content and the ratio of polyunsaturated fatty acids to saturated fatty acids were significantly increased by 2.53-fold, which explained the higher PUFA accumulation in Schizochytrium after adding 1, 3- propanediol. At last, the combination of propanol and 1, 3-propanediol further elevated total fatty acids by approximately 1.2-fold without compromising cell growth. These findings are valuable for scale-up production of designed Schizochytrium oil for various application purposes.
Collapse
Affiliation(s)
- Tiantian Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Fangzhong Wang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China,*Correspondence: Fangzhong Wang, ✉
| | - Lei Zeng
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Pengfei Guo
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yawei Wu
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Lei Chen, ✉
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China,Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China,Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Jia YL, Du F, Nong FT, Li J, Huang PW, Ma W, Gu Y, Sun XM. Function of the Polyketide Synthase Domains of Schizochytrium sp. on Fatty Acid Synthesis in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2446-2454. [PMID: 36696156 DOI: 10.1021/acs.jafc.2c08383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
It is well known that polyunsaturated fatty acids (PUFAs) in Schizochytrium sp. are mainly synthesized via the polyketide synthase (PKS) pathway. However, the specific mechanism of PKS in fatty acid synthesis is still unclear. In this work, the functions of ORFA, ORFB, ORFC, and their individual functional domain genes on fatty acid synthesis were investigated through heterologous expression in Yarrowia lipolytica. The results showed that the expression of ORFA, ORFB, ORFC, and their individual functional domains all led to the increase of the very long-chain PUFA content (mainly eicosapentaenoic acid). Furthermore, the transcriptomic analysis showed that except for the 3-ketoacyl-ACP synthase (KS) domain of ORFB, the expression of an individual functional domain, including malonyl-CoA: ACP acyltransferase, 3-hydroxyacyl-ACP dehydratase (DH), 3-ketoacyl-ACP reductase, and KS domains of ORFA, acyltransferase domains of ORFB, and two DH domains of ORFC resulted in upregulation of the tricarboxylic acid cycle and pentose phosphate pathway, downregulation of the triacylglycerol biosynthesis, fatty acid synthesis pathway, and β-oxidation in Yarrowia lipolytica. These results provide a theoretical basis for revealing the function of PKS in fatty acid synthesis in Y. lipolytica and elucidate the possible mechanism for PUFA biosynthesis.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| |
Collapse
|
8
|
Ma W, Liu M, Zhang Z, Xu Y, Huang P, Guo D, Sun X, Huang H. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022; 5:1356. [PMID: 36494568 PMCID: PMC9734096 DOI: 10.1038/s42003-022-04334-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Presently, the supply of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) traditionally produced by marine fisheries will be insufficient to meet their market demand in food industry. Thus a sustainable alternative source is urgently required. Schizochytrium sp. is an ideal producer of DHA; however, its ability to co-produce DHA and EPA has not yet been proved. Herein, we first described a cobalamin-independent methionine synthase-like (MetE-like) complex, which contains independent acyltransferase and 3-ketoacyl synthase domains, independent of the traditional polyketide synthase (PKS) system. When the MetE-like complex was activated, the EPA content was increased from 1.26% to 7.63%, which is 6.06-folds higher than that in the inactivated condition. Through lipidomics, we find that EPA is more inclined to be stored as triglyceride. Finally, the EPA production was enhanced from 4.19 to 29.83 (mg/g cell dry weight) using mixed carbon sources, and the final yield reached 2.25 g/L EPA and 9.59 g/L DHA, which means that Schizochytrium sp. has great market potential for co-production of EPA and DHA.
Collapse
Affiliation(s)
- Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Mengzhen Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Zixu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Yingshuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Pengwei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
- College of Life Sciences, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Dongsheng Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, China.
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, China.
| |
Collapse
|
9
|
Guo P, Dong L, Wang F, Chen L, Zhang W. Deciphering and engineering the polyunsaturated fatty acid synthase pathway from eukaryotic microorganisms. Front Bioeng Biotechnol 2022; 10:1052785. [DOI: 10.3389/fbioe.2022.1052785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important nutrients that play important roles in human health. In eukaryotes, PUFAs can be de novo synthesized through two independent biosynthetic pathways: the desaturase/elongase pathway and the PUFA synthase pathway. Among them, PUFAs synthesized through the PUFA synthase pathway typically have few byproducts and require fewer reduction equivalents. In the past 2 decades, numerous studies have been carried out to identify, analyze and engineer PUFA synthases from eukaryotes. These studies showed both similarities and differences between the eukaryotic PUFA synthase pathways and those well studied in prokaryotes. For example, eukaryotic PUFA synthases contain the same domain types as those in prokaryotic PUFA synthases, but the number and arrangement of several domains are different; the basic functions of same-type domains are similar, but the properties and catalytic activities of these domains are somewhat different. To further utilize the PUFA synthase pathway in microbial cell factories and improve the productivity of PUFAs, many challenges still need to be addressed, such as incompletely elucidated PUFA synthesis mechanisms and the difficult genetic manipulation of eukaryotic hosts. In this review, we provide an updated introduction to the eukaryotic PUFA synthase pathway, summarize the functions of domains and propose the possible mechanisms of the PUFA synthesis process, and then provide future research directions to further elucidate and engineer the eukaryotic PUFA synthase pathway for the maximal benefits of humans.
Collapse
|
10
|
Koch E, Kampschulte N, Schebb NH. Comprehensive Analysis of Fatty Acid and Oxylipin Patterns in n3-PUFA Supplements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3979-3988. [PMID: 35324176 DOI: 10.1021/acs.jafc.1c07743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Supplementing long-chain omega-3 polyunsaturated fatty acids (n3-PUFA) improves health. We characterized the pattern of total and non-esterified oxylipins and fatty acids in n3 supplements made of fish, krill, or micro-algae oil by LC-MS. All supplements contained the declared amount of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA); however, their content per capsule and the concentration of other fatty acids varied strongly. Krill oil contained the highest total n3 oxylipin concentration (6000 nmol/g) and the highest degree of oxidation (EPA 0.7%; DHA 1.3%), while micro-algae oil (Schizochytrium sp.) showed the lowest oxidation (<0.09%). These oils contain specifically high amounts of the terminal hydroxylation product of EPA (20-HEPE, 300 nmol/g) and DHA (22-HDHA, 200 nmol/g), which can serve as an authenticity marker for micro-algae oil. Refined micro-algae and fish oil were characterized by NEFA levels of ≤0.1%. Overall, the oxylipin and fatty acid pattern allows gaining new insights into the origin and quality of n3-PUFA oils in supplements.
Collapse
Affiliation(s)
- Elisabeth Koch
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstrasse 20, 42119 Wuppertal, Germany
| |
Collapse
|
11
|
Chi G, Xu Y, Cao X, Li Z, Cao M, Chisti Y, He N. Production of polyunsaturated fatty acids by Schizochytrium (Aurantiochytrium) spp. Biotechnol Adv 2021; 55:107897. [PMID: 34974158 DOI: 10.1016/j.biotechadv.2021.107897] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2022]
Abstract
Diverse health benefits are associated with dietary consumption of omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), particularly docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). Traditionally, these fatty acids have been obtained from fish oil, but limited supply, variably quality, and an inability to sustainably increase production for a rapidly growing market, are driving the quest for alternative sources. DHA derived from certain marine protists (heterotrophic thraustochytrids) already has an established history of commercial production for high-value dietary use, but is too expensive for use in aquaculture feeds, a much larger potential market for ω-3 LC-PUFA. Sustainable expansion of aquaculture is prevented by its current dependence on wild-caught fish oil as the source of ω-3 LC-PUFA nutrients required in the diet of aquacultured animals. Although several thraustochytrids have been shown to produce DHA and EPA, there is a particular interest in Schizochytrium spp. (now Aurantiochytrium spp.), as some of the better producers. The need for larger scale production has resulted in development of many strategies for improving productivity and production economics of ω-3 PUFA in Schizochytrium spp. Developments in fermentation technology and metabolic engineering for enhancing LC-PUFA production in Schizochytrium spp. are reviewed.
Collapse
Affiliation(s)
- Guoxiang Chi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Xingyu Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
12
|
Jia YL, Geng SS, Du F, Xu YS, Wang LR, Sun XM, Wang QZ, Li Q. Progress of metabolic engineering for the production of eicosapentaenoic acid. Crit Rev Biotechnol 2021; 42:838-855. [PMID: 34779326 DOI: 10.1080/07388551.2021.1971621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shan-Shan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing-Zhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
13
|
Xue Z, Li S, Yu W, Gao X, Zheng X, Yu Y, Kou X. Research advancement and commercialization of microalgae edible oil: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5763-5774. [PMID: 34148229 DOI: 10.1002/jsfa.11390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
The global food crisis has led to a great deal of attention being given to microalgal oil as a sustainable natural food source. This article provides an overview of the progress and future directions in promoting the commercialization of microalgal edible oils, including microalgal triglyceride accumulation, suitable edible oil culture strategies for high nutritional value, metabolic engineering, production, and downstream technologies. The integration of the production process, biosafety, and the economic sustainability of microalgal oil production are analyzed for their critical roles in the commercialization of microalgal edible oil to provide a theoretical and scientific basis for the comprehensive development and utilization of microalgal edible oil. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaohui Xue
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shihao Li
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Medicinal Plant Laboratory, Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xin Gao
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xu Zheng
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yue Yu
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaohong Kou
- Functional Food Laboratory, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Deragon E, Schuler M, Aiese Cigliano R, Dellero Y, Si Larbi G, Falconet D, Jouhet J, Maréchal E, Michaud M, Amato A, Rébeillé F. An Oil Hyper-Accumulator Mutant Highlights Peroxisomal ATP Import as a Regulatory Step for Fatty Acid Metabolism in Aurantiochytrium limacinum. Cells 2021; 10:2680. [PMID: 34685660 PMCID: PMC8534400 DOI: 10.3390/cells10102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Thraustochytrids are marine protists that naturally accumulate triacylglycerol with long chains of polyunsaturated fatty acids, such as ω3-docosahexaenoic acid (DHA). They represent a sustainable response to the increasing demand for these "essential" fatty acids (FAs). Following an attempt to transform a strain of Aurantiochytrium limacinum, we serendipitously isolated a clone that did not incorporate any recombinant DNA but contained two to three times more DHA than the original strain. Metabolic analyses indicated a deficit in FA catabolism. However, whole transcriptome analysis did not show down-regulation of genes involved in FA catabolism. Genome sequencing revealed extensive DNA deletion in one allele encoding a putative peroxisomal adenylate transporter. Phylogenetic analyses and yeast complementation experiments confirmed the gene as a peroxisomal adenylate nucleotide transporter (AlANT1), homologous to yeast ScANT1 and plant peroxisomal adenylate nucleotide carrier AtPNC genes. In yeast and plants, a deletion of the peroxisomal adenylate transporter inhibits FA breakdown and induces FA accumulation, a phenotype similar to that described here. In response to this metabolic event, several compensatory mechanisms were observed. In particular, genes involved in FA biosynthesis were upregulated, also contributing to the high FA accumulation. These results support AlANT1 as a promising target for enhancing DHA production in Thraustochytrids.
Collapse
Affiliation(s)
- Etienne Deragon
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | | | - Younès Dellero
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA, Agrocampus Ouest Rennes, Université Rennes 1, Domaine de la Motte BP35327, CEDEX, 35653 Le Rheu, France
| | - Gregory Si Larbi
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Denis Falconet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Morgane Michaud
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, CEDEX 9, 38054 Grenoble, France; (E.D.); (M.S.); (Y.D.); (G.S.L.); (D.F.); (J.J.); (E.M.); (M.M.)
| |
Collapse
|
15
|
Man Y, Zhang Y, Jiang J, Zhao Q, Ren L. Identification dehydratase domains from Schizochytrium sp. and Shewanella sp. and distinct functions in biosynthesis of fatty acids. Bioprocess Biosyst Eng 2021; 45:107-115. [PMID: 34601618 DOI: 10.1007/s00449-021-02644-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022]
Abstract
Polyunsaturated fatty acid (PUFA) synthase is a special and effective enzyme for PUFA synthesis, and dehydratase (DH) domain played a crucial role in it. In this work, we compared four different DH domains from different strains (Schizochytrium sp. HX-308 and Shewanella sp. BR-2) and different gene clusters. First bioinformatics analysis showed that DH1, 2 and DH3 were similar to FabA and PKS-DH, respectively, and all of them got a hot-dog structure. Second, four DH domains were expressed in Escherichia coli that increased biomass. Especially, Schi-DH1,2 presented the highest dry cell weight of 2.3 g/L which was 1.62 times of that of control. Fatty acids profile analysis showed that DH1,2 could enhance the percentage of unsaturated fatty acids, especially DH1,2 from Schizochytrium sp., while DH3 benefited for the saturated fatty acid biosynthesis. Furthermore, five kinds of fatty acids were added to the medium to study the substrate preferences. Results revealed that DH1,2 domain preferred to acting on C16:0, while DH3 domain trended acting on C14:0 and C15:0, which illustrated DH from different clusters do have specific substrate preference. Besides, DH expression could save the cell growth inhibition by mid-chain fatty acids. This study provided more information about the catalysis mechanism of polyunsaturated fatty acid synthase and might promote the modification study based on this enzyme.
Collapse
Affiliation(s)
- Yanli Man
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Yuting Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Jiayi Jiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Quanyu Zhao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China. .,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
16
|
Rau EM, Ertesvåg H. Method Development Progress in Genetic Engineering of Thraustochytrids. Mar Drugs 2021; 19:515. [PMID: 34564177 PMCID: PMC8467673 DOI: 10.3390/md19090515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 01/29/2023] Open
Abstract
Thraustochytrids are unicellular, heterotrophic marine eukaryotes. Some species are known to store surplus carbon as intracellular lipids, and these also contain the long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA). Most vertebrates are unable to synthesize sufficient amounts of DHA, and this fatty acid is essential for, e.g., marine fish, domesticated animals, and humans. Thraustochytrids may also produce other commercially valuable fatty acids and isoprenoids. Due to the great potential of thraustochytrids as producers of DHA and other lipid-related molecules, a need for more knowledge on this group of organisms is needed. This necessitates the ability to do genetic manipulation of the different strains. Thus far, this has been obtained for a few strains, while it has failed for other strains. Here, we systematically review the genetic transformation methods used for different thraustochytrid strains, with the aim of aiding studies on strains not yet successfully transformed. The designs of transformation cassettes are also described and compared. Moreover, the potential problems when trying to establish transformation protocols in new thraustochytrid species/strains are discussed, along with suggestions utilized in other organisms to overcome similar challenges. The approaches discussed in this review could be a starting point when designing protocols for other non-model organisms.
Collapse
Affiliation(s)
| | - Helga Ertesvåg
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N7491 Trondheim, Norway;
| |
Collapse
|
17
|
Glyap1 regulates pneumocandin B 0 synthesis by controlling the intracellular redox balance in Glarea lozoyensis. Appl Microbiol Biotechnol 2021; 105:6707-6718. [PMID: 34476516 DOI: 10.1007/s00253-021-11522-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/02/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a lipohexapeptide produced by the fungus Glarea lozoyensis. Oxidative stress and the resulting production of reactive oxygen species (ROS) are known to be involved in the regulation of pneumocandin B0 biosynthesis. In this study, the Glyap1 gene of Glarea lozoyensis, a homologue of the yeast redox regulator YAP1, was knocked out. The intracellular ROS levels of the resulting ΔGlyap1 strain were higher than in the wild-type strain, which was caused by the downregulated expression of superoxide dismutase (SOD) and catalase (CAT). Compared with the wild-type strain, ΔGlyap1 exhibited an oxidative phenotype throughout its life cycle, which resulted in significantly higher pneumocandin B0 production per unit biomass. In addition, ΔGlyap1 showed growth inhibition and decreased pneumocandin B0 production in the presence of CCl4, which leads to strong oxidative stress. To overcome the strain's sensitivity, a three-stage antioxidant addition strategy was developed. This approach significantly improved the growth of ΔGlyap1 while maintaining a high pneumocandin B0 production per unit biomass, which reached 38.78 mg/g DCW. Notably, this result represents a 50% increase over the wild-type strain. These findings provide new insights into the regulatory mechanisms that control pneumocandin B0 production under oxidative stress, which may be applied to improve the production of other secondary metabolites. KEY POINTS: • Glyap1 is involved in expression of redox and pneumocandin B0 synthesis-related genes. • Addition of a three-stage antioxidant alleviated the sensitivity of ΔGlyap1 strain. • The yield of pneumocandin B0 per unit biomass of ΔGlyap1 strain was 38.78 mg/g DCW.
Collapse
|
18
|
Jia YL, Wang LR, Zhang ZX, Gu Y, Sun XM. Recent advances in biotechnological production of polyunsaturated fatty acids by Yarrowia lipolytica. Crit Rev Food Sci Nutr 2021; 62:8920-8934. [PMID: 34120537 DOI: 10.1080/10408398.2021.1937041] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Owing to the important physiological functions, polyunsaturated fatty acids (PUFAs) play a vital role in protecting human health, such as preventing cancer, cardiovascular disease, and diabetes. Specifically, Yarrowia lipolytica has been identified as the most popular non-conventional oleaginous yeast, which can accumulate the abundant intracellular lipids, indicating that has great potential as an industrial host for production of PUFAs. Notably, some novel engineering strategies have been applied to endow and improve the abilities of Y. lipolytica to synthesize PUFAs, including construction and optimization of PUFAs biosynthetic pathways, improvement of preucrsors acetyl-coA and NADPH supply, inhibition of competing pathways, knockout of β-oxidation pathways, regulation of oxidative stress defense pathways, and regulation of genes involved in upstream lipid metabolism. Besides, some bypass approaches, such as strain mating, evolutionary engineering, and computational model based on omics, also have been proposed to improve the performance of engineering strains. Generally, in this review, we summarized the recent advances in engineering strategies and bypass approaches for improving PUFAs production by Y. lipolytica. In addition, we further summarized the latest efforts of CRISPR/Cas genome editing technology in Y. lipolytica, which is aimed to provide its potential applications in PUFAs production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Wang Q, Han W, Jin W, Gao S, Zhou X. Docosahexaenoic acid production by Schizochytrium sp.: review and prospect. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Qing Wang
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wei Han
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Wenbiao Jin
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Shuhong Gao
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| | - Xu Zhou
- Shenzhen Engineering Laboratory of Microalgae Bioenergy, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
20
|
Du F, Wang YZ, Xu YS, Shi TQ, Liu WZ, Sun XM, Huang H. Biotechnological production of lipid and terpenoid from thraustochytrids. Biotechnol Adv 2021; 48:107725. [PMID: 33727145 DOI: 10.1016/j.biotechadv.2021.107725] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
As fungus-like protists, thraustochytrids have been increasingly studied for their faster growth rates and high lipid content. In the 1990s, thraustochytrids were used as docosahexaenoic acid (DHA) producers for the first time. Thraustochytrids genera, such as Thraustochytrium, Schizochytrium, and Aurantiochytrium have been developed and patented as industrial strains for DHA production. The high DHA yield is attributed to its unique and efficient polyketide-like synthase (PKS) pathway. Moreover, thraustochytrids possess a completed mevalonate (MVA) pathway, so it can be used as host for terpenoid production. In order to improve strain performance, the metabolic engineering strategies have been applied to promote or disrupt intracellular metabolic pathways, such as genetic engineering and addition of chemical activators. However, it is difficult to realize industrialization only by improving strain performance. Various operation strategies were developed to enlarge the production quantities from the laboratory-scale, including two-stage cultivation strategies, scale-up technologies and bioreactor design. Moreover, an economical and effective downstream process is also an important consideration for the industrial application of thraustochytrids. Downstream costs accounts for 20-60% of the overall process costs, which represents an attractive target for increasing the cost-competitiveness of thraustochytrids, including how to improve the efficiency of lipid extraction and the further application of biomass residues. This review aims to overview the whole lipid biotechnology of thraustochytrids to provide the background information for researchers.
Collapse
Affiliation(s)
- Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Zheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Jovanovic S, Dietrich D, Becker J, Kohlstedt M, Wittmann C. Microbial production of polyunsaturated fatty acids - high-value ingredients for aquafeed, superfoods, and pharmaceuticals. Curr Opin Biotechnol 2021; 69:199-211. [PMID: 33540327 DOI: 10.1016/j.copbio.2021.01.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 01/01/2021] [Accepted: 01/10/2021] [Indexed: 12/26/2022]
Abstract
Polyunsaturated fatty acids (PUFAs), primarily docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have received worldwide attention in recent years due to an increasing awareness of their uniqueness in improving diet and human health and their apparently inevitable shortage in global availability. Microbial cell factories are a major solution to supplying these precious molecules in sufficient amounts and providing PUFA-rich aquafeed, superfoods, and medical formulations. This review assesses the PUFA world markets and highlights recent advances in upgrading and streamlining microalgae, yeasts, fungi, and bacteria for high-level PUFA production and broadening of the PUFA spectrum.
Collapse
Affiliation(s)
- Sofija Jovanovic
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Demian Dietrich
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Universität des Saarlandes, Germany.
| |
Collapse
|
22
|
Pathway engineering of Saccharomyces cerevisiae for efficient lycopene production. Bioprocess Biosyst Eng 2021; 44:1033-1047. [PMID: 33486569 DOI: 10.1007/s00449-020-02503-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
To construct a Saccharomyces cerevisiae strain for efficient lycopene production, we used a pathway engineering strategy based on expression modules comprising fusion proteins and a strong constitutive promoter. The two recombinant plasmids pEBI encoding the fusion genes with an inducible promoter, as well as pIETB with a constitutive promoter and terminator were introduced into S. cerevisiae YPH499 and BY4741 to obtain the four recombinant strains ypEBI, ypIETB, byEBI and byIETB. The lycopene production and the transcription levels of key genes were higher in the BY4741 chassis than in YPH499. Accordingly, the content of total and unsaturated fatty acids was also higher in BY4741, which also exhibited a decrease of glucose, increase of trehalose, increase of metabolite in citrate cycle, and low levels of amino acids. These changes rerouted metabolic fluxes toward lycopene synthesis, indicating that the BY4741 chassis was more suitable for lycopene synthesis. The lycopene content of bpIETB in SG-Leu medium supplemented with 100 mg/L of linolenic acid reached 10.12 mg/g dry cell weight (DCW), which was 85.7% higher than without the addition of unsaturated fatty acids. The constitutive promoter expression strategy employed in this study achieved efficient lycopene synthesis in S. cerevisiae, and the strain bpIETB was obtained a suitable chassis host for lycopene production, which provides a basis for further optimization of lycopene production in artificial synthetic cells and a reference for the multi-enzyme synthesis of other similar complex terpenoids.
Collapse
|
23
|
Wang S, Lan C, Wang Z, Wan W, Zhang H, Cui Q, Song X. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid Aurantiochytrium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11253-11260. [PMID: 32829640 DOI: 10.1021/acs.jafc.0c04299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eicosapentaenoic acid (EPA) is an essential nutritional supplement for human health. The most prominent dietary source of EPA is fish oil, which is unsustainable because of the decline in fishery resources and serious environmental pollution. Alternatively, a heterologous polyketide synthase pathway for EPA biosynthesis was assembled in Thraustochytrid Aurantiochytrium. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the EPA biosynthetic gene cluster from Shewanella japonica in Aurantiochytrium. In the shake flask fermentation, the lipid and PUFA yields of the mutant were increased by 26.9 and 36.0%, respectively, and led to about 5-fold increase of the EPA yield. The final EPA titer reached 2.7 g/L in fed-batch fermentation. This study provides a novel metabolic engineering strategy to regulate the EPA ratio in microalgal oil for human nutritional supplementation.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
24
|
Yang J, Song X, Wang L, Cui Q. Comprehensive analysis of metabolic alterations in Schizochytrium sp. strains with different DHA content. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1160:122193. [PMID: 32949924 DOI: 10.1016/j.jchromb.2020.122193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/10/2020] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
Along with the daily growth of the market requirements for docosahexaenoic acid (DHA) algae oil, a large DHA ingredients are needed to ensure worldwide supply. Undoubtedly a high-productive strain would be the prerequisite for high quality and yield. A comprehensive understanding of the processes of DHA synthesis from glycolysis to the lipid accumulation would be benefit to achieve the final optimization of DHA production. In this study, we comprehensively characterized the metabolic profiles of a Schizochytrium sp. strain, which has higher DHA content and different biomass amino acid composition compared with the wild type to explore the affected pathways and underlying mechanism. Combined with the multivariate statistical analysis, twenty-two differential metabolites were screened as relevant to the discrepancy between two strains. The results showed relatively downregulated glycolysis and saturated fatty acids (SFA) synthesis, and upregulated TCA cycle, amino acids and polyunsaturated fatty acids (PUFA) synthesis in DHA high yield strain. The current study provide a terminal picture of gene regulation from downstream metabolism and demonstrate the advantage of metabolomics in characterizing metabolic status which in turn could provide effective information for the metabolic engineering.
Collapse
Affiliation(s)
- Jie Yang
- Weihai Baihe Biology Technological CO., Ltd., Weihai, Shandong 264300, China; Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Xiaojin Song
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Lina Wang
- Weihai Baihe Biology Technological CO., Ltd., Weihai, Shandong 264300, China.
| | - Qiu Cui
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
| |
Collapse
|
25
|
Lupette J, Benning C. Human health benefits of very-long-chain polyunsaturated fatty acids from microalgae. Biochimie 2020; 178:15-25. [PMID: 32389760 DOI: 10.1016/j.biochi.2020.04.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/06/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023]
Abstract
Microalgae are single-cell, photosynthetic organisms whose biodiversity places them at the forefront of biological producers of high-value molecules including lipids and pigments. Some of these organisms particular are capable of synthesizing n-3 very long chain polyunsaturated fatty acids (VLC-PUFAs), known to have beneficial effects on human health. Indeed, VLC-PUFAs are the precursors of many signaling molecules in humans involved in the complexities of inflammatory processes. This mini-review provides an inventory of knowledge on the synthesis of VLC-PUFAs in microalgae and on the diversity of signaling molecules (prostanoids, leukotrienes, SPMs, EFOX, isoprostanoids) that arise in humans from VLC-PUFAs.
Collapse
Affiliation(s)
- Josselin Lupette
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Christoph Benning
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
26
|
Orozco Colonia BS, Vinícius de Melo Pereira G, Soccol CR. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Functions of Enyolreductase ( ER) Domains of PKS Cluster in Lipid Synthesis and Enhancement of PUFAs Accumulation in Schizochytrium limacinum SR21 Using Triclosan as a Regulator of ER. Microorganisms 2020; 8:microorganisms8020300. [PMID: 32098234 PMCID: PMC7074904 DOI: 10.3390/microorganisms8020300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
The polyketide synthase (PKS) cluster genes are supposed to synthesize polyunsaturated fatty acids (PUFAs) in S. limacinum. In this study, two enyolreductase (ER) genes located on PKS cluster were knocked out through homologous recombination to explore their functions. The knock-out of OrfB-ER (located on OrfB subunit) decreased lipid content and had obvious decrease on PUFAs content, indicating OrfB-ER domain played a vital role on PUFAs synthesis; the knock-out of OrfC-ER (located on OrfC subunit) decreased SFAs content and increased total lipid content, indicating OrfC-ER domain was likely to be related with SFAs synthesis, and lipid production could be improved by down-regulating OrfC-ER domain expression. Therefore, the addition of triclosan as a reported regulator of ER domain induced the increase of PUFAs production by 51.74% and lipids yield by 47.63%. Metabolic analysis indicated triclosan played its role through inhibiting the expression of OrfC-ER to reduce the feedback inhibition of SFAs and further to enhance NADPH synthesis for lipid production, and by weakening mevalonate pathway and tricarboxylic acid (TCA) cycle to shift precursors for lipid and PUFAs synthesis. This research illuminates functions of two ER domains in S. limacinum and provides a potential targets for improving lipid production.
Collapse
|
28
|
Li J, Zhou H, Pan X, Li Z, Lu Y, He N, Meng T, Yao C, Chen C, Ling X. The role of fluconazole in the regulation of fatty acid and unsaponifiable matter biosynthesis in Schizochytrium sp. MYA 1381. BMC Microbiol 2019; 19:256. [PMID: 31729956 PMCID: PMC6858700 DOI: 10.1186/s12866-019-1622-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 10/23/2019] [Indexed: 12/01/2022] Open
Abstract
Background Schizochytrium has been widely used in industry for synthesizing polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA). However, unclear biosynthesis pathway of PUFAs inhibits further production of the Schizochytrium. Unsaponifiable matter (UM) from mevalonate pathway is crucial to cell growth and intracellular metabolism in all higher eukaryotes and microalgae. Therefore, regulation of UM biosynthesis in Schizochytrium may have important effects on fatty acids synthesis. Moreover, it is well known that UMs, such as squalene and β-carotene, are of great commercial value. Thus, regulating UM biosynthesis may also allow for an increased valuation of Schizochytrium. Results To investigate the correlation of UM biosynthesis with fatty acids accumulation in Schizochytrium, fluconazole was used to block the sterols pathway. The addition of 60 mg/L fluconazole at 48 h increased the total lipids (TLs) at 96 h by 16% without affecting cell growth, which was accompanied by remarkable changes in UMs and NADPH. Cholesterol content was reduced by 8%, and the squalene content improved by 45% at 72 h, which demonstrated fluconazole’s role in inhibiting squalene flow to cholesterol. As another typical UM with antioxidant capacity, the β-carotene production was increased by 53% at 96 h. The increase of squalene and β-carotene could boost intracellular oxidation resistance to protect fatty acids from oxidation. The NADPH was found to be 33% higher than that of the control at 96 h, which meant that the cells had more reducing power for fatty acid synthesis. Metabolic analysis further confirmed that regulation of sterols was closely related to glucose absorption, pigment biosynthesis and fatty acid production in Schizochytrium. Conclusion This work first reported the effect of UM biosynthesis on fatty acid accumulation in Schizochytrium. The UM was found to affect fatty acid biosynthesis by changing cell membrane function, intracellular antioxidation and reducing power. We believe that this work provides valuable insights in improving PUFA and other valuable matters in microalgae.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Hao Zhou
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueshan Pan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, Fujian, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Chuanyi Yao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Cuixue Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
29
|
Morabito C, Bournaud C, Maës C, Schuler M, Aiese Cigliano R, Dellero Y, Maréchal E, Amato A, Rébeillé F. The lipid metabolism in thraustochytrids. Prog Lipid Res 2019; 76:101007. [PMID: 31499096 DOI: 10.1016/j.plipres.2019.101007] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/22/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
Abstract
Thraustochytrids are unicellular heterotrophic marine protists of the Stramenopile group, often considered as non-photosynthetic microalgae. They have been isolated from a wide range of habitats including deep sea, but are mostly present in waters rich in sediments and organic materials. They are abundant in mangrove forests where they are major colonizers, feeding on decaying leaves and initiating the mangrove food web. Discovered 80 years ago, they have recently attracted considerable attention due to their biotechnological potential. This interest arises from their fast growth, their specific lipid metabolism and the improvement of the genetic tools and transformation techniques. These organisms are particularly rich in ω3-docosahexaenoic acid (DHA), an 'essential' fatty acid poorly encountered in land plants and animals but required for human health. To produce their DHA, thraustochytrids use a sophisticated system different from the classical fatty acid synthase system. They are also a potential source of squalene and carotenoids. Here we review our current knowledge about the life cycle, ecophysiology, and metabolism of these organisms, with a particular focus on lipid dynamics. We describe the different pathways involved in lipid and fatty acid syntheses, emphasizing their specificity, and we report on the recent efforts aimed to engineer their lipid metabolism.
Collapse
Affiliation(s)
- Christian Morabito
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Caroline Bournaud
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Cécile Maës
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Martin Schuler
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Riccardo Aiese Cigliano
- Sequentia Biotech Campus UAB, Edifici Eureka Av. de Can Domènech s/n, 08193 Bellaterra, Cerdanyola del Vallès, Spain.
| | - Younès Dellero
- Institute of Genetic, Environment and Plant Protection, UMR 1349 IGEPP INRA/Agrocampus Ouest Rennes/Université Rennes 1, Domaine de la Motte, BP35327, 35653 Le Rheu cedex, France.
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Université Grenoble Alpes, CNRS, CEA, INRA, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
30
|
Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:552-566. [DOI: 10.1016/j.bbalip.2018.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/30/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
|
31
|
Engineering Microbes to Produce Polyunsaturated Fatty Acids. Trends Biotechnol 2019; 37:344-346. [DOI: 10.1016/j.tibtech.2018.10.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 01/08/2023]
|
32
|
Cloning of the pks3 gene of Aurantiochytrium limacinum and functional study of the 3-ketoacyl-ACP reductase and dehydratase enzyme domains. PLoS One 2018; 13:e0208853. [PMID: 30533058 PMCID: PMC6289434 DOI: 10.1371/journal.pone.0208853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022] Open
Abstract
Aurantiochytrium limacinum has received attention because of its abundance of polyunsaturated fatty acids (PUFAs), particularly docosahexaenoic acid (DHA). DHA is synthesized through the polyketide synthase (PKS) pathway in A. limacinum. The related enzymes of the PKS pathway are mainly expressed by three gene clusters, called pks1, pks2 and pks3. In this study, the full-length pks3 gene was obtained by polymerase chain reaction amplification and Genome Walking technology. Based on a domain analysis of the deduced amino acid sequence of the pks3 gene, 3-ketoacyl-ACP reductase (KR) and dehydratase (DH) enzyme domains were identified. Herein, A. limacinum OUC168 was engineered by gene knock-in of KR and DH using the 18S rDNA sequence as the homologous recombination site. Total fatty acid contents and the degree of unsaturation of total fatty acids increased after the kr or dh gene was knocked in. The cloning and functional study of the pks3 gene of A. limacinum establishes a foundation for revealing the DHA synthetic pathway. Gene knock-in of the enzyme domain associated with PKS synthesis has the potential to provide effective recombinant strains with higher DHA content for industrial applications.
Collapse
|
33
|
Geng L, Chen S, Sun X, Hu X, Ji X, Huang H, Ren L. Fermentation performance and metabolomic analysis of an engineered high-yield PUFA-producing strain of Schizochytrium sp. Bioprocess Biosyst Eng 2018; 42:71-81. [PMID: 30267145 DOI: 10.1007/s00449-018-2015-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/17/2018] [Indexed: 10/28/2022]
Abstract
The ω-3/long-chain polyunsaturated fatty acids (LC-PUFAs) play an important role in human health, but they cannot be synthesized in sufficient amounts by the human body. In a previous study, we obtained an engineered Schizochytrium sp. strain (HX-RS) by exchanging the acyltransferase (AT) gene, and it was able to co-produce docosahexaenoic acid and eicosapentaenoic acid. To investigate the mechanism underlying the increase of PUFA content in HX-RS, the discrepancies of fermentation performance, key enzyme activities and intracellular metabolites between HX-RS and its wild-type parent strain (WTS) were analyzed via fed-batch fermentation in 5-L bioreactors. The results showed that the cell dry weight (CDW) of HX-RS was higher than that of the WTS. Metabolomics combined with multivariate analysis showed that 4-aminobutyric acid, proline and glutamine are potential biomarkers associated with cell growth and lipid accumulation of HX-RS. Additionally, the shift of metabolic flux including a decrease of glyceraldehyde-3-phosphate content, high flux from pyruvate to acetyl-CoA, and a highly active glycolysis pathway were also found to be closely related to the high PUFA yield of the engineered strain. These findings provide new insights into the effects of exogenous AT gene expression on cell proliferation and fatty acid metabolism.
Collapse
Affiliation(s)
- Lingjun Geng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Shenglan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaoman Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China.,School of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 5 Xinmofan Road, Nanjing, 210009, People's Republic of China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
34
|
Li Z, Meng T, Ling X, Li J, Zheng C, Shi Y, Chen Z, Li Z, Li Q, Lu Y, He N. Overexpression of Malonyl-CoA: ACP Transacylase in Schizochytrium sp. to Improve Polyunsaturated Fatty Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5382-5391. [PMID: 29722541 DOI: 10.1021/acs.jafc.8b01026] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyunsaturated fatty acids (PUFAs) have been widely applied in the food and medical industry. In this study, malonyl-CoA: ACP transacylase (MAT) was overexpressed through homologous recombination to improve PUFA production in Schizochytrium. The results showed that the lipid and PUFA concentration were increased by 10.1 and 24.5% with MAT overexpression, respectively. Metabolomics analysis revealed that the intracellular tricarboxylic acid cycle was weakened and glucose absorption was accelerated in the engineered strain. In the mevalonate pathway, intracellular carotene content was decreased, and the carbon flux was then redirected toward PUFA synthesis. Furthermore, a glucose fed-batch fermentation was finally performed with the engineered Schizochytrium. The total lipid yield was further increased to 110.5 g/L, 39.6% higher than the wild strain. Docosahexaenoic acid and eicosapentaenoic acid yield were enhanced to 47.39 g/L and 1.65 g/L with an increase of 81.5 and 172.5%, respectively. This study provided an effective metabolic engineering strategy for industrial PUFA production.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Chuqiang Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Zhenqi Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- College of Food and Biological Engineering , Jimei University , Xiamen , P. R. China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P.R. China
- The Key Lab for Synthetic Biotechnology of Xiamen City , Xiamen University , Xiamen 361005 , P.R. China
| |
Collapse
|