1
|
Chieti MG, Petrucciani A, Mollo L, Gerotto C, Eusebi AL, Fatone F, Norici A, González-Camejo J. Acclimated green microalgae consortium to treat sewage in an alternative urban WWTP in a coastal area of Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174056. [PMID: 38901581 DOI: 10.1016/j.scitotenv.2024.174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
This study exposed a microalgal consortium formed by Auxenochlorella protothecoides, Tetradesmus obliquus, and Chlamydomonas reinhardtii to six mixed wastewater media containing different proportions of primary (P) or secondary (S) effluents diluted in centrate (C). Algae could grow at centrate concentrations up to 50 %, showing no significant differences between effluents. After acclimation, microalgae cultivated in 50%P-50%C and 50%S-50%C grew at a rate similar to that of control cultures (0.59-0.66 d-1). These results suggest that the consortium acclimated to both sewage streams by modulating the proportion of the species and their metabolism. Acclimation also altered the photosynthetic activity of wastewater-grown samples compared to the control, probably due to partial photoinhibition, changes in consortium composition, and changes in metabolic activity. No major differences were observed between the two streams with respect to biochemical composition, biomass yield, or bioremediation capacity of the cultivated algae but algae grown in the secondary effluent showed qualitatively higher exopolysaccharides (EPS) production than algae grown in primary. Regarding wastewater remediation, microalgae grown in both WW media showed proficient nutrient removal efficiencies (close to 100 %); however, the final pH value (close to 11) would be controversial if the system were upscaled as it is over the legal limit and would cause phosphorus precipitation, so that CO2 addition would be required. The theoretical scale-up of the microalgae system could achieve water treatment costs of 0.109 €·m-3, which was significantly lower than the costs of typical activated sludge systems.
Collapse
Affiliation(s)
- M G Chieti
- SIMAU, Dipartimento di Scienza e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, 60131 Ancona, Italy; DICAr, Dipartimento di Ingegneria Civile e Architettura, Facoltà di Ingegneria - Università di Catania, Catania (CT), Italy
| | - A Petrucciani
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - L Mollo
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - C Gerotto
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - A L Eusebi
- SIMAU, Dipartimento di Scienza e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - F Fatone
- SIMAU, Dipartimento di Scienza e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - A Norici
- Laboratory of Algal and Plant Physiology, Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - J González-Camejo
- SIMAU, Dipartimento di Scienza e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
2
|
Wang X, Hong Y, Wang Z, Yuan Y, Sun D. High capacities of carbon capture and photosynthesis of a novel organic carbon-fixing microalgae in municipal wastewater: From mutagenesis, screening, ability evaluation to mechanism analysis. WATER RESEARCH 2024; 257:121722. [PMID: 38723359 DOI: 10.1016/j.watres.2024.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
The development of wastewater treatment processes capable of reducing and fixing carbon is currently a hot topic in the wastewater treatment field. Microalgae possess a natural carbon-fixing advantage, and microalgae that can symbiotically coexist with indigenous bacteria in actual wastewater attract more significant attention. Ultraviolet (UV) mutagenesis and dissolved organic carbon (DOC) acclimation were applied to strengthen the carbon-fixing performance of microalgae in this study. The mechanisms associated with microalgal water purification ability, gene regulation at the molecular level and photosynthetic potential under different trophic modes resulting from carbon fixation and transformation were disclosed. The superior performance of Chlorella sp. MHQ2 was eventually screened out among a large number of mutants generated from 3 wild-type Chlorella strains. Results indicated that the dry cell weight of the optimal species Chlorella sp. HQ mutant MHQ2 was 1.91 times that of the wild strain in the pure algal system, more carbon from municipal wastewater (MW) were transferred to the microalgae and re-entered into the biological cycle through resource utilization. In addition, COD, NH3-N and TP removal efficiencies of MW by Chlorella sp. MHQ2 were found to increase to 95.8% (1.1-times), 96.4% (1.4-times), and 92.9% (1.2-times), respectively, under the extra DOC supply and the assistance of indigenous bacteria in the MW. In the transcriptome analysis of the logarithmic phase, the glycolytic pathway was inhibited, and the pentose phosphate pathway was mainly carried out for microalgal life activities, further promoting efficient energy utilization. Upon analysis of carbon capture capacity and photosynthetic potential in trophic mode, the addition of NaHCO3 increased the photosynthetic rate of Chlorella sp. MHQ2 in mixotrophy whereas it was attenuated in autotrophy. This study could provide a new perspective for the study of resource utilization and microalgae carbon- fixing mechanisms in the actual wastewater treatment process.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yaqian Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Dezhi Sun
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Xie Z, Wu Z, Wang O, Liu F. Unexpected growth promotion of Chlorella sacchrarophila triggered by herbicides DCMU. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131216. [PMID: 36934629 DOI: 10.1016/j.jhazmat.2023.131216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
The ecotoxicological effects of herbicide contamination on the autotrophic growth of microalgae in aquatic environments have been major concerns. However, little is known about the influence of herbicides on the mixotrophic growth of microalgae. This study investigated the ecotoxicological effect of 3-(3,4-dichlorophenyl)-1,1-dimethyl-urea (DCMU) on the mixotrophic growth of Chlorella sacchrarophila FACHB 4. Results showed that C. sacchrarophila in mixotrophy was more resistant to DCMU than in photoautotrophy. Moreover, a low content of DCMU (20-80 μg·L-1) promoted the mixotrophic growth of C. sacchrarophila, and the promotion effect was obviously enhanced with the increase in light intensity. The chlorophyll content and glucose absorption rate of C. sacchrarophila were found to increase after incubation with DCMU for 24 h. Transcriptome analyses revealed that the mechanism of DCMU to promote the mixotrophic growth of C. sacchrarophila was probably through accelerating glucose uptake and utilization, which was accomplished by reducing photodamage and increasing the chlorophyll content of C. sacchrarophila. This study not only revealed an unexpected bloom of mixotrophic microalgae triggered by herbicides, but it also shed new light on an effective and low-cost strategy to improve the microalgae productivity for utilization.
Collapse
Affiliation(s)
- Zhangzhang Xie
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Zhiyu Wu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Oumei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Fanghua Liu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, PR China.
| |
Collapse
|
4
|
Fluctuation of growth and photosynthetic characteristics in Prorocentrum shikokuense under phosphorus limitation: Evidence from field and laboratory. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
5
|
Hintz NH, Schulze B, Wacker A, Striebel M. Ecological impacts of photosynthetic light harvesting in changing aquatic environments: A systematic literature map. Ecol Evol 2022; 12:e8753. [PMID: 35356568 PMCID: PMC8939368 DOI: 10.1002/ece3.8753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/07/2023] Open
Abstract
Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate-change-induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species-specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light-climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.
Collapse
Affiliation(s)
- Nils Hendrik Hintz
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| | - Brian Schulze
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Alexander Wacker
- Zoological Institute and MuseumUniversity of GreifswaldGreifswaldGermany
| | - Maren Striebel
- Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgWilhelmshavenGermany
| |
Collapse
|
6
|
Liu XY, Hong Y, Zhao GP, Zhang HK, Zhai QY, Wang Q. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151008. [PMID: 34662604 DOI: 10.1016/j.scitotenv.2021.151008] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 05/28/2023]
Abstract
Using microalgae to treat swine wastewater (SW) can achieve wastewater purification and biomass recovery at the same time. The algae species suitable for growth in SW were screened in this study, and the response surface combined with the desirability function method was used for multi-objective optimization to obtain high algal biomass and pollutant removal. Chlorophyll fluorescence parameters and biomass composition were analyzed to evaluate the cell physiological activity and its application potential. Chlorella sp. HL was selected as the most suitable species for growth in SW, and after 9 d of cultivation, the maximum specific growth rate and highest algal density were achieved 0.51 d-1 and 2.43 × 107 cells/mL, respectively. In addition, the removal of total phosphate and chemical oxygen demand were reached 69.13% and 72.95%, respectively. The optimum conditions for maximum algal density and highest pollutant removal were determined as the light intensity of 58.73 μmol/m2/s, inoculation density of 5.0 × 106 cells/mL, and a light/dark ratio of 3 using response surface model, and the predicted overall desirability value was 0.96. The potential maximum quantum yield of PSII (Fv/Fm) of Chlorella sp. HL in the early stage of cultivation was 0.60-0.70, while under high light and long photoperiod, the value of Fv/Fm and performance index of Chlorella decreased, trapped and dissipated energy flux per reaction center increased. The higher heating value of 18.25 MJ/kg indicated that the Chlorella cultivated in SW could be a good feedstock for biofuel production.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Guang-Pu Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Hong-Kai Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qiao Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Comprehensive assessment of the microalgae-nitrifying bacteria competition in microalgae-based wastewater treatment systems: Relevant factors, evaluation methods and control strategies. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Effects of light intensity on the production of phycoerythrin and polyunsaturated fatty acid by microalga Rhodomonas salina. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102397] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Flores-Salgado G, Quijano G, Vital-Jácome M, Buitrón G, Orozco-Soto SM, Vera-Bustamante P, Ibarra Zannatha JM, Thalasso F. Novel photo-microrespirometric method for the rapid determination of photosynthesis-irradiance (PI) curves in microalgal-bacterial systems. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Daneshvar E, Sik Ok Y, Tavakoli S, Sarkar B, Shaheen SM, Hong H, Luo Y, Rinklebe J, Song H, Bhatnagar A. Insights into upstream processing of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 329:124870. [PMID: 33652189 DOI: 10.1016/j.biortech.2021.124870] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
The aim of this review is to provide insights into the upstream processing of microalgae, and to highlight the advantages of each step. This review discusses the most important steps of the upstream processing in microalgae research such as cultivation modes, photobioreactors design, preparation of culture medium, control of environmental factors, supply of microalgae seeds and monitoring of microalgal growth. An extensive list of bioreactors and their working volumes used, elemental composition of some well-known formulated cultivation media, different types of wastewater used for microalgal cultivation and environmental variables studied in microalgae research has been compiled in this review from the vast literature. This review also highlights existing challenges and knowledge gaps in upstream processing of microalgae and future research needs are suggested.
Collapse
Affiliation(s)
- Ehsan Daneshvar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Yong Sik Ok
- Korea Biochar Research Center, APRU Sustainable Waste Management Program and Division of Environmental Science and Ecological Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Samad Tavakoli
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, Jeddah 21589, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hui Hong
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Yongkang Luo
- Beijing Higher Institution Engineering Research Center of Animal Product, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua, Jiangsu 225700, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; University of Sejong, Department of Environment, Energy and Geoinformatics, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
11
|
Arun J, Gopinath KP, Sivaramakrishnan R, SundarRajan P, Malolan R, Pugazhendhi A. Technical insights into the production of green fuel from CO 2 sequestered algal biomass: A conceptual review on green energy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142636. [PMID: 33065504 DOI: 10.1016/j.scitotenv.2020.142636] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Algae a promising energy reserve due to its adaptability, cheap source, sustainability and it's growth ability in wastewater with efficient sequestration of industrial carbon dioxide. This review summarizes the pathways available for biofuel production from carbon sequestered algae biomass. In this regard, this review focuses on microalgae and its cultivation in wastewater with CO2 sequestration. Conversion of carbon sequestered biomass into bio-fuels via thermo-chemical routes and its engine emission properties. Energy perspective of green gaseous biofuels in near future. This review revealed that algae was the pre-dominant CO2 sequester than terrestrial plants in an eco-friendly and economical way with simultaneous wastewater remediation. Hydrothermal liquefaction of algae biomass was the most preferred mode for biofuel generation than pyrolysis due to high moisture content. The algae based fuels exhibit less greenhouse gases emission and higher energy value. This review helps the researchers, environmentalists and industrialists to evaluate the impact of algae based bio-energy towards green energy and environment.
Collapse
Affiliation(s)
- Jayaseelan Arun
- Center for Waste Management - 'International Research Centre', Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600 119, Tamil Nadu, India.
| | | | - Ramachandran Sivaramakrishnan
- Laboratory of Cyanobacterial Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - PanneerSelvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Rajagopal Malolan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Mairet F, Bayen T. The promise of dawn: Microalgae photoacclimation as an optimal control problem of resource allocation. J Theor Biol 2021; 515:110597. [PMID: 33476606 DOI: 10.1016/j.jtbi.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Photosynthetic microorganisms are known to adjust their photosynthetic capacity according to light intensity. This so-called photoacclimation process is thought to maximize growth at equilibrium, but its dynamics under varying conditions remains less understood. To tackle this problem, microalgae growth and photoacclimation are represented by a (coarse-grained) resource allocation model. Using optimal control theory (the Pontryagin maximum principle) and numerical simulations, we determine the optimal strategy of resource allocation to maximize microalgal growth rate over a time horizon. We show that, after a transient, the optimal trajectory approaches the optimal steady state, a behavior known as the turnpike property. Then, a bi-level optimization problem is solved numerically to estimate model parameters from experimental data. The fitted trajectory represents well a Dunaliella tertiolecta culture facing a light down-shift. Finally, we study photoacclimation dynamics under day/night cycle. In the optimal trajectory, the synthesis of the photosynthetic apparatus surprisingly starts a few hours before dawn. This anticipatory behavior has actually been observed both in the laboratory and in the field. This shows the algal predictive capacity and the interest of our method which predicts this phenomenon.
Collapse
Affiliation(s)
- Francis Mairet
- Ifremer, Physiology and Biotechnology of Algae Laboratory, rue de l'Ile d'Yeu, 44311 Nantes, France.
| | - Térence Bayen
- Avignon Université, Laboratoire de Mathématiques d'Avignon (EA 2151), F-84018, France.
| |
Collapse
|
13
|
Battaglino B, Arduino A, Pagliano C. Mathematical modeling for the design of evolution experiments to study the genetic instability of metabolically engineered photosynthetic microorganisms. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Resilience and self-regulation processes of microalgae under UV radiation stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2019.100322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Jiang W, Levasseur W, Casalinho J, Martin T, Puel F, Perré P, Pozzobon V. Shear stress computation in a millimeter thin flat panel photobioreactor: Numerical design validated by experiments. Biotechnol Appl Biochem 2020; 68:60-70. [PMID: 32011770 DOI: 10.1002/bab.1894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/29/2020] [Indexed: 11/11/2022]
Abstract
Flat panels are the most spread type of photobioreactors for studying light effects on a microalgae culture. Their low thickness, usually between 1 and 3 cm, aims at ensuring light homogeneity across the culture. Yet because optical density has to remain very low, studies are still limited to low cell density cultures. To alleviate this problem, even thinner photobioreactors can be designed. Nevertheless, thin flat panel reactors are very prone to induce high shear stress. This work aimed at designing a new millimeter thin panel photobioreactor to study light effects on Chlorella and Scenedesmus genera. We proposed a numerical workflow that is capable of assessing the shear stress intensity in such a reactor. The numerical predictions were validated at three different levels: 2D preliminary simulations were able to reproduce bubble commonly known behaviors; close to the nozzle, the predictions were successfully confronted to shadowgraphy experimental reference; at the mini bioreactor scale, experimental and numerical mixing were found to be close. After these throughout validations, shear stress intensity in the photobioreactor was calculated over 1000 Lagrangian tracers. The experienced shear stress was agglomerated at the population level. From the computed shear stress, it was possible to choose the minimal reactor thickness that would not hinder cell growth.
Collapse
Affiliation(s)
- Wenbiao Jiang
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wendie Levasseur
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Joel Casalinho
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Martin
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Puel
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Patrick Perré
- Laboratoire de Génie des Procédés et Matériaux, CentraleSupélec, Université Paris-Saclay, Gif-sur-Yvette, France.,LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| | - Victor Pozzobon
- LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), Pomacle, France
| |
Collapse
|
16
|
González-Camejo J, Viruela A, Ruano M, Barat R, Seco A, Ferrer J. Effect of light intensity, light duration and photoperiods in the performance of an outdoor photobioreactor for urban wastewater treatment. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101511] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Straka L, Rittmann BE. Growth kinetics and mathematical modeling of
Synechocystis
sp. PCC 6803 under flashing light. Biotechnol Bioeng 2018; 116:469-474. [DOI: 10.1002/bit.26862] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Levi Straka
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University Tempe Arizona
- Department of Civil and Environmental Engineering University of Washington Seattle Washington
| | - Bruce E. Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University Tempe Arizona
| |
Collapse
|
18
|
Straka L, Rittmann BE. Dynamic response of Synechocystis sp. PCC 6803 to changes in light intensity. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|