1
|
Baburao C, Selvasudha N, Kishore K, Priyadharshini S, Manikandamaharaj TS, Prabhu Deva M, Ali BMJ, Vasanthi HR. Design, fabrication, and evaluation of keratin and pectin incorporated supramolecular structured zero-oxidation state selenium nanogel blended 3D printed transdermal patch. Int J Biol Macromol 2024; 268:131769. [PMID: 38692999 DOI: 10.1016/j.ijbiomac.2024.131769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
This study investigates the synthesis of selenium nanoparticles (SeNPs), owing to the low cost and abundance of selenium. However, the toxicity of SeNP prompts the development of a selenium nanocomposite (SeNC) containing pectin, keratin, and ferulic acid to improve the bioactivity of Se[0]. Further, incorporating the SeNC in a suitable formulation for drug delivery as a transdermal patch was worth studying. Accordingly, various analytical techniques were used to characterize the SeNPs and the SeNC, confirming successful synthesis and encapsulation. The SeNC exhibited notable particle size of 448.2 ± 50.2 nm, high encapsulation efficiency (98.90 % ± 2.4 %), 28.1 ± 0.45 drug loading, and sustained drug release at pH 5.5. Zeta potential and XPS confirmed the zero-oxidation state. The supramolecular structure was evident from spectral analysis endorsing the semi-crystalline nature of the SeNC and SEM images showcasing flower-shaped structures. Further, the SeNC demonstrated sustained drug release (approx. 22 % at 48 h) and wound-healing potential in L929 fibroblast cells. Subsequently, the SeNC loaded into a gelling agent exhibited shear thinning properties and improved drug release by nearly 58 %. A 3D printed reservoir-type transdermal patch was developed utilizing the SeNC-loaded gel, surpassing commercially available patches in characteristics such as % moisture uptake, tensile strength, and hydrophobicity. The patch, evaluated through permeation studies and CAM assay, exhibited controlled drug release and angiogenic properties for enhanced wound healing. The study concludes that this patch can serve as a smart dressing with tailored functionality for different wound stages, offering a promising novel drug delivery system for wound healing.
Collapse
Affiliation(s)
- Chilaka Baburao
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India
| | | | - Kunal Kishore
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India
| | - S Priyadharshini
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India
| | - T S Manikandamaharaj
- Department of Green Energy Technology, Pondicherry University, Kalapet, Puducherry, India
| | - M Prabhu Deva
- Xenobiomic Research And Technological Development Pvt. Ltd., Moolakulam, Puducherry, India
| | - B M Jaffar Ali
- Department of Green Energy Technology, Pondicherry University, Kalapet, Puducherry, India
| | - Hannah R Vasanthi
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry, India.
| |
Collapse
|
2
|
Bhardwaj M, Sali VK, Malarvizhi R, Mani S, Padmavathy TK, Vasanthi HR. Methyldecanoate isolated from marine algae Turbinaria ornata enhances immunomodulation in LPS-induced inflammatory reactions in RAW 264.7 macrophages via iNOS/NFκB pathway. Inflammopharmacology 2023; 31:439-449. [PMID: 36566264 DOI: 10.1007/s10787-022-01116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
This study identifies the anti-inflammatory, antioxidant, and immunomodulatory potential of a fatty acid methyl ester segregated from the brown algae Turbinaria ornata and identified by nuclear magnetic resonance and mass spectrometry as methyl 6,12-dimethyltridecanoate (ET). Antioxidant and anti-inflammatory effects of ET were studied on lipopolysaccharide (LPS)-induced inflammatory reaction in RAW 264.7 macrophages. Moreover, in silico docking studies of isolated ET with inflammatory markers TNFα, NFκB, and COX-2 showed potent binding scores suggesting anti-inflammatory potential. ET significantly reduced LPO and increased LPS-induced SOD, catalase, and GSH levels. Molecular docking results were further confirmed by checking mRNA levels of selected cytokines (IL6 and IL10), followed by protein expression of iNOS and NFκB in LPS-induced macrophages. ET significantly upregulated the expression of IL10 and downregulated the expression of IL6, iNOS, and NFκB, confirming the inhibition of LPS-induced inflammation via the iNOS/NFκB pathway.
Collapse
Affiliation(s)
- Meenakshi Bhardwaj
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Veeresh Kumar Sali
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - R Malarvizhi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - T K Padmavathy
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Hannah Rachel Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
4
|
Nature-derived anticancer steroids outside cardica glycosides. Fitoterapia 2020; 147:104757. [PMID: 33069834 DOI: 10.1016/j.fitote.2020.104757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Steriods which are ubiquitous in natural resources are important components of cell membranes and involved in several physiological functions. Steriods not only exerted the anticancer activity through inhibition of various enzymes and receptors in cancer cells, inclusive of aromatase, sulfatase, 5α-reductase, hydroxysteroid dehydrogenase and CYP 17, but also exhibited potential activity against various cancer forms including multidrug-resistant cancer with low cytotoxicity, and high bioavailability. Accordingly, steroids are useful scaffolds for the discovery of novel anticancer agents. This review aims to outline the advances of nature-derived steroids outside cardica glycosides with anticancer potential, covering the articles published between Jan. 2015 and Aug. 2020.
Collapse
|
5
|
Sali VK, Mani S, Meenaloshani G, Velmurugan Ilavarasi A, Vasanthi HR. Type 5 17-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3) inhibition and potential anti-proliferative activity of cholest-4-ene-3,6-dione in MCF-7 breast cancer cells. Steroids 2020; 159:108638. [PMID: 32209376 DOI: 10.1016/j.steroids.2020.108638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 12/28/2022]
Abstract
Cholest-4-ene-3,6-dione (KS) is a cholesterol oxidation product which exhibits anti-proliferative activity. However, its precise mechanism of action remains unknown. In this study, the effects of KS on AKR1C3 inhibition and anti-proliferative activities were investigated in the hormone-dependent MCF-7 breast cancer cells. We identified that KS arrested the enzymatic conversion of estrone to 17-β estradiol, by inhibiting AKR1C3 in intact MCF-7 cells. The anti-proliferative effects of KS were evaluated by MTT assay, acridine orange and ethidium bromide dual staining, cell cycle analysis and Western blotting. KS arrested the cell cycle progression in the G1 phase with a concomitant increase of the Sub-G0 population to increase in concentration and time. It also enhanced the p53 and NFkB expression and induced caspase-12, 9 and 3 processing and down-regulated the Bcl-2 expression. Molecular docking studies performed to understand the inhibition mechanism of KS on AKR1C3 revealed that KS occupied the binding region of AKR1C3 with almost similar orientation as indomethacin (IM), thereby acting as an antagonistic agent for AKR1C3. Based on the results it is identified that KS induces inhibition of AKR1C3 and cell death in MCF-7 cells. These results indicate that KS can be used as a molecular scaffold for further development of novel small-molecules with better specificity towards AKR1C3.
Collapse
Affiliation(s)
- Veeresh Kumar Sali
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India
| | - G Meenaloshani
- National College (Autonomous), Tiruchirappalli, Tamil Nadu 620001, India
| | | | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, Pondicherry University, Puducherry 605014, India.
| |
Collapse
|
7
|
Foo SC, Yusoff FM, Imam MU, Foo JB, Ismail N, Azmi NH, Tor YS, Khong NMH, Ismail M. Increased fucoxanthin in Chaetoceros calcitrans extract exacerbates apoptosis in liver cancer cells via multiple targeted cellular pathways. ACTA ACUST UNITED AC 2018; 21:e00296. [PMID: 30581767 PMCID: PMC6296166 DOI: 10.1016/j.btre.2018.e00296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/14/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
Both treatments inhibited cancer proliferation in a time and dose dependent manner. FxRF treatment were effective in inducing apoptosis in HepG2 cells than crude extract. Treatments stimulated regulation in cell signalling, apoptotic and antioxidant genes.
In this study, anti-proliferative effects of C. calcitrans extract and its fucoxanthin rich fraction (FxRF) were assessed on human liver HepG2 cancer cell line. Efficacy from each extract was determined by cytotoxicity assay, morphological observation, and cell cycle analysis. Mechanisms of action observed were evaluated using multiplex gene expression analysis. Results showed that CME and FxRF induced cytotoxicity to HepG2 cells in a dose and time-dependent manner. FxRF (IC50: 18.89 μg.mL−1) was found to be significantly more potent than CME (IC50: 87.5 μg.mL−1) (p < 0.05). Gene expression studies revealed that anti-proliferative effects in treated cells by C. calcitrans extracts were mediated partly through the modulation of numerous genes involved in cell signaling (AKT1, ERK1/2, JNK), apoptosis (BAX, BID, Bcl-2, APAF, CYCS) and oxidative stress (SOD1, SOD2, CAT). Overall, C. calcitrans extracts demonstrated effective intervention against HepG2 cancer cells where enhanced apoptotic activities were observed with increased fucoxanthin content.
Collapse
Affiliation(s)
- Su Chern Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fatimah Md Yusoff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,The International Institute of Aquaculture and Aquatic Science, Universiti Putra Malaysia, 43400, UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Mustapha Umar Imam
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodio University, Sokoto, Nigeria
| | - Jhi Biau Foo
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Norsharina Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Nur Hanisah Azmi
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology & Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yin Sim Tor
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia.,School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, No. 1 Jalan Taylor's, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Nicholas M H Khong
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Maznah Ismail
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|