1
|
Souza ATVDE, Souza KMSDE, Amorim APDE, Bezerra RP, Porto ALF. Methods to protein and peptide extraction from microalgae: a systematic review. AN ACAD BRAS CIENC 2024; 96:e20240113. [PMID: 39442102 DOI: 10.1590/0001-3765202420240113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/19/2024] [Indexed: 10/25/2024] Open
Abstract
Currently, there is a demand for protein sources that do not use soil management or animal breeding. Among these sources we highlight the microorganisms, such cyanobacteria and microalgae, which have a simple growth using light, CO2, water and some mineral salts to generate high protein production. The extraction of these proteins depends on the method used. The most used methods for extracting bio-functional proteins are mechanical, chemical and enzymatic. The aim of this work is to analyze the protein extraction methods in microalgae using Scielo, ScienceDirect and NCBI (PubMed) electronic databases that made it possible to select original studies published in the last five years (2018-2023). A total of 2707 articles, 25 of which were selected for further analysis and subjected to risk of bias assessment. The genera Chlorella, Scenedesmus and Nannochloropsis were the most studied due to their high protein content. Mechanical methods and chemical hydrolysis are the most used methods, achieving an extraction yield of 46.0 % and 64.0 %, respectively. The best extraction results are obtained with a combination of methods, reaching up to 80.0 % yield. However, some aspects need to be observed to choose an ideal protein extraction method.
Collapse
Affiliation(s)
- Ariadne Tennyle V DE Souza
- Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rego, 1235, 50670-901 Recife, PE, Brazil
| | | | - Andreza P DE Amorim
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Raquel P Bezerra
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Ana Lucia F Porto
- Universidade Federal Rural de Pernambuco (UFRPE), Departamento de Morfologia e Fisiologia Animal, Avenida Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
2
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
3
|
Rahman MM, Hosano N, Hosano H. Recovering Microalgal Bioresources: A Review of Cell Disruption Methods and Extraction Technologies. Molecules 2022; 27:2786. [PMID: 35566139 PMCID: PMC9104913 DOI: 10.3390/molecules27092786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Microalgae have evolved into a promising sustainable source of a wide range of compounds, including protein, carbohydrates, biomass, vitamins, animal feed, and cosmetic products. The process of extraction of intracellular composites in the microalgae industry is largely determined by the microalgal species, cultivation methods, cell wall disruption techniques, and extraction strategies. Various techniques have been applied to disrupt the cell wall and recover the intracellular molecules from microalgae, including non-mechanical, mechanical, and combined methods. A comprehensive understanding of the cell disruption processes in each method is essential to improve the efficiency of current technologies and further development of new methods in this field. In this review, an overview of microalgal cell disruption techniques and an analysis of their performance and challenges are provided. A number of studies on cell disruption and microalgae extraction are examined in order to highlight the key challenges facing the field of microalgae and their future prospects. In addition, the amount of product recovery for each species of microalgae and the important parameters for each technique are discussed. Finally, pulsed electric field (PEF)-assisted treatments, which are becoming an attractive option due to their simplicity and effectiveness in extracting microalgae compounds, are discussed in detail.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Nushin Hosano
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| | - Hamid Hosano
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan;
- Department of Biomaterials and Bioelectrics, Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan;
| |
Collapse
|
4
|
Ren X, Liu Y, Fan C, Hong H, Wu W, Zhang W, Wang Y. Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods 2022; 11:foods11091215. [PMID: 35563938 PMCID: PMC9101592 DOI: 10.3390/foods11091215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
Microalgae have been increasingly considered as a sustainable “biofactory” with huge potentials to fill up the current and future shortages of food and nutrition. They have become an economically and technologically viable solution to produce a great diversity of high-value bioactive compounds, including n-3 polyunsaturated fatty acids (PUFA). The n-3 PUFA, especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), possess an array of biological activities and positively affect a number of diseases, including cardiovascular and neurodegenerative disorders. As such, the global market of n-3 PUFA has been increasing at a fast pace in the past two decades. Nowadays, the supply of n-3 PUFA is facing serious challenges as a result of global warming and maximal/over marine fisheries catches. Although increasing rapidly in recent years, aquaculture as an alternative source of n-3 PUFA appears insufficient to meet the fast increase in consumption and market demand. Therefore, the cultivation of microalgae stands out as a potential solution to meet the shortages of the n-3 PUFA market and provides unique fatty acids for the special groups of the population. This review focuses on the biosynthesis pathways and recombinant engineering approaches that can be used to enhance the production of n-3 PUFA, the impact of environmental conditions in heterotrophic cultivation on n-3 PUFA production, and the technologies that have been applied in the food industry to extract and purify oil in microalgae and protect n-3 PUFA from oxidation.
Collapse
Affiliation(s)
- Xiang Ren
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| | - Yanjun Liu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Chao Fan
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Hao Hong
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wenzhong Wu
- INNOBIO Corporation Limited, No. 49, DDA, Dalian 116600, China; (Y.L.); (C.F.); (H.H.); (W.W.)
| | - Wei Zhang
- DeOxiTech Consulting, 30 Cloverfield Court, Dartmouth, NS B2W 0B3, Canada;
| | - Yanwen Wang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada
- Correspondence: (X.R.); (Y.W.); Tel.: +86-411-65864645 (X.R.); +1-902-566-7953 (Y.W.)
| |
Collapse
|
5
|
Puzorjov A, Mert Unal S, Wear MA, McCormick AJ. Pilot scale production, extraction and purification of a thermostable phycocyanin from Synechocystis sp. PCC 6803. BIORESOURCE TECHNOLOGY 2022; 345:126459. [PMID: 34863843 PMCID: PMC8811538 DOI: 10.1016/j.biortech.2021.126459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/09/2023]
Abstract
Phycocyanin (PC) is a soluble blue pigment-protein primarily harvested from the cyanobacterium Arthrospira platensis. PC is in high demand from several industries, but its narrow stability range limits potential applications. Here, a pilot scale (120 L total) batch production, extraction and purification process for thermostable PC (Te-PC) from a Synechocystis sp. PCC 6803 'Olive' strain expressing the PC operon cpcBACD from Thermosynechococcus elongatus BP-1 on a self-replicating vector is presented. Batch cultivation without antibiotics had no impact on growth or Te-PC production and optimisation of growth conditions resulted in Te-PC contents of 75.3 ± 1.7 mg g DW-1. Wet biomass was harvested following chitosan-based flocculation with a 97 ± 2% efficiency, and Te-PC was extracted by high pressure homogenisation. Subsequent purification by heat-treatment and two-step ammonium sulfate precipitation removed chlorophyll and allophycocyanin contamination, resulting in Te-PC purities of 2.9 ± 0.7 and a mean Te-PC recovery of 84 ± 12%.
Collapse
Affiliation(s)
- Anton Puzorjov
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Suleyman Mert Unal
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Martin A Wear
- The Edinburgh Protein Purification Facility, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK.
| |
Collapse
|
6
|
Canelli G, Kuster I, Jaquenod L, Buchmann L, Murciano Martínez P, Rohfritsch Z, Dionisi F, Bolten CJ, Nanni P, Mathys A. Pulsed electric field treatment enhances lipid bioaccessibility while preserving oxidative stability in Chlorella vulgaris. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102897] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|