1
|
Wang L, Shi Q, Pan Y, Shi L, Huang X. ROS and Ca 2+ signaling involved in important lipid changes of Chlorella pyrenoidosa under nitrogen stress conditions. PLANTA 2024; 260:39. [PMID: 38951320 DOI: 10.1007/s00425-024-04471-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
MAIN CONCLUSION Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.
Collapse
Affiliation(s)
- Liufu Wang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Qiang Shi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Yingying Pan
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Liqiu Shi
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China
| | - Xuxiong Huang
- China-ASEAN "The Belt and Road" Joint Laboratory of Marine Culture Technology (Shanghai), Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Nanhui New City, No.999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China.
| |
Collapse
|
2
|
Li Y, Zhao T, Gao W, Miao B, Fu Z, Zhang Z, Li Q, Sun D. Regulatory mechanisms of autophagy on DHA and carotenoid accumulation in Crypthecodinium sp. SUN. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:50. [PMID: 38566214 PMCID: PMC10985998 DOI: 10.1186/s13068-024-02493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Autophagy is a crucial process of cellular self-destruction and component reutilization that can affect the accumulation of total fatty acids (TFAs) and carotenoids in microalgae. The regulatory effects of autophagy process in a docosahexaenoic acid (DHA) and carotenoids simultaneously producing microalga, Crypthecodinium sp. SUN, has not been studied. Thus, the autophagy inhibitor (3-methyladenine (MA)) and activator (rapamycin) were used to regulate autophagy in Crypthecodinium sp. SUN. RESULTS The inhibition of autophagy by 3-MA was verified by transmission electron microscopy, with fewer autophagy vacuoles observed. Besides, 3-MA reduced the glucose absorption and intracellular acetyl-CoA level, which resulting in the decrease of TFA and DHA levels by 15.83 and 26.73% respectively; Surprisingly, 3-MA increased intracellular reactive oxygen species level but decreased the carotenoids level. Comparative transcriptome analysis showed that the downregulation of the glycolysis, pentose phosphate pathway and tricarboxylic acid cycle may underlie the decrease of acetyl-CoA, NADPH and ATP supply for fatty acid biosynthesis; the downregulation of PSY and HMGCR may underlie the decreased carotenoids level. In addition, the class I PI3K-AKT signaling pathway may be crucial for the regulation of carbon and energy metabolism. At last, rapamycin was used to activate autophagy, which significantly enhanced the cell growth and TFA level and eventually resulted in 1.70-fold increase in DHA content. CONCLUSIONS Our findings indicate the mechanisms of autophagy in Crypthecodinium sp. SUN and highlight a way to manipulate cell metabolism by regulating autophagy. Overall, this study provides valuable insights to guide further research on autophagy-regulated TFA and carotenoids accumulation in Crypthecodinium sp. SUN.
Collapse
Affiliation(s)
- Yiming Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Tiantian Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Weizheng Gao
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Bowen Miao
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Zhongxiang Fu
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Zhao Zhang
- School of Life Sciences, Hebei University, Baoding, 071000, China
| | - Qingyang Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Liu Y, Du Z, Wu P, Zhang L. Optimization of stage conversion time and modification of cell metabolism to enhance lipid production of Auxenochlorella pyrenoidosa in two-stage cultivation. BIORESOURCE TECHNOLOGY 2024; 395:130409. [PMID: 38295959 DOI: 10.1016/j.biortech.2024.130409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/18/2024]
Abstract
Traditionally, the time of maximum biomass concentration in stage I is the widely adopted stage conversion time in two-stage microalgae culture. This study challenges this conventional approach, demonstrating that the optimal stage conversion time in stage I is 72 h rather than 120 h for achieving maximum biomass concentration. A comparison of cell characteristics revealed that algal cells at 72 h exhibited better growth potential, leading to a higher biomass concentration after transfer to stage II and, consequently, increased lipid productivity. Moreover, the use of phosphorus repletion (5-fold) in stage II directed carbon flux toward biomass growth and lipid accumulation, thereby enhancing lipid productivity. By optimizing the stage conversion time and implementing phosphorus repletion, the mean lipid productivity of Auxenochlorella pyrenoidosa cultured under autotrophy-nitrogen starvation and autotrophy-high light conditions increased by 31 % and 60 %, respectively. This study underscores the importance of reevaluating the currently widely used stage conversion time.
Collapse
Affiliation(s)
- Yao Liu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zengzhen Du
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Penghui Wu
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
4
|
Luo Y, Ding Y, Jiang X, Zeng G, Peng R, Han Q, Jiang M. Effects of low temperature and highlight stress on lipid accumulation and cell structure of Tropidoneis maxima. J Basic Microbiol 2023; 63:1139-1152. [PMID: 37339809 DOI: 10.1002/jobm.202300092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023]
Abstract
Tropidoneis maxima is a marine diatom with a rapid growth rate that produces high levels of lipids. To explore whether the lipid content could be further enhanced, cultures were first incubated under optimal conditions and then stressed under low temperature (10°C), a high light intensity level (80 μmol/m2 ·s), and the two factors together (interaction treatment). The results indicated that high light intensity and the temperature-light interaction exhibited greater impacts on lipid synthesis of T. maxima than low temperature. The two stress treatments increased lipid content by 17.16% and 16.6% compared to the control. In particular, higher biomass concentration was obtained with high light intensity (1.082 g L-1 ) and low temperature (1.026 g L-1 ). Moreover, high light intensity (9.06%) and interaction (10.3%) treatments yielded lower starch content compared to low temperature (14.27%) at the end of the stress culture. After 3 days of stress culture, the high light intensity treatment resulted in a 97.01% increase in cell wall thickness and an 18.46% decrease in cell diameter. The results suggest that high light intensity stress on T. maxima would open a new approach to cost-effective biolipid production.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuhui Ding
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiamin Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Guoquan Zeng
- Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Ruibing Peng
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qingxi Han
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Maowang Jiang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Zhao P, Li C, Rahaman MM, Xu H, Yang H, Sun H, Jiang T, Grzegorzek M. A Comparative Study of Deep Learning Classification Methods on a Small Environmental Microorganism Image Dataset (EMDS-6): From Convolutional Neural Networks to Visual Transformers. Front Microbiol 2022; 13:792166. [PMID: 35308350 PMCID: PMC8924496 DOI: 10.3389/fmicb.2022.792166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/02/2022] [Indexed: 12/03/2022] Open
Abstract
In recent years, deep learning has made brilliant achievements in Environmental Microorganism (EM) image classification. However, image classification of small EM datasets has still not obtained good research results. Therefore, researchers need to spend a lot of time searching for models with good classification performance and suitable for the current equipment working environment. To provide reliable references for researchers, we conduct a series of comparison experiments on 21 deep learning models. The experiment includes direct classification, imbalanced training, and hyper-parameters tuning experiments. During the experiments, we find complementarities among the 21 models, which is the basis for feature fusion related experiments. We also find that the data augmentation method of geometric deformation is difficult to improve the performance of VTs (ViT, DeiT, BotNet, and T2T-ViT) series models. In terms of model performance, Xception has the best classification performance, the vision transformer (ViT) model consumes the least time for training, and the ShuffleNet-V2 model has the least number of parameters.
Collapse
Affiliation(s)
- Peng Zhao
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Chen Li
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Md Mamunur Rahaman
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hao Xu
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hechen Yang
- Microscopic Image and Medical Image Analysis Group, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Hongzan Sun
- Shengjing Hospital, China Medical University, Shenyang, China
| | - Tao Jiang
- School of Control Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Marcin Grzegorzek
- Institute of Medical Informatics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Ma R, Zhang Z, Tang Z, Ho SH, Shi X, Liu L, Xie Y, Chen J. Enhancement of co-production of lutein and protein in Chlorella sorokiniana FZU60 using different bioprocess operation strategies. BIORESOUR BIOPROCESS 2021; 8:82. [PMID: 38650235 PMCID: PMC10992755 DOI: 10.1186/s40643-021-00436-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Co-production of multiple compounds is an efficient approach to enhance the economic feasibility of microalgae-based metabolites production. In this study, Chlorella sorokiniana FZU60 was cultivated under different bioprocess strategies to enhance the co-production of lutein and protein. Results showed that both lutein and protein content (7.72 and 538.06 mg/g, respectively) were highest at the onset of nitrogen deficiency under batch cultivation. Semi-batch III strategy, with 75% microalgal culture replacement by fresh medium, obtained similar content, productivity, and yield of lutein and protein as batch cultivation, demonstrating that it can be used for stable and continuous production. Fed-batch II strategy, feeding with 1/3 modified BG11 medium, achieved super-high lutein and protein yield (28.81 and 1592.77 mg/L, respectively), thus can be used for high-output production. Besides, two-stage strategy, combining light intensity shift and semi-batch cultivation, gained extremely high lutein and protein productivity (15.31 and 1080.41 mg/L/day, respectively), thereby is a good option for high-efficiency production. Moreover, the fed-batch II and two-stage strategy achieved high-quality lutein and protein, thus are promising for the co-production of lutein and protein in C. sorokiniana FZU60 for commercial application.
Collapse
Affiliation(s)
- Ruijuan Ma
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Zhang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Zhuzhen Tang
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Shih-Hsin Ho
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xinguo Shi
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Lemian Liu
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| | - Youping Xie
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China.
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China.
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China.
| | - Jianfeng Chen
- Technical Innovation Service Platform for High Value and High Quality Utilization of Marine Organism, Fuzhou University, Fuzhou, 350108, China
- Fujian Engineering and Technology Research Center for Comprehensive Utilization of Marine Products Waste, Fuzhou University, Fuzhou, 350108, China
- Fuzhou Industrial Technology Innovation Center for High Value Utilization of Marine Products, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|