1
|
Costa IG, Vargas JVC, Balmant W, Ramos LP, Mariano AB, Oliveira ACD, da Silva TA, Severo IA, Ordonez JC, Sousa DL, Dos Santos VF. Unlocking pilot-scale green diesel production from microalgae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122141. [PMID: 39128345 DOI: 10.1016/j.jenvman.2024.122141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Microalgae have emerged as a promising source of biomass to produce renewable biofuels due to their ability to synthesize high-energy density compounds of commercial interest. This study proposes an approach for pilot-scale oil extraction, purification by fractional distillation, hydrocarbon characterization by gas chromatography coupled to mass spectrometry (GC-MS), evaluation of physicochemical parameters of the produced hydrocarbons, preliminary cost analysis, and challenges and future opportunities for green diesel on a commercial scale. Here, the microalgae Tetradesmus obliquus was cultivated in 12 m³ photobioreactors using biodigested swine waste as a culture medium. The resulting biomass was subjected to drying and harvesting, followed by oil extraction using a hot solvent extraction method, followed by distillation to purify the compounds. Three different extraction and distillation experiments were conducted, each using different solvent combinations. The results obtained revealed that extraction with a solvent blend, composed of hexane and ethanol, provided more significant yields compared to extraction with pure hexane. GC-MS analysis showed the presence of alkanes and alkenes in the oil samples, and the proportion of solvent used in the extraction directly influenced the production of alkanes. Additionally, specific hydrocarbons such as 4-methyl-1-decene, 8-heptadecene, 1-pentadecene, 9-heneicosene, and 2-dodecene were identified. The evaluation of the physicochemical parameters demonstrated that the calorific value of the distilled oil samples is within the range of typical values for petroleum diesel. However, it was observed that the distilled oil samples had higher sulfur content compared to conventional diesel. Regarding the cost analysis, it was found that it varies depending on the experimental conditions. In particular, the process using a solvent mixture of 70% hexane and 30% ethanol proved to be more economical than the others, since it extracted a greater quantity of oil with a lower initial biomass requirement. In summary, this microalgae-derived hydrocarbon production process is promising and offers insights for compound purification and future biofuel applications.
Collapse
Affiliation(s)
- Iago G Costa
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - José V C Vargas
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Wellington Balmant
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Luiz P Ramos
- Department of Chemical Engineering, Graduate Program in Chemical Engineering (PGEQ), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - André B Mariano
- Department of Electrical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Anne C D Oliveira
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Thiago A da Silva
- Department of Chemical Engineering, Graduate Program in Chemical Engineering (PGEQ), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Ihana A Severo
- Department of Mechanical Engineering, Graduate Program in Materials Science Engineering (PIPE), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil; Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, United States.
| | - Juan C Ordonez
- Department of Mechanical Engineering, FAMU-FSU College of Engineering, Energy and Sustainability Center, Center for Advanced Power Systems (CAPS), Florida A&M University, Florida State University, 32310-6046, Tallahassee, FL, United States
| | - Diego L Sousa
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - Vinicius F Dos Santos
- Department of Mechanical Engineering, Graduate Program in Mechanical Engineering (PGMEC), Sustainable Energy Research & Development Center (NPDEAS), Federal University of Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Vargas-Pérez M, González-Horta A, Mendoza-Hernández H, Elías-Santos M, Acuña-Askar K, Galán-Wong LJ, Luna-Olvera HA. Neochloris oleoabundans cell wall rupture through melittin peptide: a new approach to increase lipid recovery. Biotechnol Lett 2024; 46:97-106. [PMID: 38109017 DOI: 10.1007/s10529-023-03451-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/28/2023] [Accepted: 11/04/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Microalgae cell wall affects the recovery of lipids, representing one of the main difficulties in the development of biofuel production. This work aimed to test a new method based on melittin peptide to induce a cellular disruption in N. oleoabundans. RESULTS Neochloris oleoabundans cells were grown at 32 °C in the presence of a high concentration of nitrate-phosphate, causing a cell disruption extent of 83.6%. Further, a two-fold increase in lipid recovery following melittin treatment and solvent extraction was observed. Additionally, it was possible to verify the effects of melittin, both before and after treatment on the morphology of the cells. Scanning electron microscopy (SEM) and confocal images of the melittin-treated microalgae revealed extensive cell damage with degradation of the cell wall and release of intracellular material. CONCLUSIONS Melittin produced a selective cell wall rupture effect in N. oleoabundans under some culture conditions. These results represent the first report on the effect of melittin on lipid recovery from microalgae.
Collapse
Affiliation(s)
- Magda Vargas-Pérez
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Azucena González-Horta
- Laboratorio de Ciencias Genómicas, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Hiram Mendoza-Hernández
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Myriam Elías-Santos
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Karim Acuña-Askar
- Laboratorio de Biorremediación Ambiental, Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Luis Jesús Galán-Wong
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México
| | - Hugo Alberto Luna-Olvera
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, 66451, Monterrey, NL, México.
| |
Collapse
|
3
|
Chaos-Hernández D, Reynel-Ávila HE, Bonilla-Petriciolet A, Villalobos-Delgado FJ. Extraction methods of algae oils for the production of third generation biofuels - A review. CHEMOSPHERE 2023; 341:139856. [PMID: 37598949 DOI: 10.1016/j.chemosphere.2023.139856] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/19/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
Microalgae are the main source of third-generation biofuels because they have a lipid content of 20-70%, can be abundantly produced and do not compete in the food market besides other benefits. Biofuel production from microalgae is a promising option to contribute for the resolution of the eminent crisis of fossil energy and environmental pollution specially in the transporting sector. The choice of lipid extraction method is of relevance and associated to the algae morphology (i.e., rigid cells). Therefore, it is essential to develop suitable extraction technologies for economically viable and environment-friendly lipid recovery processes with the aim of achieving a commercial production of biofuels from this biomass. This review presents an exhaustive analysis and discussion of different methods and processes of lipid extraction from microalgae for the subsequent conversion to biodiesel. Physical methods based on the use of supercritical fluids, ultrasound and microwaves were reviewed. Chemical methods using solvents with different polarities, aside from mechanical techniques such as mechanical pressure and enzymatic methods, were also analyzed. The advantages, drawbacks, challenges and future prospects of lipid extraction methods from microalgae have been summarized to provide a wide panorama of this relevant topic for the production of economic and sustainable energy worldwide.
Collapse
Affiliation(s)
- D Chaos-Hernández
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - H E Reynel-Ávila
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico; CONACYT, Av. Insurgentes 1582 Sur, Ciudad de México, 03940, Aguascalientes, Ags, Mexico.
| | - A Bonilla-Petriciolet
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| | - F J Villalobos-Delgado
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos #1801, Aguascalientes, Ags., C.P. 20256, Mexico
| |
Collapse
|
4
|
Li S, Meenakshi V, Nithya S, Alharbi SA, Salmen SH, Shanmuganathan R, Zhang L, Xia C. Impact of the combined effect of seawater exposure with wastewater and Fe 2O 3 nanoparticles on Chlorella vulgaris microalgae growth, lipid content, biochar, and bio-oil production. ENVIRONMENTAL RESEARCH 2023:116300. [PMID: 37268207 DOI: 10.1016/j.envres.2023.116300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
Microalgae is one the promising source of energy for the production of biofuel and other value-added products to replace the existing conventional fossil fuels. However, low lipid content and poor cell harvesting are the key challenges. Based on the growth conditions the lipid productivity will be affected. The current study examines the mixtures of both wastewater and NaCl on the microalgae growth was studied. The microalgae used for conducting the tests were Chlorella vulgaris microalgae. Mixtures of the wastewater was prepared under the different concentrations of the seawater, classified as S0%, S20%, and S40%. The growth of microalgae was studied in the presence of these mixtures, and the addition of Fe2O3 nanoparticles was included to stimulate the growth. The results showed that increasing the salinity in the wastewater resulted in decreased biomass production, but significantly increased lipid content compared to S0%. The highest lipid content was recorded at S40%N with 21.2%. The Highest lipid productivity was also witnessed for S40% with 45.6 mg/Ld. The cell diameter was also found to increase with increasing salinity content in the wastewater. The addition of Fe2O3 nanoparticles in the seawater was found to enhance the productivity of the microalgae extensively, resulting in 9.2% and 6.15% increased lipid content and lipid productivity respectively compared to conventional cases. However, the inclusion of the nanoparticles slightly increased the zeta potential of microalgal colloids, with no noticeable effects on the cell diameter or bio-oil yields. Based on these findings, Chlorella vulgaris was identified as a suitable candidate for treating wastewater with high salinity exposure.
Collapse
Affiliation(s)
- Suiyi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - V Meenakshi
- Faculty of Engineering, Sathyabama Institute of Science and Technology, India
| | - S Nithya
- Department of Aeronautical Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai, 600 053, Tamil Nadu, India.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Rajasree Shanmuganathan
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research, Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China.
| |
Collapse
|
5
|
Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Globally, nations are trying to address environmental issues such as global warming and climate change, along with the burden of declining fossil fuel reserves. Furthermore, countries aim to reach zero carbon emissions within the existing and rising global energy crisis. Therefore, bio-based alternative sustainable feedstocks are being explored for producing bioenergy. One such renewable energy resource is microalgae; these are photosynthetic microorganisms that grow on non-arable land, in extreme climatic conditions, and have the ability to thrive even in sea and wastewater. Microalgae have high photosynthetic efficiencies and biomass productivity compared to other terrestrial plants. Whole microalgae biomass or their extracted metabolites can be converted to various biofuels such as bioethanol, biodiesel, biocrude oil, pyrolytic bio-oil, biomethane, biohydrogen, and bio jet fuel. However, several challenges still exist before faster and broader commercial application of microalgae as a sustainable bioenergy feedstock for biofuel production. Selection of appropriate microalgal strains, development of biomass pre-concentrating techniques, and utilization of wet microalgal biomass for biofuel production, coupled with an integrated biorefinery approach for producing value-added products, could improve the environmental sustainability and economic viability of microalgal biofuel. This article will review the current status of research on microalgal biofuels and their future perspective.
Collapse
|