1
|
Belhassen I, Laroussi S, Sakka S, Rekik S, Lahkim L, Dammak M, Authier FJ, Mhiri C. Dysferlinopathy in Tunisia: clinical spectrum, genetic background and prognostic profile. Neuromuscul Disord 2023; 33:718-727. [PMID: 37716854 DOI: 10.1016/j.nmd.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023]
Abstract
Dysferlinopathy is a rare group of hereditary muscular dystrophy with an autosomal recessive mode of inheritance caused by a mutation in the DYSF gene. It encodes for the dysferlin protein, which has a crucial role in multiple cellular processes, including muscle fiber membrane repair. This deficit has heterogeneous clinical presentations. In this study, we collected 20 Tunisian patients with a sex ratio of 1 and a median age of 50.5 years old (Interquartile range (IQR) = [36,5-54,75]). They were followed for periods ranging from 5 to 48 years. The median age at onset was 17 years old (IQR = [16,8-28,4]). Five major phenotypes were identified: Limb-girdle muscular dystrophy (LGMDR2) (35%), a proximodistal phenotype (35%), Miyoshi myopathy (10%), Distal myopathy with anterior tibial onset (DMAT) (10%), and asymptomatic HyperCKemia (10%). At the last evaluation, more than half of patients (55%) were on wheelchair. Loss of ambulation occurred generally during the fourth decade. After 20 years of disease progression, two patients with a proximodistal phenotype (10%) developed dilated cardiomyopathy and mitral valve regurgitation. Restrictive respiratory syndrome was observed in three patients (DMAT: 1 patient, proximodistal phenotype: 1 patient, LGMDR2: 1 patient). Genetic study disclosed five mutations. We observed clinical heterogeneity between families and even within the same family. Disease progression was mainly slow to intermediate regardless of the phenotype.
Collapse
Affiliation(s)
- Ikhlass Belhassen
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Sirine Laroussi
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia.
| | - Salma Sakka
- Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | - Sabrine Rekik
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Laila Lahkim
- Pathology Laboratory, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Mariem Dammak
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| | | | - Chokri Mhiri
- Laboratory of Neurogenetics, Parkinson's Disease and Cerebrovascular Disease (LR-12-SP-19), Habib Bourguiba University Hospital, University of Sfax, Tunisia; Clinical Investigation Center, Habib Bourguiba University Hospital, Sfax, Tunisia; Department of Neurology, Habib Bourguiba University Hospital, Faculty of Medicine of Sfax, Sfax, Tunisia
| |
Collapse
|
2
|
Bouchard C, Tremblay JP. Portrait of Dysferlinopathy: Diagnosis and Development of Therapy. J Clin Med 2023; 12:6011. [PMID: 37762951 PMCID: PMC10531777 DOI: 10.3390/jcm12186011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Dysferlinopathy is a disease caused by a dysferlin deficiency due to mutations in the DYSF gene. Dysferlin is a membrane protein in the sarcolemma and is involved in different functions, such as membrane repair and vesicle fusion, T-tubule development and maintenance, Ca2+ signalling, and the regulation of various molecules. Miyoshi Myopathy type 1 (MMD1) and Limb-Girdle Muscular Dystrophy 2B/R2 (LGMD2B/LGMDR2) are two possible clinical presentations, yet the same mutations can cause both presentations in the same family. They are therefore grouped under the name dysferlinopathy. Onset is typically during the teenage years or young adulthood and is characterized by a loss of Achilles tendon reflexes and difficulty in standing on tiptoes or climbing stairs, followed by a slow progressive loss of strength in limb muscles. The MRI pattern of patient muscles and their biopsies show various fibre sizes, necrotic and regenerative fibres, and fat and connective tissue accumulation. Recent tools were developed for diagnosis and research, especially to evaluate the evolution of the patient condition and to prevent misdiagnosis caused by similarities with polymyositis and Charcot-Marie-Tooth disease. The specific characteristic of dysferlinopathy is dysferlin deficiency. Recently, mouse models with patient mutations were developed to study genetic approaches to treat dysferlinopathy. The research fields for dysferlinopathy therapy include symptomatic treatments, as well as antisense-mediated exon skipping, myoblast transplantation, and gene editing.
Collapse
Affiliation(s)
- Camille Bouchard
- Département de Médecine Moléculaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1E 6W2, Canada
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Université Laval, Québec, QC G1V 0A6, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1E 6W2, Canada
| |
Collapse
|
3
|
Harada Y, Wang SH, Juel VC. Clinical Reasoning: A 36-Year-Old Man With Asymmetric Muscle Weakness. Neurology 2022; 99:1057-1061. [PMID: 36130838 DOI: 10.1212/wnl.0000000000201379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yohei Harada
- From the Department of Neurology (Y.H., S.-H.W., V.C.J.), Duke University Medical Center, Durham, NC; and Department of Pathology (S.-H.W.), Duke University Medical Center, Durham, NC.
| | - Shih-Hsiu Wang
- From the Department of Neurology (Y.H., S.-H.W., V.C.J.), Duke University Medical Center, Durham, NC; and Department of Pathology (S.-H.W.), Duke University Medical Center, Durham, NC
| | - Vern C Juel
- From the Department of Neurology (Y.H., S.-H.W., V.C.J.), Duke University Medical Center, Durham, NC; and Department of Pathology (S.-H.W.), Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
Devkota S, Shrestha S, Gurung T, Shrestha S. Regional anesthesia as a safe option in patient with limb girdle muscular dystrophy undergoing total abdominal hysterectomy: A case report and case review. Clin Case Rep 2022; 10:e6523. [PMID: 36381058 PMCID: PMC9637942 DOI: 10.1002/ccr3.6523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/25/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022] Open
Abstract
Regional anesthesia can be a very safe option in patients with limb girdle muscular dystrophy undergoing lower abdominal surgeries as general anesthesia and volatile anesthetic agents are associated with increased risk of malignant hyperthermia and rhabdomyolysis.
Collapse
Affiliation(s)
- Sagar Devkota
- Department of Anesthesiology and Critical CareSindhuli HospitalSindhuliNepal
| | | | - Tara Gurung
- Department of AnesthesiologyPMWHKathmanduNepal
| | - Saurav Shrestha
- Department of Anesthesiology and Critical CareNepal APF HospitalKathmanduNepal
| |
Collapse
|
5
|
Audhya IF, Cheung A, Szabo SM, Flint E, Weihl CC, Gooch KL. Progression to Loss of Ambulation Among Patients with Autosomal Recessive Limb-girdle Muscular Dystrophy: A Systematic Review. J Neuromuscul Dis 2022; 9:477-492. [PMID: 35527561 PMCID: PMC9398075 DOI: 10.3233/jnd-210771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background The impact of age at autosomal recessive limb girdle muscular dystrophy (LGMDR) onset on progression to loss of ambulation (LOA) has not been well established, particularly by subtype. Objectives: To describe the characteristics of patients with adult-, late childhood-, and early childhood-onset LGMDR by subtype and characterize the frequency and timing of LOA. Methods: A systematic review was conducted in MEDLINE, Embase and the Cochrane library. Frequency and timing of LOA in patients with LGMDR1, LGMDR2/Miyoshi myopathy (MM), LGMDR3-6, LGMDR9, and LGMDR12 were synthesized from published data. Results: In 195 studies, 695 (43.4%) patients had adult-, 532 (33.2%) had late childhood-, and 376 (23.5%) had early childhood-onset of disease across subtypes among those with a reported age at onset (n = 1,603); distribution of age at onset varied between subtypes. Among patients with LOA (n = 228), adult-onset disease was uncommon in LGMDR3-6 (14%) and frequent in LGMDR2/MM (42%); LGMDR3-6 cases with LOA primarily had early childhood-onset (74%). Mean (standard deviation [SD]) time to LOA varied between subtypes and was shortest for patients with early childhood-onset LGMDR9 (12.0 [4.9] years, n = 19) and LGMDR3-6 (12.3 [10.7], n = 56) and longest for those with late childhood-onset LGMDR2/MM (21.4 [11.5], n = 36). Conclusions: This review illustrated that patients with early childhood-onset disease tend to have faster progression to LOA than those with late childhood- or adult-onset disease, particularly in LGMDR9. These findings provide a greater understanding of progression to LOA by LGMDR subtype, which may help inform clinical trial design and provide a basis for natural history studies.
Collapse
Affiliation(s)
| | | | | | - Emma Flint
- Broadstreet HEOR, Vancouver, BC, V6A 1A4 Canada
| | - Conrad C Weihl
- Washington University School of Medicine, St.Louis, MO, USA
| | | |
Collapse
|
6
|
Muriel J, Lukyanenko V, Kwiatkowski T, Bhattacharya S, Garman D, Weisleder N, Bloch RJ. The C2 domains of dysferlin: roles in membrane localization, Ca 2+ signalling and sarcolemmal repair. J Physiol 2022; 600:1953-1968. [PMID: 35156706 PMCID: PMC9285653 DOI: 10.1113/jp282648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 11/08/2022] Open
Abstract
Dysferlin is an integral membrane protein of the transverse tubules of skeletal muscle that is mutated or absent in limb girdle muscular dystrophy 2B and Miyoshi myopathy. Here we examine the role of dysferlin's seven C2 domains, C2A through C2G, in membrane repair and Ca2+ release, as well as in targeting dysferlin to the transverse tubules of skeletal muscle. We report that deletion of either domain C2A or C2B inhibits membrane repair completely, whereas deletion of C2C, C2D, C2E, C2F or C2G causes partial loss of membrane repair that is exacerbated in the absence of extracellular Ca2+ . Deletion of C2C, C2D, C2E, C2F or C2G also causes significant changes in Ca2+ release, measured as the amplitude of the Ca2+ transient before or after hypo-osmotic shock and the appearance of Ca2+ waves. Most deletants accumulate in endoplasmic reticulum. Only the C2A domain can be deleted without affecting dysferlin trafficking to transverse tubules, but Dysf-ΔC2A fails to support normal Ca2+ signalling after hypo-osmotic shock. Our data suggest that (i) every C2 domain contributes to repair; (ii) all C2 domains except C2B regulate Ca2+ signalling; (iii) transverse tubule localization is insufficient for normal Ca2+ signalling; and (iv) Ca2+ dependence of repair is mediated by C2C through C2G. Thus, dysferlin's C2 domains have distinct functions in Ca2+ signalling and sarcolemmal membrane repair and may play distinct roles in skeletal muscle. KEY POINTS: Dysferlin, a transmembrane protein containing seven C2 domains, C2A through C2G, concentrates in transverse tubules of skeletal muscle, where it stabilizes voltage-induced Ca2+ transients and participates in sarcolemmal membrane repair. Each of dysferlin's C2 domains except C2B regulate Ca2+ signalling. Localization of dysferlin variants to the transverse tubules is not sufficient to support normal Ca2+ signalling or membrane repair. Each of dysferlin's C2 domains contributes to sarcolemmal membrane repair. The Ca2+ dependence of membrane repair is mediated by C2C through C2G. Dysferlin's C2 domains therefore have distinct functions in Ca2+ signalling and sarcolemmal membrane repair.
Collapse
Affiliation(s)
- Joaquin Muriel
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Valeriy Lukyanenko
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tom Kwiatkowski
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Daniel Garman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State College of Medicine, Columbus, OH, USA
| | - Robert J Bloch
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Ondek K, Nasirishargh A, Dayton JR, Nuño MA, Cruz-Orengo L. Strain and sex differences in somatosensation and sociability during experimental autoimmune encephalomyelitis. Brain Behav Immun Health 2021; 14:100262. [PMID: 34589768 PMCID: PMC8474462 DOI: 10.1016/j.bbih.2021.100262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 12/01/2022] Open
Abstract
Multiple Sclerosis (MS) is an immune-mediated disease that results in major locomotor deficits. However, recent studies have revealed that fatigue, slow processing speed, and memory impairment are the top variables impacting employment status for MS patients. These suggest that cognitive effects may have a greater impact on productivity, lifestyle, and quality of life than do disease-related motor deficits. However, these debilitating non-locomotive effects have been largely overlooked in rodent models of the disease, such as experimental autoimmune encephalomyelitis (EAE). We hypothesized that murine EAE can also be used to assess non-locomotive dysfunctions (mood, sociability, muscle strength, and balance), as well as potential biases in these dysfunctions due to sex and/or strain. We actively immunized male and female C57BL/6 (B6) and SJL mice for EAE and evaluated their performance on the Deacon's weight grip test, Kondziela's inverted screen test, Hall's rope grip test, manual von Frey test for somatic nociception, and a three-chamber social preference paradigm. We hypothesized that EAE progression is associated with changes in muscle strength, balance, pain, and sociability and that these variations are linked to sex and/or strain. Our results indicate that strain but not sex influenced differences in muscle strength and balance during EAE, and both sex and strain have an impact on mechanical nociception, regardless of EAE disease status. Furthermore, both sex and strain had complex effects on differences in sociability. In conclusion, testing these additional modalities during EAE helps to unveil other signs and symptoms that could be used to determine the efficacy of a drug or treatment in the modulation of a MS-like behavior.
Collapse
Affiliation(s)
- Katelynn Ondek
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Aida Nasirishargh
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Jacquelyn R. Dayton
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Miriam A. Nuño
- University of California, Davis. Department of Public Health, Division of Biostatistics, School of Medicine, Public Health/Medical Sciences Bldg. 1-C, Davis, CA 95616, USA
| | - Lillian Cruz-Orengo
- University of California, Davis. Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| |
Collapse
|
8
|
Peng LS, Li ZM, Chen G, Liu FY, Luo Y, Guo JB, Gao GD, Deng YH, Xu LX, Zhou JY, Zou Y. Frequent DYSF rare variants/mutations in 152 Han Chinese samples with ovarian endometriosis. Arch Gynecol Obstet 2021; 304:671-677. [PMID: 33987686 DOI: 10.1007/s00404-021-06094-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Endometriosis is a common chronic gynecological disease greatly affecting women health. Prior studies have implicated that dysferlin (DYSF) aberration might be involved in the pathogenesis of ovarian endometriosis. In the present study, we explore the potential presence of DYSF mutations in a total of 152 Han Chinese samples with ovarian endometriosis. METHODS We analyze the potential presence of DYSF mutations by direct DNA sequencing. RESULTS A total of seven rare variants/mutations in the DYSF gene in 10 out of 152 samples (6.6%) were identified, including 5 rare variants and 2 novel mutations. For the 5 rare variants, p.R334W and p.G941S existed in 2 samples, p.R865W, p.R1173H and p.G1531S existed in single sample, respectively; for the two novel mutations, p.W352* and p.I1642F, they were identified in three patients. These rare variants/mutations were absent or existed at extremely low frequency either in our 1006 local control women without endometriosis, or in the China Metabolic Analytics Project (ChinaMAP) and Genome Aggregation Database (gnomAD) databases. Evolutionary conservation analysis results suggested that all of these rare variants/mutations were evolutionarily conserved among 11 vertebrate species from Human to Fox. Furthermore, in silico analysis results suggested these rare variants/mutations were disease-causing. Nevertheless, we find no significant association between DYSF rare variants/mutations and the clinical features in our patients. To our knowledge, this is the first report revealing frequent DYSF mutations in ovarian endometriosis. CONCLUSION We identified a high frequency of DYSF rare variants/mutations in ovarian endometriosis for the first time. This study suggests a new correlation between DYSF rare variants/mutations and ovarian endometriosis, implicating DYSF rare variants/mutations might be positively involved in the pathogenesis of ovarian endometriosis.
Collapse
Affiliation(s)
- Li-Sha Peng
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zeng-Ming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ge Chen
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fa-Ying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yong Luo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jiu-Bai Guo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Guo-Dong Gao
- Department of Clinical Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Ying-Hui Deng
- Department of Pathology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Li-Xian Xu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jiang-Yan Zhou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China. .,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, No 318 Bayi Avenue, Nanchang, 330006, Jiangxi, People's Republic of China. .,Central Lab, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
9
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
10
|
The correlation of clinical evaluation with life quality and mental status in a Chinese cohort with dysferlinopathy. J Clin Neurosci 2020; 81:259-264. [DOI: 10.1016/j.jocn.2020.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/22/2020] [Accepted: 09/28/2020] [Indexed: 11/19/2022]
|
11
|
Aldosari KH, Al-Ghamdi S, Alkhathlan KM, Alkhalidi HM. Phenotypic and genotypic analysis of limb-Girdle muscular dystrophy type 2B. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2020; 25:214-217. [PMID: 32683403 PMCID: PMC8015473 DOI: 10.17712/nsj.2020.3.20200002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dysferlinopathies are rare autosomal recessive muscular dystrophies caused by mutation in the dysferlin (DYSF) gene, resulting in varied phenotype. In this case report, we review a 26-year-old diabetic male patient who presented to hospital suffering from progressive muscle weakness. We confirmed the diagnosis of dysferlinopathy with phenotype of limb girdle muscular dystrophy, followed by a muscle biopsy, immunohistochemistry and a molecular technique, exome sequencing. The specific homozygous mutations in DYSF and heterozygous mutation PSAP genes identified in the present case of LGMD-2B are found in the Saudi population. Received 10th March 2020. Accepted 25th April 2020.
Collapse
Affiliation(s)
- Khalid H Aldosari
- College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | | | | | | |
Collapse
|
12
|
Novel splicing dysferlin mutation causing myopathy with intra-familial heterogeneity. Mol Biol Rep 2020; 47:5755-5761. [PMID: 32666437 DOI: 10.1007/s11033-020-05643-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Dysferlinopathies belong to the heterogeneous group of autosomal recessive muscular disorders, caused by mutations in the dysferlin gene and characterized by a high degree of clinical variability even though within the same family. This study aims to describe three cases, belonging to a consanguineous Tunisian family, sharing a new splicing mutation in the dysferlin gene and presenting intra-familial variability of dysferlinopathies: Proximal-distal weakness and distal myopathy with anterior tibial onset. We performed the next generation sequencing for mutation screening and reverse transcriptase-PCR for gene expression analysis. Routine muscle histology was used for muscle biopsy processing. The clinical presentation demonstrated heterogeneous phenotypes between the three cases: Two presented intermediate phenotypes of dysferlinopathy with proximal-distal weakness and the third had a distal myopathy with anterior tibial onset. Genetic analysis yielded a homozygous splicing mutation (c.4597-2A>G) in the dysferlin gene, giving rise to the suppression of 28 bp of the exon 43. The splicing mutation found in our family (c.4597-2A>G) is responsible for the suppression of 28 bp of the exon 43 and a wide clinical intra-familial variability.
Collapse
|
13
|
Myofibers deficient in connexins 43 and 45 expression protect mice from skeletal muscle and systemic dysfunction promoted by a dysferlin mutation. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165800. [PMID: 32305450 DOI: 10.1016/j.bbadis.2020.165800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 11/23/2022]
Abstract
Dysferlinopathy is a genetic human disease caused by mutations in the gene that encodes the dysferlin protein (DYSF). Dysferlin is believed to play a relevant role in cell membrane repair. However, in dysferlin-deficient (blAJ) mice (a model of dysferlinopathies) the recovery of the membrane resealing function by means of the expression of a mini-dysferlin does not arrest progressive muscular damage, suggesting the participation of other unknown pathogenic mechanisms. Here, we show that proteins called connexins 39, 43 and 45 (Cx39, Cx43 and Cx45, respectively) are expressed by blAJ myofibers and form functional hemichannels (Cx HCs) in the sarcolemma. At rest, Cx HCs increased the sarcolemma permeability to small molecules and the intracellular Ca2+ signal. In addition, skeletal muscles of blAJ mice showed lipid accumulation and lack of dysferlin immunoreactivity. As sign of extensive damage and atrophy, muscles of blAJ mice presented elevated numbers of myofibers with internal nuclei, increased number of myofibers with reduced cross-sectional area and elevated creatine kinase activity in serum. In agreement with the extense muscle damage, mice also showed significantly low motor performance. We generated blAJ mice with myofibers deficient in Cx43 and Cx45 expression and found that all above muscle and systemic alterations were absent, indicating that these two Cxs play a critical role in a novel pathogenic mechanism of dysfernolophaties, which is discussed herein. Therefore, Cx HCs could constitute an attractive target for pharmacologic treatment of dyferlinopathies.
Collapse
|
14
|
Barzilai-Tutsch H, Genin O, Pines M, Halevy O. Early pathological signs in young dysf -/- mice are improved by halofuginone. Neuromuscul Disord 2020; 30:472-482. [PMID: 32451154 DOI: 10.1016/j.nmd.2020.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 01/09/2023]
Abstract
Dysferlinopathies are a non-lethal group of late-onset muscular dystrophies. Here, we evaluated the fusion ability of primary myoblasts from young dysf-/- mice and the muscle histopathology prior to, and during early stages of disease onset. The ability of primary myoblasts of 5-week-old dysf-/- mice to form large myotubes was delayed compared to their wild-type counterparts, as evaluated by scanning electron microscopy. However, their fusion activity, as reflected by the presence of actin filaments connecting several cells, was enhanced by the antifibrotic drug halofuginone. Early dystrophic signs were already apparent in 4-week-old dysf-/- mice; their collagen level was double that in wild-type mice and continued to rise until 5 months of age. Continuous treatment with halofuginone from 4 weeks to 5 months of age reduced muscle fibrosis in a phosphorylated-Smad3 inhibition-related manner. Halofuginone also enhanced myofiber hypertrophy, reduced the percentage of centrally nucleated myofibers, and increased muscle performance. Together, the data suggest an inhibitory effect of halofuginone on the muscle histopathology at very early stages of dysferlinopathy, and enhancement of muscle performance. These results offer new opportunities for early pharmaceutical treatment in dysferlinopathies with favorable outcomes at later stages of life.
Collapse
Affiliation(s)
- Hila Barzilai-Tutsch
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel
| | - Olga Genin
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Mark Pines
- Institute of Animal Science, the Volcani Center, Bet Dagan 52505, Israel
| | - Orna Halevy
- Department of Animal Sciences, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Anesthetic management of a patient with limb-girdle muscular dystrophy 2B:CARE-compliant case report and literature review. BMC Anesthesiol 2019; 19:155. [PMID: 31421689 PMCID: PMC6698341 DOI: 10.1186/s12871-019-0813-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022] Open
Abstract
Background Limb-girdle muscular dystrophies (LGMDs) belong to few neuromuscular disorders mainly involving pelvic and shoulder girdle muscles. Also, cardiac or pulmonary complications, increased rhabdomyolysis risk when exposed to volatile anesthetics and succinylcholine may increase anesthesia related risks. However, current reports about the anesthesia management of these patients are limited. Case presentation We described our anesthetic management of a 36 years old woman with LGMD 2B receiving arthroscopic knee surgery. In consideration of the high risk of rhabdomyolysis, total intravenous anesthesia (TIVA) was selected for her surgery. Considering the unpredictable respiratory depression, opioid based patient-controlled intravenous analgesia was replaced with an intra-articular cocktail therapy consisting of 20 ml of 0.2% ropivacaine. Also, we reviewed the literatures on anesthetic management of LGMD through searching PubMed, in order to provide a comprehensive and safe guidance for the surgery. Conclusions Carefully conducted general anesthesia with TIVA technique is a good choice for LGMD patients. Neuraxial anesthesia may be used if general anesthesia needs to be avoided. To warrant safe anesthesia for surgery, any decision must be well thought out during perioperative period.
Collapse
|
16
|
Taghizadeh E, Rezaee M, Barreto GE, Sahebkar A. Prevalence, pathological mechanisms, and genetic basis of limb-girdle muscular dystrophies: A review. J Cell Physiol 2018; 234:7874-7884. [PMID: 30536378 DOI: 10.1002/jcp.27907] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
Limb-girdle muscular dystrophies (LGMDs) are a highly heterogeneous group of neuromuscular disorders that are associated with weakness and wasting of muscles in legs and arms. Signs and symptoms may begin at any age and usually worsen by time. LGMDs are autosomal disorders with different types and their prevalence is not the same in different areas. New technologies such as next-generation sequencing can accelerate their diagnosis. Several important pathological mechanisms that are involved in the pathology of the LGMD include abnormalities in dystrophin-glycoprotein complex, the sarcomere, glycosylation of dystroglycan, vesicle and molecular trafficking, signal transduction pathways, and nuclear functions. Here, we provide a comprehensive review that integrates LGMD clinical manifestations, prevalence, and some pathological mechanisms involved in LGMDs.
Collapse
Affiliation(s)
- Eskandar Taghizadeh
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Medical Genetics, Faculity of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | - Mehdi Rezaee
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá D.C, Colombia.,Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Science, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Science, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
17
|
Isackson PJ, Wang J, Zia M, Spurgeon P, Levesque A, Bard J, James S, Nowak N, Lee TK, Vladutiu GD. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 2018; 19:1235-1249. [PMID: 30325262 PMCID: PMC6563124 DOI: 10.2217/pgs-2018-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/31/2018] [Indexed: 11/21/2022] Open
Abstract
AIM To examine the genetic differences between subjects with statin-associated muscle symptoms and statin-tolerant controls. MATERIALS & METHODS Next-generation sequencing was used to characterize the exomes of 76 subjects with severe statin-associated muscle symptoms and 50 statin-tolerant controls. RESULTS 12 probably pathogenic variants were found within the RYR1 and CACNA1S genes in 16% of cases with severe statin-induced myopathy representing a fourfold increase over variants found in statin-tolerant controls. Subjects with probably pathogenic RYR1 or CACNA1S variants had plasma CK 5X to more than 400X the upper limit of normal in addition to having muscle symptoms. CONCLUSIONS Genetic variants within the RYR1 and CACNA1S genes are likely to be a major contributor to the susceptibility to statin-associated muscle symptoms.
Collapse
Affiliation(s)
- Paul J Isackson
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Jianxin Wang
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Mohammad Zia
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Paul Spurgeon
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Adrian Levesque
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Jonathan Bard
- Center for Computational Research, State University of New York at Buffalo, NY 14203, USA
| | - Smitha James
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Norma Nowak
- New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Biochemistry, Jacobs School of Medicine & Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tae Keun Lee
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
| | - Georgirene D Vladutiu
- Department of Pediatrics, State University of New York at Buffalo, NY 14203, USA
- Departments of Neurology & Pathology & Anatomical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
18
|
Xu C, Chen J, Zhang Y, Li J. Limb-girdle muscular dystrophy type 2B misdiagnosed as polymyositis at the early stage: Case report and literature review. Medicine (Baltimore) 2018; 97:e10539. [PMID: 29794729 PMCID: PMC6392577 DOI: 10.1097/md.0000000000010539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Dysferlin myopathy is an autosomal recessive hereditary muscular dystrophy due to deficiency of dysferlin caused by alteration of the DYSF gene; Limb-girdle muscular dystrophy type 2B (LGMD2B) is the most common in Its clinical phenotypes. However, LGMD2B is rarely seen in clinical cases and may initially present as weakness of proximalpelvis muscles and muscles in the posterior compartments of thighs,which will then cause difficulty in running and limping during walking. Laboratory tests at an early stage of the disease often indicate an increased level of serum creatine kinase (CK). Moreover, polymyositis (PM) is manifested as symmetrical proximal muscle weakness of the four limbs, accompanied by an increased level of serum CK. Thus, both are very difficult to identify in clinical practice. PATIENT CONCERNS A 25-year-old woman was admitted to our department as the limb weakness progressively worsened. She began to experience proximal muscle weakness of both lower limbs without obvious inducement, which markedly increased when she climbed the stairs or stood up after squatting. Then her symptoms worsened, with difficulty in proximal and distal lifting of the lower extremities. DIAGNOSES Through combined immunohistochemistry and Western-blot analysis, The patient was diagnosed with LGMD2B. INTERVENTIONS There were symptomatic treatments such as coenzyme Q10. OUTCOMES After symptomatic treatments, the patient's symptoms were obviously relieved, and the CK level decreased. LESSONS Through this case, we found that combined application of immunohistochemistry and Western-blot analysis is helpful in early diagnosis of LGMD2B, and a new site of frame-shift mutation in the patient's DYSF gene was found.
Collapse
|
19
|
Dong X, Gao X, Dai Y, Ran N, Yin H. Serum exosomes can restore cellular function in vitro and be used for diagnosis in dysferlinopathy. Am J Cancer Res 2018; 8:1243-1255. [PMID: 29507617 PMCID: PMC5835933 DOI: 10.7150/thno.22856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 11/10/2022] Open
Abstract
Purpose: It is challenging to deliver the full-length dysferlin gene or protein to restore cellular functions of dysferlin-deficient (DYSF-/-) myofibres in dysferlinopathy, a disease caused by the absence of dysferlin, which is currently without effective treatment. Exosomes, efficient membranous nanoscale carriers of biological cargoes, could be useful. Experimental design: Myotube- and human serum-derived exosomes were investigated for their capabilities of restoring dysferlin protein and cellular functions in murine and human DYSF-/- cells. Moreover, dysferlinopathic patient serum- and urine-derived exosomes were assessed for their abilities as diagnostic tools for dysferlinopathy. Results: Here we show that exosomes from dysferlin-expressing myotubes carry abundant dysferlin and enable transfer of full-length dysferlin protein to DYSF-/- myotubes. Exogenous dysferlin correctly localizes on DYSF-/- myotube membranes, enabling membrane resealing in response to injury. Human serum exosomes also carry dysferlin protein and improve membrane repair capabilities of human DYSF-/- myotubes irrespective of mutations. Lack of dysferlin in dysferlinopathic patient serum and urine exosomes enables differentiation between healthy controls and dysferlinopathic patients. Conclusions: Our findings provide evidence that exosomes are efficient carriers of dysferlin and can be employed for the treatment and non-invasive diagnosis of dysferlinopathy.
Collapse
|
20
|
An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol 2018; 1828:31-55. [PMID: 30171533 DOI: 10.1007/978-1-4939-8651-4_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Exon skipping is a therapeutic approach that is feasible for various genetic diseases and has been studied and developed for over two decades. This approach uses antisense oligonucleotides (AON) to modify the splicing of pre-mRNA to correct the mutation responsible for a disease, or to suppress a particular gene expression, as in allergic diseases. Antisense-mediated exon skipping is most extensively studied in Duchenne muscular dystrophy (DMD) and has developed from in vitro proof-of-concept studies to clinical trials targeting various single exons such as exon 45 (casimersen), exon 53 (NS-065/NCNP-01, golodirsen), and exon 51 (eteplirsen). Eteplirsen (brand name Exondys 51), is the first approved antisense therapy for DMD in the USA, and provides a treatment option for ~14% of all DMD patients, who are amenable to exon 51 skipping. Eteplirsen is granted accelerated approval and marketing authorization by the US Food and Drug Administration (FDA), on the condition that additional postapproval trials show clinical benefit. Permanent exon skipping achieved at the DNA level using clustered regularly interspaced short palindromic repeats (CRISPR) technology holds promise in current preclinical trials for DMD. In hopes of achieving clinical success parallel to DMD, exon skipping and splice modulation are also being studied in other muscular dystrophies, such as Fukuyama congenital muscular dystrophy (FCMD), dysferlinopathy including limb-girdle muscular dystrophy type 2B (LGMD2B), Miyoshi myopathy (MM), and distal anterior compartment myopathy (DMAT), myotonic dystrophy, and merosin-deficient congenital muscular dystrophy type 1A (MDC1A). This chapter also summarizes the development of antisense-mediated exon skipping therapy in diseases such as Usher syndrome, dystrophic epidermolysis bullosa, fibrodysplasia ossificans progressiva (FOP), and allergic diseases.
Collapse
|
21
|
Ullah MI, Ahmad A, Zarkovic M, Shah SS, Nasir A, Mahmood S, Ahmad W, Hubner CA, Hassan MJ. Novel duplication mutation of the DYSF gene in a Pakistani family with Miyoshi Myopathy. Saudi Med J 2017; 38:1190-1195. [PMID: 29209666 PMCID: PMC5787628 DOI: 10.15537/smj.2017.12.20989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To identify the underlying gene mutation in a large consanguineous Pakistani family. Methods: This is an observational descriptive study carried out at the Department of Biochemistry, Shifa International Hospital, Quaid-i-Azam University, and Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan from 2013-2016. Genomic DNA of all recruited family members was extracted and the Trusight one sequencing panel was used to assess genes associated with a neuro-muscular phenotype. Comparative modeling of mutated and wild-type protein was carried out by PyMOL tool. Results: Clinical investigations of an affected individual showed typical features of Miyoshi myopathy (MM) like elevated serum creatine kinase (CK) levels, distal muscle weakness, myopathic changes in electromyography (EMG) and muscle histopathology. Sequencing with the Ilumina Trusight one sequencing panel revealed a novel 22 nucleotide duplication (CTTCAACTTGTTTGACTCTCCT) in the DYSF gene (NM_001130987.1_c.897-918dup; p.Gly307Leufs5X), which results in a truncating frameshift mutation and perfectly segregated with the disease in this family. Protein modeling studies suggested a disruption in spatial configuration of the putative mutant protein. Conclusion: A novel duplication of 22 bases (c.897_918dup; p.Gly307Leufs5X) in the DYSF gene was identified in a family suffering from Miyoshi myopathy. Protein homology analysis proposes a disruptive impact of this mutation on protein function.
Collapse
Affiliation(s)
- Muhammad I Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Lahore, Pakistan. E-mail.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
McElhanon KE, Bhattacharya S. Altered membrane integrity in the progression of muscle diseases. Life Sci 2017; 192:166-172. [PMID: 29183798 DOI: 10.1016/j.lfs.2017.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/12/2017] [Accepted: 11/22/2017] [Indexed: 12/27/2022]
Abstract
Sarcolemmal integrity is orchestrated through the interplay of preserving membrane strength and fast tracking the membrane repair process during an event of compromised membrane fragility. Several molecular players have been identified that act in a concerted fashion to maintain the barrier function of the muscle membrane. Substantial research findings in the field of muscle biology point out the importance of maintaining membrane integrity as a key contributory factor to cellular homeostasis. Innumerable data on the progression of membrane pathology associated with compromised muscle membrane integrity support targeting sarcolemmal integrity in skeletal and cardiac muscle as a model therapeutic strategy to alleviate some of the pathologic conditions. This review will discuss strategies that researchers have undertaken to compensate for an imbalance in sarcolemma membrane fragility and membrane repair to maintain muscle membrane integrity.
Collapse
Affiliation(s)
- Kevin E McElhanon
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave, Columbus, OH 43210-1252, United States
| | - Sayak Bhattacharya
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 473 W. 12th Ave, Columbus, OH 43210-1252, United States.
| |
Collapse
|