1
|
Huang N, Murtaza G, Wang L, Luan J, Wang X, Sun Y, Wu X, Tao Y, Shi S, Cao P, Qiao Y, Han D, Kou J, Ma N, Gao X. Chrm3 protects against acinar cell necrosis by stabilizing caspase-8 expression in severe acute pancreatitis mice model. J Cell Biochem 2019; 121:2618-2631. [PMID: 31692054 DOI: 10.1002/jcb.29483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022]
Abstract
Acinar cells in acute pancreatitis (AP) die through apoptosis and necrosis, the impacts of which are quite different. Early clinical interference strategies on preventing the progress of AP to severe acute pancreatitis (SAP) are the elimination of inflammation response and inhibition of necrosis. Muscarinic acetylcholine receptor M3 was encoded by Chrm3 gene. It is one of the best-characterized receptors of pancreatic β cells and regulates insulin secretion, but its function in AP remains unclear. In this study, we explored the function of Chrm3 gene in the regulation of cell death in l-arginine-induced SAP animal models. We found that Chrm3 was upregulated in pancreatitis, and we further confirmed the localization of Chrm3 resided in both pancreatic islets and acinar cell membranes. The reduction of Chrm3 decreased the pathological lesion of SAP and reduced amylase activities in serum. Consistently, Chrm3 can suppress acinar cells necrosis markedly, but has no effect on regulating apoptosis after l-arginine treatment. It was shown that Chrm3 attenuated acinar cells necrosis at least in part by stabilizing caspase-8. Thus, this study indicates that Chrm3 is critical participants in SAP, and regulation of Chrm3 expression might be a useful therapeutic strategy for preventing pathologic necrosis.
Collapse
Affiliation(s)
- Ning Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Ghulam Murtaza
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Lujing Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Jing Luan
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xinlei Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yumiao Sun
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Xing Wu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yuxi Tao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Shuoxi Shi
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Peihua Cao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Dong Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China.,Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, China.,Translational Medicine Center of Northern China, Harbin, China.,Heilongjiang Provincial Key Laboratory of Genetically Modified Model Animal, Harbin Medical University, Harbin, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
2
|
Wittel UA, Momi N, Seifert G, Wiech T, Hopt UT, Batra SK. The pathobiological impact of cigarette smoke on pancreatic cancer development (review). Int J Oncol 2012; 41:5-14. [PMID: 22446714 PMCID: PMC3589138 DOI: 10.3892/ijo.2012.1414] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/25/2012] [Indexed: 12/13/2022] Open
Abstract
Despite extensive efforts, pancreatic cancer remains incurable. Most risk factors, such as genetic disposition, metabolic diseases or chronic pancreatitis cannot be influenced. By contrast, cigarette smoking, an important risk factor for pancreatic cancer, can be controlled. Despite the epidemiological evidence of the detrimental effects of cigarette smoking with regard to pancreatic cancer development and its unique property of being influenceable, our understanding of cigarette smoke-induced pancreatic carcinogenesis is limited. Current data on cigarette smoke-induced pancreatic carcinogenesis indicate multifactorial events that are triggered by nicotine, which is the major pharmacologically active constituent of tobacco smoke. In addition to nicotine, a vast number of carcinogens have the potential to reach the pancreatic gland, where they are metabolized, in some instances to even more toxic compounds. These metabolic events are not restricted to pancreatic ductal cells. Several studies show that acinar cells are also greatly affected. Furthermore, pancreatic cancer progenitor cells do not only derive from the ductal epithelial lineage, but also from acinar cells. This sheds new light on cigarette smoke-induced acinar cell damage. On this background, our objective is to outline a multifactorial model of tobacco smoke-induced pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Uwe A Wittel
- Department of General- and Visceral Surgery, Universitätsklinik Freiburg, Freiburg, Germany.
| | | | | | | | | | | |
Collapse
|
3
|
Peraza-Cruces K, Gutiérrez-Guédez L, Castañeda Perozo D, Lankford CR, Rodríguez-Bonfante C, Bonfante-Cabarcas R. Trypanosoma cruzi infection induces up-regulation of cardiac muscarinic acetylcholine receptors in vivo and in vitro. Braz J Med Biol Res 2009; 41:796-803. [PMID: 18820770 DOI: 10.1590/s0100-879x2008000900009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 08/27/2008] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of chagasic cardiomyopathy is not completely understood, but it has been correlated with parasympathetic denervation (neurogenic theory) and inflammatory activity (immunogenic theory) that could affect heart muscarinic acetylcholine receptor (mAChR) expression. In order to further understand whether neurogenic and/or immunogenic alterations are related to changes in mAChR expression, we studied two models of Trypanosoma cruzi infection: 1) in 3-week-old male Sprague Dawley rats chronically infected with T. cruzi and 2) isolated primary cardiomyocytes co-cultured with T. cruzi and peripheral blood mononuclear cells (PBMC). Using [3H]-quinuclidinylbenzilate ([3H]-QNB) binding assays, we evaluated mAChR expression in homogenates from selected cardiac regions, PBMC, and cultured cardiomyocytes. We also determined in vitro protein expression and pro-inflammatory cytokine expression in serum and cell culture medium by ELISA. Our results showed that: 1) mAChR were significantly (P < 0.05) up-regulated in right ventricular myocardium (means +/- SEM; control: 58.69 +/- 5.54, N = 29; Chagas: 72.29 +/- 5.79 fmol/mg, N = 34) and PBMC (control: 12.88 +/- 2.45, N = 18; Chagas: 20.22 +/- 1.82 fmol/mg, N = 19), as well as in cardiomyocyte transmembranes cultured with either PBMC/T. cruzi co-cultures (control: 24.33 +/- 3.83; Chagas: 43.62 +/- 5.08 fmol/mg, N = 7 for both) or their conditioned medium (control: 37.84 +/- 3.84, N = 4; Chagas: 54.38 +/- 6.28 fmol/mg, N = 20); 2) [(3)H]-leucine uptake was increased in cardiomyocytes co-cultured with PBMC/T. cruzi-conditioned medium (Chagas: 21,030 +/- 2321; control 10,940 +/- 2385 dpm, N = 7 for both; P < 0.05); 3) plasma IL-6 was increased in chagasic rats, IL-1beta, was increased in both plasma of chagasic rats and in the culture medium, and TNF-alpha level was decreased in the culture medium. In conclusion, our results suggest that cytokines are involved in the up-regulation of mAChR in chronic Chagas disease.
Collapse
Affiliation(s)
- K Peraza-Cruces
- Unidad de Bioquímica, Universidad Centro Occidental "Lisandro Alvarado", Barquisimeto, Venezuela
| | | | | | | | | | | |
Collapse
|
4
|
Samuel I, Tephly L, Williard DE, Carter AB. Enteral exclusion increases MAP kinase activation and cytokine production in a model of gallstone pancreatitis. Pancreatology 2008; 8:6-14. [PMID: 18235211 PMCID: PMC2829292 DOI: 10.1159/000114850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/06/2007] [Indexed: 12/11/2022]
Abstract
BACKGROUND We have previously demonstrated that enteral exclusion augments pancreatic p38 mitogen-activated protein (MAP) kinase activation and tumor necrosis factor-alpha (TNF-alpha) production after bile-pancreatic duct ligation in rats. METHODS In the present study, we evaluated c-Jun NH(2)-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) activation, and cytokine production, in pancreata of duct-ligated rats with and without duodenal bile-pancreatic juice replacement from a donor rat. We hypothesized that enteral exclusion of bile-pancreatic juice activates stress kinases and induces cytokine production in ligation-induced acute pancreatitis. RESULTS Increased JNK and ERK activation after ligation are inhibited by bile-pancreatic juice replacement. Increases in pancreatic production of IL-1beta and IL-12 after ligation are significantly subdued by replacement. In additional in vitro studies, we show that cholecystokinin- or TNF-alpha-stimulated nuclear transcription factor kappa-B activation in AR42J cells is inhibited by dominant negative ERK2. CONCLUSIONS Our novel findings using our Donor Rat Model indicate that bile-pancreatic juice exclusion induces MAP kinase activation and exacerbates cell stress and inflammation in this experimental model of gallstone pancreatitis. and IAP.
Collapse
Affiliation(s)
- Isaac Samuel
- Department of Surgery, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|