1
|
Stewart DC, Brisson BK, Dekky B, Berger AC, Yen W, Mauldin EA, Loebel C, Gillette D, Assenmacher CA, Quincey C, Stefanovski D, Cristofanilli M, Cukierman E, Burdick JA, Borges VF, Volk SW. Prognostic and therapeutic implications of tumor-restrictive type III collagen in the breast cancer microenvironment. NPJ Breast Cancer 2024; 10:86. [PMID: 39358397 PMCID: PMC11447064 DOI: 10.1038/s41523-024-00690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 09/03/2024] [Indexed: 10/04/2024] Open
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and bioinformatic experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in non-invasive and invasive breast cancer cell lines. In human triple-negative breast cancer biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in non-invasive compared to invasive regions. Similarly, bioinformatics analysis of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free, and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces the formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective therapeutic modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Becky K Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashton C Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Corisa Quincey
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Jason A Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Virginia F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan W Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Harbin Z, Sohutskay D, Vanderlaan E, Fontaine M, Mendenhall C, Fisher C, Voytik-Harbin S, Tepole AB. Computational mechanobiology model evaluating healing of postoperative cavities following breast-conserving surgery. Comput Biol Med 2023; 165:107342. [PMID: 37647782 PMCID: PMC10581740 DOI: 10.1016/j.compbiomed.2023.107342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide. Given high survivorship, increased focus has been placed on long-term treatment outcomes and patient quality of life. While breast-conserving surgery (BCS) is the preferred treatment strategy for early-stage breast cancer, anticipated healing and breast deformation (cosmetic) outcomes weigh heavily on surgeon and patient selection between BCS and more aggressive mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to predict, owing to the complexity of the tissue repair process and significant patient-to-patient variability. To overcome this challenge, we developed a predictive computational mechanobiological model that simulates breast healing and deformation following BCS. The coupled biochemical-biomechanical model incorporates multi-scale cell and tissue mechanics, including collagen deposition and remodeling, collagen-dependent cell migration and contractility, and tissue plastic deformation. Available human clinical data evaluating cavity contraction and histopathological data from an experimental porcine lumpectomy study were used for model calibration. The computational model was successfully fit to data by optimizing biochemical and mechanobiological parameters through Gaussian process surrogates. The calibrated model was then applied to define key mechanobiological parameters and relationships influencing healing and breast deformation outcomes. Variability in patient characteristics including cavity-to-breast volume percentage and breast composition were further evaluated to determine effects on cavity contraction and breast cosmetic outcomes, with simulation outcomes aligning well with previously reported human studies. The proposed model has the potential to assist surgeons and their patients in developing and discussing individualized treatment plans that lead to more satisfying post-surgical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Zachary Harbin
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - David Sohutskay
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA; Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emma Vanderlaan
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA; Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muira Fontaine
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Carly Mendenhall
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - Carla Fisher
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences Purdue University, West Lafayette, IN, USA
| | - Adrian Buganza Tepole
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA; Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Harbin Z, Sohutskay D, Vanderlaan E, Fontaine M, Mendenhall C, Fisher C, Voytik-Harbin S, Tepolea AB. Computational Mechanobiology Model Evaluating Healing of Postoperative Cavities Following Breast-Conserving Surgery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538467. [PMID: 37162899 PMCID: PMC10168325 DOI: 10.1101/2023.04.26.538467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer type worldwide. Given high survivorship, increased focus has been placed on long-term treatment outcomes and patient quality of life. While breast-conserving surgery (BCS) is the preferred treatment strategy for early-stage breast cancer, anticipated healing and breast deformation (cosmetic) outcomes weigh heavily on surgeon and patient selection between BCS and more aggressive mastectomy procedures. Unfortunately, surgical outcomes following BCS are difficult to predict, owing to the complexity of the tissue repair process and significant patient-to-patient variability. To overcome this challenge, we developed a predictive computational mechanobiological model that simulates breast healing and deformation following BCS. The coupled biochemical-biomechanical model incorporates multi-scale cell and tissue mechanics, including collagen deposition and remodeling, collagen-dependent cell migration and contractility, and tissue plastic deformation. Available human clinical data evaluating cavity contraction and histopathological data from an experimental porcine lumpectomy study were used for model calibration. The computational model was successfully fit to data by optimizing biochemical and mechanobiological parameters through the Gaussian Process. The calibrated model was then applied to define key mechanobiological parameters and relationships influencing healing and breast deformation outcomes. Variability in patient characteristics including cavity-to-breast volume percentage and breast composition were further evaluated to determine effects on cavity contraction and breast cosmetic outcomes, with simulation outcomes aligning well with previously reported human studies. The proposed model has the potential to assist surgeons and their patients in developing and discussing individualized treatment plans that lead to more satisfying post-surgical outcomes and improved quality of life.
Collapse
Affiliation(s)
- Zachary Harbin
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - David Sohutskay
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emma Vanderlaan
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Muira Fontaine
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| | - Carly Mendenhall
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
| | - Carla Fisher
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sherry Voytik-Harbin
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
- Department of Basic Medical Sciences Purdue University, West Lafayette, IN, USA
| | - Adrian Buganza Tepolea
- School of Mechanical Engineering Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Brisson BK, Dekky B, Berger AC, Mauldin EA, Loebel C, Yen W, Stewart DC, Gillette D, Assenmacher CA, Cukierman E, Burdick JA, Borges VF, Volk SW. Tumor-restrictive type III collagen in the breast cancer microenvironment: prognostic and therapeutic implications. RESEARCH SQUARE 2023:rs.3.rs-2631314. [PMID: 37090621 PMCID: PMC10120781 DOI: 10.21203/rs.3.rs-2631314/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Collagen plays a critical role in regulating breast cancer progression and therapeutic resistance. An improved understanding of both the features and drivers of tumor-permissive and -restrictive collagen matrices are critical to improve prognostication and develop more effective therapeutic strategies. In this study, using a combination of in vitro, in vivo and in silico experiments, we show that type III collagen (Col3) plays a tumor-restrictive role in human breast cancer. We demonstrate that Col3-deficient, human fibroblasts produce tumor-permissive collagen matrices that drive cell proliferation and suppress apoptosis in noninvasive and invasive breast cancer cell lines. In human TNBC biopsy samples, we demonstrate elevated deposition of Col3 relative to type I collagen (Col1) in noninvasive compared to invasive regions. Similarly, in silico analyses of over 1000 breast cancer patient biopsies from The Cancer Genome Atlas BRCA cohort revealed that patients with higher Col3:Col1 bulk tumor expression had improved overall, disease-free and progression-free survival relative to those with higher Col1:Col3 expression. Using an established 3D culture model, we show that Col3 increases spheroid formation and induces formation of lumen-like structures that resemble non-neoplastic mammary acini. Finally, our in vivo study shows co-injection of murine breast cancer cells (4T1) with rhCol3-supplemented hydrogels limits tumor growth and decreases pulmonary metastatic burden compared to controls. Taken together, these data collectively support a tumor-suppressive role for Col3 in human breast cancer and suggest that strategies that increase Col3 may provide a safe and effective modality to limit recurrence in breast cancer patients.
Collapse
Affiliation(s)
- Becky K. Brisson
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bassil Dekky
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashton C. Berger
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth A. Mauldin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claudia Loebel
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - William Yen
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel C. Stewart
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Deborah Gillette
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edna Cukierman
- Cancer Signaling and Microenvironment Program, The Martin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado, USA
| | - Virginia F. Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, Aurora, Colorado, USA
- Young Women’s Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan W. Volk
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
The efficacy of oxidized regenerated cellulose (SurgiGuard®) in breast cancer patients who undergo total mastectomy with node surgery: A prospective randomized study in 94 patients. PLoS One 2022; 17:e0267694. [PMID: 35622779 PMCID: PMC9140258 DOI: 10.1371/journal.pone.0267694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Background Seromas frequently develop in patients who undergo total mastectomy with node surgery. We aimed to prospectively explore whether use of oxidized regenerated cellulose (ORC, SurgiGuard®) affects seroma formation after total mastectomy with node surgery (sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND)). Materials and methods Ninety four breast cancer patients were enrolled in the study who underwent total mastectomy with ALND or SLNB. The patients were randomized into two groups, one treated with ORC plus closed suction drainage and the other with closed suction drainage alone. Results Mean drainage volume was slightly lower in the ORC group on postoperative day 1 (123 ± 54 vs 143 ± 104 ml), but was slightly higher at all other time points; however, these differences were not significant. Mean total drainage volume in patients treated with ORC plus drainage did not differ from that of patients treated with drainage alone (1134 ± 507 ml vs 1033 ± 643 ml, P = 0.486). Conclusions Use of ORC (SurgiGuard®) did not significantly alter the risk of seroma formation.
Collapse
|
6
|
OUP accepted manuscript. Br J Surg 2022; 109:466-467. [DOI: 10.1093/bjs/znac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/26/2021] [Indexed: 11/14/2022]
|
7
|
An J, Kwon H, Lim W, Moon BI, Paik NS. The Comparison of Breast Reconstruction Using Two Types of Acellular Dermal Matrix after Breast-Conserving Surgery. J Clin Med 2021; 10:jcm10153430. [PMID: 34362213 PMCID: PMC8347910 DOI: 10.3390/jcm10153430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Breast reconstruction during breast-conserving surgery (BCS) can improve the breast shape. This study introduces breast reconstruction in BCS with two types of acellular dermal matrix (ADM). The study included 134 patients who underwent BCS due to breast cancer from February 2018 to May 2021. This study was conducted by one surgeon, and is the result of a three-year study. The patient group who underwent BCS using ADM was mainly targeted at patients with minor to severe defects after the operation. The average age of the patients was 51.8 years, and the body mass index (BMI) was 23.8 kg/m. The specimen weight was 30–120 g. The average surgical time, including reconstruction, was 100.4 min, combined with reconstruction. There were minor complications in six patients. The advantage of using ADM is that it can quickly correct the shape of the breast after conventional BCS surgery. Pellet-type ADM, rather than sheet-type, can create a breast shape similar to that before surgery. Breast reconstruction using ADM can be an easy and convenient method for making a better shape from BCS.
Collapse
|
8
|
Transcutaneous Drug Delivery Systems Based on Collagen/Polyurethane Composites Reinforced with Cellulose. Polymers (Basel) 2021; 13:polym13111845. [PMID: 34199447 PMCID: PMC8199638 DOI: 10.3390/polym13111845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
Designing composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.37 to 186.5 kPa, while the elastic modulus increased from 0.828 to 1.928 MPa. The release of ketokonazole from the polymer matrix follows a Korsmeyer–Peppas type kinetics with a Fickian diffusion. All materials tested were shown to be active against pathogenic microorganisms. The mucoadhesiveness, bioadhesiveness, mechanical resistance, release kinetic, and antimicrobial activity make these biocomposites to be candidates as potential systems for controlled drug release.
Collapse
|
9
|
Li JJ, Yang Y, Wan Q, Li H, Long QM, Zhang PR. Clinical observation of the regeneration process of defects after breast cancer resection. BMC WOMENS HEALTH 2021; 21:99. [PMID: 33676505 PMCID: PMC7936498 DOI: 10.1186/s12905-021-01219-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/10/2021] [Indexed: 11/11/2022]
Abstract
Background The present study aims to use two different kinds of filling materials, oxidized regenerated cellulose and gelatin sponge, to repair defects of breast-conserving surgery due to breast cancer, and compare the clinical efficacy, cosmetic effect and complication rate among groups. Methods A total of 125 patients, who had breast -conserving surgery due to breast cancer, were enrolled into the present study. Postoperative efficacy was assessed by a doctor and patient, according to the Harvard/NSABP/RTOG Breast Cosmetic Grading Scale. Results Among these patients, 41 patients received conventional breast-conserving surgery, and 84 patients received breast-conserving surgery plus filling implantation (41 patients in the oxidized regenerated cellulose group and 43 patients in the gelatin sponge group). All patients had small to medium sized breasts (cup size A and B). The average weight of tumor tissues was 56.61 ± 11.57 g in the conventional breast-conserving surgery group, 58.41 ± 8.53 g in the oxidized regenerated cellulose group, and 58.77 ± 9.90 g in the gelatin sponge group. The difference in pathological factors, average operation time, length of stay and local infection rate was not statistically significant among the three groups. 18 patients in the oxidized regenerated cellulose group and 15 patients in the gelatin sponge group were evaluated to have a good cosmetic effect by the surgeon and patient, while 12 patients in the conventional breast-conserving surgery group were evaluated to be have good cosmetic effect by the surgeon and patient. The cosmetic effects in the oxidized regenerated cellulose group and gelatin sponge group were comparable, and these were superior to those in the conventional breast-conserving surgery group. Conclusion The use of oxidized regenerated cellulose and gelatin sponge is a feasible approach for defect repair after breast-conserving surgery.
Collapse
Affiliation(s)
- Jun-Jie Li
- Department of Breast Surgery, Sichuan Cancer Hospital, South Renmin Road Chengdu, No. 55, Section 4, Chengdu, 610041, Sichuan, China
| | - Ye Yang
- Department of Medical Oncology, Sichuan Cancer Hospital, Chengdu, 610041, Sichuan, China
| | - Qi Wan
- Jinjiang Maternity and Child Health Hospital, Chengdu, 610065, Sichuan, China
| | - Hui Li
- Department of Breast Surgery, Sichuan Cancer Hospital, South Renmin Road Chengdu, No. 55, Section 4, Chengdu, 610041, Sichuan, China
| | - Qi-Ming Long
- Department of Breast Surgery, Sichuan Cancer Hospital, South Renmin Road Chengdu, No. 55, Section 4, Chengdu, 610041, Sichuan, China
| | - Pu-Rong Zhang
- Department of Breast Surgery, Sichuan Cancer Hospital, South Renmin Road Chengdu, No. 55, Section 4, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
10
|
"Warning" to postoperative complications when using hemostatic agents! Acta Neurochir (Wien) 2019; 161:871-872. [PMID: 30824990 DOI: 10.1007/s00701-019-03863-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
|
11
|
Lee J, Jung JH, Kim WW, Yang JD, Lee JW, Li J, Park HY. Comparison of two different types of oxidized regenerated cellulose for partial breast defects. J Surg Res 2017. [PMID: 28624048 DOI: 10.1016/j.jss.2017.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND A defect after partial mastectomy, sometimes, is hard to be filled with patient's own breast tissue. Two different types of oxidized regenerated cellulose (ORC) for filling of partial defects in small-sized breasts were compared with respect to clinicopathologic factors and outcomes. METHODS A total of 45 patients with breast cancer underwent conventional partial mastectomy with insertion of an ORC filling material. The two filling materials used were a hemostasis-purposed ORC and adhesion barrier-purposed ORC. Clinical factors were compared between these two ORC materials. Both the surgeon and patient assessed the cosmetic outcomes using the Harvard/NSABP/RTOG Breast Cosmesis Grading Scale. RESULTS Partial mastectomy with filling material insertion technique was not inferior to partial mastectomy-only technique in many clinical aspects. And most of the clinicopathologic factors showed no significant difference between the two groups. However, the mean operation time was significantly shorter in the hemostasis-purposed ORC group (P = 0.027). In addition, the infection rate was significantly higher in the adhesion barrier-purposed ORC group (P = 0.040). CONCLUSIONS Reconstructive surgery using a hemostasis-purposed ORC was associated with a shorter operation time and lower incidence of postoperative infection than that using an adhesion barrier-purposed ORC. However, both types of ORC were feasible as filling compounds for partial defects of the breast.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jin Hyang Jung
- Department of Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Wan Wook Kim
- Department of Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jung Dug Yang
- Department of Plastic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jeong Woo Lee
- Department of Plastic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Junjie Li
- Department of Surgery, Sichuan Province Cancer Hospital, Chengdu, China
| | - Ho Yong Park
- Department of Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|