1
|
Wu Q, Li W, Kwok LY, Lv H, Sun J, Sun Z. Regional variation and adaptive evolution in Bifidobacterium pseudocatenulatum: Insights into genomic and functional diversity in human gut. Food Res Int 2024; 192:114840. [PMID: 39147525 DOI: 10.1016/j.foodres.2024.114840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
Bifidobacterium pseudocatenulatum is a prevalent gut microbe in humans of all ages and plays a crucial role in host health. However, its adaptive evolutionary characteristics remain poorly understood. This study analyzed the genome of 247 B. pseudocatenulatum isolates from Chinese, Vietnamese, Japanese and other region populations using population genomics and functional genomics. Our findings revealed high genetic heterogeneity and regional clustering within B. pseudocatenulatum isolates. Significant differences were observed in genome characteristics, phylogeny, and functional genes. Specifically, Chinese and Vietnamese isolates exhibited a higher abundance of genes involved in the metabolism of plant-derived carbohydrates (GH13, GH43, and GH5 enzyme families), aligning with the predominantly vegetable-, wheat- and fruit-based diets of these populations. Additionally, we found widespread transmission of antibiotic resistance genes (tetO and tetW) through mobile genetic elements, such as genomic islands (GIs), resulting in substantial intra-regional differences. Our findings highlight distinct adaptive evolution in B. pseudocatenulatum driven by gene specialization, possibly in response to regional variations in diet and lifestyle. This study sheds light on bifidobacteria colonization mechanisms in the host gut. IMPORTANCE: Gut microbiota, as a key link in the gut-brain axis, helps to maintain the health of the organism, among which, Bifidobacterium pseudocatenulatum (B. pseudocatenulatum) is an important constituent member of the gut microbiota, which plays an important role in maintaining the balance of gut microbiota. The probiotic properties of B. pseudocatenulatum have been widely elaborated, and in order to excavate its evolutionary features at the genomic level, here we focused on the genetic background and evolutionary mechanism of the B. pseudocatenulatum genomes isolated from the intestinal tracts of different populations. Ultimately, based on the phylogenetic tree, we found that B. pseudocatenulatum has high genetic diversity and regional clustering phenomenon, in which plant-derived carbohydrate metabolism genes (GH13, GH43, GH5) showed significant regional differences, and this genetic differentiation drove the adaptive evolution, which likely shaped by diet and lifestyle.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Huimin Lv
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Jiaqi Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, PR China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, PR China; Collaborative Innovative Center for Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, PR China.
| |
Collapse
|
2
|
Ekpruke CD, Alford R, Parker E, Silveyra P. Gonadal sex and chromosome complement influence the gut microbiome in a mouse model of allergic airway inflammation. Physiol Genomics 2024; 56:417-425. [PMID: 38640403 PMCID: PMC11368565 DOI: 10.1152/physiolgenomics.00003.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024] Open
Abstract
Evidence abounds that gut microbiome components are associated with sex disparities in the immune system. However, it remains unclear whether the observed sex disparity in asthma incidence is associated with sex-dependent differences in immune-modulating gut microbiota, and/or its influence on allergic airway inflammatory processes. Using a mouse model of house dust mite (HDM)-induced allergic inflammation and the four core genotypes (FCGs) model, we have previously reported sex differences in lung inflammatory phenotypes. Here, we investigated associations of gut microbiomes with these phenotypes by challenging FCG mice [mouse with female sex chromosome and male gonad (XXM), mouse with female sex chromosome and female gonad (XXF), mouse with male sex chromosome and male gonad (XYM), and mouse with male sex chromosome and female gonad (XYF); n = 7/group] with HDM (25 μg) or PBS intranasally for 5 wk and collecting fecal samples. We extracted fecal DNA and analyzed the 16S microbiome via Targeted Metagenomic Sequencing. We compared α and β diversity across genotypes and assessed the Firmicutes/Bacteroidetes (F/B) ratio. When comparing baseline and after exposure for the FCG, we found that the gut F/B ratio was only increased in the XXM genotype. We also found that α diversity was significantly increased in all FCG mice upon HDM challenge, with the highest increase in the XXF, and the lowest in the XXM genotypes. Similarly, β diversity of the microbial community was also affected by challenge in a gonad- and chromosome-dependent manner. In summary, our results indicated that HDM treatment, gonads, and sex chromosomes significantly influence the gut microbial community composition. We concluded that allergic lung inflammation may be affected by the gut microbiome in a sex-dependent manner involving both hormonal and genetic influences.NEW & NOTEWORTHY Recently, the gut microbiome and its role in chronic respiratory disease have been the subject of extensive research and the establishment of its involvement in immune functions. Using the FCG mouse model, our findings revealed the influence of gonads and sex chromosomes on the microbial community structure before and after exposure to HDM. Our data provide a potential new avenue to better understand mediators of sex disparities associated with allergic airway inflammation.
Collapse
Affiliation(s)
- Carolyn Damilola Ekpruke
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Rachel Alford
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
| | - Erik Parker
- Department of Epidemiology and Biostatistics, Biostatistics Consulting Center, School of Public Health, Indiana University, Bloomington, Indiana, United States
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health Bloomington, Indiana University, Bloomington, Indiana, United States
- School of Medicine, Indiana University, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Yoon JH, Kim JY, Yoo JH, Lee SY. Development of a selective medium for the enumeration of lactic acid bacteria and bifidobacteria in food products. Food Sci Biotechnol 2023; 32:713-721. [PMID: 37009046 PMCID: PMC10050526 DOI: 10.1007/s10068-022-01202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/18/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022] Open
Abstract
This study was conducted to develop a selective medium for enumerating LAB and Bifidobacteria in food samples. Thirteen media were evaluated to determine their suitability for selectively enumerating LAB (17 bacilli and 7 cocci) and Bifidobacteria (12 strains) under aerobic and anaerobic conditions. When BL, BCP, and mMRS were supplemented with propionic acid (5 ml/l) and adjusted to pH 5, the growth of all indicator microorganisms was inhibited; however, these media also inhibited the growth of certain LAB and Bifidobacterial strains. Using propionic acid, the pH levels of BL, BCP, and mMRS were adjusted to pH 5.2, 6.0, and 6.0, respectively. These media inhibited the growth of all indicator microorganisms, whereas they did not inhibit any of the LAB and Bifidobacteria strains under anaerobic conditions. Overall, BLP (pH 5.8) lacking blood showed significantly higher bacterial counts compared with other media in food products. Further analyses indicated that BLP (pH 5.8) was the most suitable medium for enumerating LAB and Bifidobacteria in food. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01202-z.
Collapse
Affiliation(s)
- Jae-Hyun Yoon
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Ji-Yeon Kim
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Jin-Hee Yoo
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition, Chung-Ang University, 4726, Seodong-Daero, Anseong-Si, Gyeonggi-Do Republic of Korea
| |
Collapse
|
4
|
Isolation and Characterization of Commensal Bifidobacteria Strains in Gut Microbiota of Neonates Born Preterm: A Prospective Longitudinal Study. Microorganisms 2022; 10:microorganisms10030654. [PMID: 35336229 PMCID: PMC8951322 DOI: 10.3390/microorganisms10030654] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Bifidobacterial population dynamics were investigated using a longitudinal analysis of dominant species isolated from feces of neonates born preterm (singletons (n = 10), pairs of twins (n = 11)) from birth up to 16 months of age. We performed quantification, isolation, and identification of the dominant bifidobacteria strains. The genetic relationship of the isolates was investigated via pulsed field gel electrophoresis (PFGE) genotyping, and PCR was used to screen the specific genetic marker tet genes. Additionally, all of the isolated strains were phenotypically characterized by their response to gastro-intestinal stresses and the MIC determination of tetracycline. In the same individual, our results showed a turnover of the bifidobacteria dominant population not only at species but also at strain levels. In addition, we found clonally related strains between twins. A minority of strains were tolerant to gastric (6%) and intestinal (16%) stresses. Thirteen percent of the strains were resistant to tetracycline. This work is original as it provides insights at the strain level of the early life in vivo dynamics of gut microbiota bifidobacteria in preterm neonates. It highlights the need to take into consideration the fluctuation of bifidobacteria populations that may occur for one individual.
Collapse
|
5
|
Liu C, Han F, Cong L, Sun T, Menghe B, Liu W. Evaluation of tolerance to artificial gastroenteric juice and fermentation characteristics of Lactobacillus strains isolated from human. Food Sci Nutr 2022; 10:227-238. [PMID: 35035924 PMCID: PMC8751432 DOI: 10.1002/fsn3.2662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/21/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Fifty-seven strains of Lactobacillus were isolated from fecal samples of healthy young people in Tibet, Xinjiang, and Inner Mongolia using pure culture methods. Lactobacillus ruminis and Lactobacillus gasseri were the dominant Lactobacillus species isolated from the intestinal microflora, accounting for 54.4% and 14.0% of the total isolates, respectively. Isolated strains were identified by 16S rRNA sequencing, and their tolerance to gastric acid and bile salt, and fermentation characteristics were evaluated. The results of experiments in vitro showed that nine of the isolated strains of Lactobacillus grew well at pH 3.0. After 11 h of incubation in artificial digestive juices, the isolated L. plantarum and the control strain L. plantarum P8 still had high survival rates. Most of the isolates and control isolates have strong tolerance to bile salts. The evaluation of fermentation characteristics indicated that the ability of the intestinal Lactobacillus to ferment skimmed milk was lower than that of the reference L. plantarum P8. In the process of storage, the viable count of screened isolates of human origin in fermented milk decreased to some extent, but remained above 7.01 ± 0.22 log CFU/ml, showing good storage characteristics.
Collapse
Affiliation(s)
- Chen Liu
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Fei Han
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Lin Cong
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Ting Sun
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Bilege Menghe
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| | - Wenjun Liu
- Key Laboratory of Dairy Biotechnology and EngineeringMinistry of Education of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Key Laboratory of Dairy Products ProcessingMinistry of Agriculture and Rural Affairs of ChinaInner Mongolia Agricultural UniversityHohhotChina
- Inner Mongolia Key Laboratory of Dairy Biotechnology and EngineeringInner Mongolia Agricultural UniversityHohhotChina
| |
Collapse
|
6
|
Wang L, Zhang J, Zhou M, Chen Q, Yang X, Hou Y, Huang M, Man C, Jiang Y. Evaluation of the effect of antibiotics on gut microbiota in early life based on culturomics, SMRT sequencing and metagenomics sequencing methods. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5144-5156. [PMID: 34727151 DOI: 10.1039/d1ay01106e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Symbiotic gut microbiota in early life plays a vital role in human health, and changes in its communication and function are associated with various complex disorders. In this study, we analyzed the gut flora communication of 6 infants at 4 months of age and determined the disturbances related to antibiotic treatment. By the culturomics and Single Molecule Real-time sequencing methods, a total of 6234 strains were divided into 16 genera and 45 species. The alpha diversity of culturable microorganisms in amoxicillin-treated infants was significantly less than that in healthy infants (p <0.05), as indicated by Chao 1, observed species and Faith's PD index. According to metagenomics, the dominant genus and species were Bifidobacterium and B. longum in the healthy group. After treatment with amoxicillin, the dominant genus and species shifted to Enterococcus and E. faecium. Based on the functional annotation of metagenomics, amoxicillin affected the metabolic function of the gut microbiome by activating carbohydrate and lipid metabolism and inhibiting amino acid metabolism. Besides, the intake of antibiotics in early life increased the risk of neurodegenerative disease, virus infectious disease and antimicrobial resistance. The Antibiotic Resistance Genes Database annotation result indicated that the abundance of drug-resistance genes in the antibiotic group was higher than that in the healthy group. These genes were associated with resistance to bacitracin, most of which were associated with K. pneumonia. These findings can provide guidance in the clinic on the proper usage of antibiotics.
Collapse
Affiliation(s)
- Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Jiaxin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mengyao Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Qing Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yichao Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Mingli Huang
- First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China, 150030.
| |
Collapse
|
7
|
Lemos VR, Aires R, Côco LZ, Domingues RB, Meyrelles SS, Vasquez EC, Pereira TMC, Campagnaro BP. Benefits of multi-day supplementation with probiotic kefir in Rasmussen encephalitis: the first case report. Nutr Neurosci 2021; 25:2390-2397. [PMID: 34459722 DOI: 10.1080/1028415x.2021.1970299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Rasmussen encephalitis (RE) is a rare inflammatory disease, characterized by unilateral hemispheric atrophy, focal intractable seizures, progressive hemiparesis, and neurological deficits. CASE REPORT The patient is a young man under pharmacotherapy for epilepsy, exhibiting classical abnormal movements, which are consider typical hallmarks of RE. During clinical care sessions, he presented many episodes of tonic-clonic seizures involving sudden loss of consciousness followed by a post-ictal phase with weakness and interaction difficulty. During the kefir supplementation, the patient presented only short-term absence seizures, quickly returning to activities. Additionally, he presented cognitive and language improvement, being more responsive to commands. The daily diary control of patient's mother and caregiver at school reported an impressive reduction in number and severity of seizures, becoming less aggressive and more involved in school activities. The serum biochemical markers showed that kefir administration caused a significant decrease of pro-inflammatory and a simultaneous increase of anti-inflammatory cytokine levels. In parallel, after treatment, this probiotic reduced reactive oxygen species levels, increased NO bioavailability, revealing antiapoptotic and antigenotoxic effects. Regarding the microbiological analysis, kefir increased Lactobacillus and Bifidobacterium species. CONCLUSION To our knowledge, this is the first case reporting remarkable beneficial effects of the probiotic kefir in RE. This case report strongly suggests kefir supplementation as a potential and safe-effective adjuvant therapeutic strategy in the control and treatment of RE.
Collapse
Affiliation(s)
- Valéria R Lemos
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Rafaela Aires
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Larissa Z Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | | | - Silvana S Meyrelles
- Laboratory of Translational Physiology, Physiological Sciences Graduate Program, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Elisardo C Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Thiago M C Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| | - Bianca P Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University, Vila Velha, Espírito Santo, Brazil
| |
Collapse
|
8
|
Development of gastro-resistant coated probiotic granulates and evaluation of viability and release during simulated upper gastrointestinal transit. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Abstract
Since their discovery, bifidobacteria have been considered to represent cornerstone commensal microorganisms in the host-microbiome interface at the intestinal level. Bifidobacteria have therefore enjoyed increasing scientific and commercial interest as a source of microorganisms with probiotic potential. However, since functional and probiotic traits are strictly strain-dependent, there is a constant need to isolate, cultivate, and characterize novel strains, activities that require the utilization of appropriate media, as well as robust isolation, cultivation, and preservation techniques. Besides, effective isolation of bifidobacteria from natural environments might require different manipulation and cultivation media and conditions depending on the specific characteristics of the sample material, the presence of competitive microbiota, the metabolic state in which bifidobacteria might be encountered within the sample and the particular metabolic traits of the bifidobacterial species adapted to such inhabitation.A wide array of culture media recipes have been described in the literature to routinely isolate and grow bifidobacteria under laboratory conditions. However, there is not a single and universally applicable medium for effective isolation, recovery, and cultivation of bifidobacteria, as each growth medium has its own particular advantages and limitations. Besides, the vast majority of these media formulations was not specifically formulated for these microorganisms, and thus information on bifidobacterial cultivation options is scarce while being scattered throughout literature. This chapter intends to serve as a resource summarizing the options to cultivate bifidobacteria that have been described to date, highlighting the main advantages and limitations of each of them.
Collapse
|
10
|
Kan Z, Luo B, Cai J, Zhang Y, Tian F, Ni Y. Genotyping and plant-derived glycan utilization analysis of Bifidobacterium strains from mother-infant pairs. BMC Microbiol 2020; 20:277. [PMID: 32912151 PMCID: PMC7488109 DOI: 10.1186/s12866-020-01962-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/01/2020] [Indexed: 12/04/2022] Open
Abstract
Background Bifidobacteria are important probiotics; some of the beneficial effects of bifidobacteria are achieved by the hydrolysis of glycans in the human gut. However, because the diet of breastfed infants typically lacks plant-derived glycans, in the gut environment of mothers and their breastfed infants, the mother will intake a variety of plant-derived glycans, such as from onions and bananas, through her diet. Under this assumption, we are interested in whether the same species of bifidobacteria isolated from mother-infant pairs present a distinction in their hydrolysis of plant-derived carbohydrates. Results Among the 36 Bifidobacterium strains, bifidobacterial carbohydrate utilization showed two trends related to the intestinal environment where the bacteria lived. Compared with infant-type bifidobacterial strains, adult-type bifidobacterial strains preferred to use plant-derived glycans. Of these strains, 10 isolates, 2 Bifidobacterium pseudocatenulatum (B. pseudocatenulatum), 2 Bifidobacterium pseudolongum (B. pseudolongum), 2 Bifidobacterium bifidum (B. bifidum), 2 Bifidobacterium breve (B. breve), and 2 Bifidobacterium longum (B. longum), were shared between the mother-infant pairs. Moreover, the repetitive sequence-based polymerase chain reaction (rep-PCR) results illustrated that B. pseudolongum and B. bifidum showed genotypic similarities of 95.3 and 98.2%, respectively. Combined with the carbohydrate fermentation study, these results indicated that the adult-type strains have a stronger ability to use plant-derived glycans than infant-type strains. Our work suggests that bifidobacterial carbohydrate metabolism differences resulted in the selective adaptation to the distinct intestinal environment of an adult or breastfed infant. Conclusions The present study revealed that the different gut environments can lead to the differences in the polysaccharide utilization in the same strains of bifidobacterial strains, suggesting a further goal of investigating the exact expression of certain enzymes in response to specific carbon sources.
Collapse
Affiliation(s)
- Zeyu Kan
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Baolong Luo
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Jingjing Cai
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Yan Zhang
- School of Food Science and Technology, Shihezi University, Xinjiang, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongqing Ni
- School of Food Science and Technology, Shihezi University, Xinjiang, China.
| |
Collapse
|
11
|
Liu W, Chen M, Duo L, Wang J, Guo S, Sun H, Menghe B, Zhang H. Characterization of potentially probiotic lactic acid bacteria and bifidobacteria isolated from human colostrum. J Dairy Sci 2020; 103:4013-4025. [PMID: 32113772 DOI: 10.3168/jds.2019-17602] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/26/2019] [Indexed: 01/02/2023]
Abstract
Breast milk is the main source of nutrition for infants; it contains considerable microflora that can be transmitted to the infant endogenously or by breastfeeding, and it plays an important role in the maturation and development of the immune system. In this study, we isolated and identified lactic acid bacteria (LAB) from human colostrum, and screened 2 strains with probiotic potential. The LAB isolated from 40 human colostrum samples belonged to 5 genera: Lactobacillus, Bifidobacterium, Streptococcus, Enterococcus, and Staphylococcus. We also isolated Propionibacterium and Actinomyces. We identified a total of 197 strains of LAB derived from human colostrum based on their morphology and 16S rRNA sequence, among them 8 strains of Bifidobacterium and 10 strains of Lactobacillus, including 3 Bifidobacterium species and 4 Lactobacillus species. The physiological and biochemical characteristics of strains with good probiotic characteristics were evaluated. The tolerances of some of the Bifidobacterium and Lactobacillus strains to gastrointestinal fluid and bile salts were evaluated in vitro, using the probiotic strains Bifidobacterium lactis BB12 and Lactobacillus rhamnosus GG as controls. Among them, B. lactis Probio-M8 and L. rhamnosus Probio-M9 showed survival rates of 97.25 and 78.33% after digestion for 11 h in artificial gastrointestinal juice, and they exhibited growth delays of 0.95 and 1.87 h, respectively, in 0.3% bile salts. These two strains have the potential for application as probiotics and will facilitate functional studies of probiotics in breast milk and the development of human milk-derived probiotics.
Collapse
Affiliation(s)
- Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Meixuan Chen
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Lana Duo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Jicheng Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Shuai Guo
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Haotian Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Bilige Menghe
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs of China, Inner Mongolia Agricultural University, Hohhot, 010018, China; Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, China.
| |
Collapse
|
12
|
Complementary Mechanisms for Degradation of Inulin-Type Fructans and Arabinoxylan Oligosaccharides among Bifidobacterial Strains Suggest Bacterial Cooperation. Appl Environ Microbiol 2018; 84:AEM.02893-17. [PMID: 29500265 DOI: 10.1128/aem.02893-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Inulin-type fructans (ITF) and arabinoxylan oligosaccharides (AXOS) are broken down to different extents by various bifidobacterial strains present in the human colon. To date, phenotypic heterogeneity in the consumption of these complex oligosaccharides at the strain level remains poorly studied. To examine mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the simulator of the human intestinal microbial ecosystem (SHIME) after inoculation with feces from one healthy individual was investigated. Among the 18 strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found. Bifidobacterium bifidum B46 showed limited growth on all substrates, whereas B. longum B24 and B. longum B18 could grow better on short-chain-length fractions of fructooligosaccharides (FOS) than on fructose. B. longum B24 could cleave arabinose substituents of AXOS extracellularly, without using the AXOS-derived xylose backbones, whereas B. longum B18 was able to consume oligosaccharides (up to xylotetraose) preferentially and consumed AXOS to a limited extent. B. adolescentis B72 degraded all fractions of FOS simultaneously, partially degraded inulin, and could use xylose backbones longer than xylotetraose extracellularly. The strain-specific degradation mechanisms were suggested to be complementary and indicated resource partitioning. Specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects. Finally, this work shows the importance of taking microbial strain-level differences into account in gut microbiota research.IMPORTANCE It is well known that bifidobacteria degrade undigestible complex polysaccharides, such as ITF and AXOS, in the human colon. However, this process has never been studied for strains coexisting in the same individual. To examine strain-dependent mechanistic variations in ITF and AXOS constituent preferences present in one individual, ITF and AXOS consumption by bifidobacterial strains isolated from the SHIME after inoculation with feces from one healthy individual was investigated. Among the 18 bifidobacterial strains identified, four species-independent clusters displaying different ITF and AXOS degradation mechanisms and preferences were found, indicating that such strains can coexist in the human colon. Such specialization in the degradation of complex carbohydrates by bifidobacteria present on the individual level could have in vivo implications for the successful implementation of ITF and AXOS, aiming at bifidogenic and/or butyrogenic effects.
Collapse
|
13
|
Poutsiaka DD, Mahoney IJ, McDermott LA, Stern LL, Thorpe CM, Kane AV, Baez-Giangreco C, McKinney J, Davidson LE, Leyva R, Goldin B, Snydman DR. Selective method for identification and quantification of Bifidobacterium animalis subspecies lactis BB-12 (BB-12) from the gastrointestinal tract of healthy volunteers ingesting a combination probiotic of BB-12 and Lactobacillus rhamnosus GG. J Appl Microbiol 2017; 122:1321-1332. [PMID: 28256070 DOI: 10.1111/jam.13436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/27/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022]
Abstract
AIM To develop a novel validated method for the isolation of Bifidobacterium animalis ssp. lactis BB-12 (BB-12) from faecal specimens and apply it to studies of BB-12 and Lactobacillus rhamnosus GG (LGG) recovered from the healthy human gastrointestinal (GI) tract. METHODS AND RESULTS A novel method for isolating and enumerating BB-12 was developed based on its morphologic features of growth on tetracycline-containing agar. The method identified BB-12 correctly from spiked stool close to 100% of the time as validated by PCR confirmation of identity, and resulted in 97-104% recovery of BB-12. The method was then applied in a study of the recovery of BB-12 and LGG from the GI tract of healthy humans consuming ProNutrients® Probiotic powder sachet containing BB-12 and LGG. Viable BB-12 and LGG were recovered from stool after 21 days of probiotic ingestion compared to baseline. In contrast, no organisms were recovered 21 days after baseline in the nonsupplemented control group. CONCLUSIONS We demonstrated recovery of viable BB-12, using a validated novel method specific for the isolation of BB-12, and LGG from the GI tract of healthy humans who consumed the probiotic supplement. SIGNIFICANCE AND IMPACT OF THE STUDY This method will enable more detailed and specific studies of BB-12 in probiotic supplements, including when in combination with LGG.
Collapse
Affiliation(s)
| | | | | | - L L Stern
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | | | - A V Kane
- Tufts Medical Center, Boston, MA, USA
| | | | - J McKinney
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | | | - R Leyva
- Pfizer Consumer Healthcare, Madison, NJ, USA
| | - B Goldin
- Tufts University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
14
|
Fernandes MR, Ignacio A, Rodrigues VAA, Groppo FC, Cardoso AL, Avila-Campos MJ, Nakano V. Alterations of Intestinal Microbiome by Antibiotic Therapy in Hospitalized Children. Microb Drug Resist 2016; 23:56-62. [PMID: 27328205 DOI: 10.1089/mdr.2015.0320] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The administration of antimicrobial agents leads to an ecological imbalance of the host-microorganisms relationship, and it causes a rapid and significant reduction in the microbial diversity. The aim of the current study was to evaluate the impact of antibiotic therapy on intestinal microbiota of children between 3 and 12 years of age. The fecal samples were collected from hospitalized children (n = 31) and from healthy untreated children (n = 30). The presence of bacteria and their quantities were assessed by culture-based methods and quantitative polymerase chain reaction (qPCR). By culture method, in the children receiving antibiotics, a low recovery of Bifidobacterium spp. (54.8%), Bacteroides spp./Parabacteroides spp. (54.8%), Clostridium spp. (35.5%), and Escherichia coli (74.2%) was observed compared with the children without antibiotic therapy (100%, 80%, 63.3%, and 86.6%, respectively). By qPCR, the children receiving antibiotics showed a lower copy number for all microorganisms, except to Lactobacillus spp. (p = 0.0092). In comparison to the nontreated children, the antibiotic-treated children showed a significantly lower copy number of Bifidobacterium spp. (p = 0.0002), Clostridium perfringens (p < 0.0001), E. coli (p = 0.0268), Methanobrevibacter smithii (p = 0.0444), and phylum Firmicutes (p = 0.0009). In conclusion, our results obtained through qualitative and quantitative analyses, demonstrate that antibiotic therapy affect the intestinal microbiome of children.
Collapse
Affiliation(s)
- Miriam R Fernandes
- 1 Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Aline Ignacio
- 1 Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Viviane A A Rodrigues
- 1 Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | | | - Ary L Cardoso
- 3 Faculty of Medicine, Institute of Children, University of São Paulo , São Paulo, Brazil
| | - Mario J Avila-Campos
- 1 Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| | - Viviane Nakano
- 1 Anaerobe Laboratory, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
15
|
Bogovič Matijašić B, Obermajer T, Lipoglavšek L, Sernel T, Locatelli I, Kos M, Šmid A, Rogelj I. Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: A randomized double-blind, placebo-controlled trial. J Dairy Sci 2016; 99:5008-5021. [PMID: 27157575 DOI: 10.3168/jds.2015-10743] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/23/2016] [Indexed: 12/12/2022]
Abstract
We conducted a randomized double-blind, placebo-controlled multicentric study to investigate the influence of a synbiotic fermented milk on the fecal microbiota composition of 30 adults with irritable bowel syndrome (IBS). The synbiotic product contained Lactobacillus acidophilus La-5, Bifidobacterium animalis ssp. lactis BB-12, Streptococcus thermophilus, and dietary fiber (90% inulin, 10% oligofructose), and a heat-treated fermented milk without probiotic bacteria or dietary fiber served as placebo. Stool samples were collected after a run-in period, a 4-wk consumption period, and a 1-wk follow-up period, and were subjected to real-time PCR and 16S rDNA profiling by next-generation sequencing. After 4wk of synbiotic (11 subjects) or placebo (19 subjects) consumption, a greater increase in DNA specific for L. acidophilus La-5 and Bifidobacterium animalis ssp. lactis was detected in the feces of the synbiotic group compared with the placebo group by quantitative real-time PCR. After 1wk of follow-up, the content of L. acidophilus La-5 and B. animalis ssp. lactis decreased to levels close to initial levels. No significant changes with time or differences between the groups were observed for Lactobacillus, Enterobacteriaceae, Bifidobacterium, or all bacteria. The presence of viable BB-12- and La-5-like bacteria in the feces resulting from the intake of synbiotic product was confirmed by random amplification of polymorphic DNA (RAPD)-PCR. At the end of consumption period, the feces of all subjects assigned to the synbiotic group contained viable bacteria with a BB-12-like RAPD profile, and after 1wk of follow-up, BB-12-like bacteria remained in the feces of 87.5% of these subjects. The presence of La-5-like colonies was observed less frequently (37.5 and 25% of subjects, respectively). Next-generation sequencing of 16S rDNA amplicons revealed that only the percentage of sequences assigned to Strep. thermophilus was temporarily increased in both groups, whereas the global profile of the fecal microbiota of patients was not altered by consumption of the synbiotic or placebo. In conclusion, daily consumption of a synbiotic fermented milk had a short-term effect on the amount and proportion of La-5-like strains and B. animalis ssp. lactis in the fecal microbiome of IBS patients. Furthermore, both synbiotic and placebo products caused a temporary increase in fecal Strep. thermophilus.
Collapse
Affiliation(s)
- Bojana Bogovič Matijašić
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia.
| | - Tanja Obermajer
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia
| | - Luka Lipoglavšek
- Division of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia
| | - Tjaša Sernel
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia
| | - Igor Locatelli
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Mitja Kos
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Alenka Šmid
- Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Irena Rogelj
- Institute of Dairy Science and Probiotics, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, SI-1230 Domžale, Slovenia
| |
Collapse
|
16
|
Quartieri A, Simone M, Gozzoli C, Popovic M, D'Auria G, Amaretti A, Raimondi S, Rossi M. Comparison of culture-dependent and independent approaches to characterize fecal bifidobacteria and lactobacilli. Anaerobe 2016; 38:130-137. [DOI: 10.1016/j.anaerobe.2015.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/30/2015] [Accepted: 10/02/2015] [Indexed: 01/15/2023]
|
17
|
Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1187-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Vlková E, Salmonová H, Bunešová V, Geigerová M, Rada V, Musilová Š. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 2015; 34:27-33. [DOI: 10.1016/j.anaerobe.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/23/2015] [Accepted: 04/02/2015] [Indexed: 11/27/2022]
|
19
|
Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother 2015; 59:5736-46. [PMID: 26169403 DOI: 10.1128/aac.01282-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/03/2015] [Indexed: 01/08/2023] Open
Abstract
Novel mechanisms of action and new chemical scaffolds are needed to rejuvenate antibacterial drug discovery, and riboswitch regulators of bacterial gene expression are a promising class of targets for the discovery of new leads. Herein, we report the characterization of 5-(3-(4-fluorophenyl)butyl)-7,8-dimethylpyrido[3,4-b]quinoxaline-1,3(2H,5H)-dione (5FDQD)-an analog of riboflavin that was designed to bind riboswitches that naturally recognize the essential coenzyme flavin mononucleotide (FMN) and regulate FMN and riboflavin homeostasis. In vitro, 5FDQD and FMN bind to and trigger the function of an FMN riboswitch with equipotent activity. MIC and time-kill studies demonstrated that 5FDQD has potent and rapidly bactericidal activity against Clostridium difficile. In C57BL/6 mice, 5FDQD completely prevented the onset of lethal antibiotic-induced C. difficile infection (CDI). Against a panel of bacteria representative of healthy bowel flora, the antibacterial selectivity of 5FDQD was superior to currently marketed CDI therapeutics, with very little activity against representative strains from the Bacteroides, Lactobacillus, Bifidobacterium, Actinomyces, and Prevotella genera. Accordingly, a single oral dose of 5FDQD caused less alteration of culturable cecal flora in mice than the comparators. Collectively, these data suggest that 5FDQD or closely related analogs could potentially provide a high rate of CDI cure with a low likelihood of infection recurrence. Future studies will seek to assess the role of FMN riboswitch binding to the mechanism of 5FDQD antibacterial action. In aggregate, our results indicate that riboswitch-binding antibacterial compounds can be discovered and optimized to exhibit activity profiles that merit preclinical and clinical development as potential antibacterial therapeutic agents.
Collapse
|
20
|
Bunesova V, Vlkova E, Rada V, Killer J, Musilova S. Bifidobacteria from the gastrointestinal tract of animals: differences and similarities. Benef Microbes 2015; 5:377-88. [PMID: 24889892 DOI: 10.3920/bm2013.0081] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At present, the genus Bifidobacterium includes 48 species and subspecies, and this number is expected to increase. Bifidobacteria are found in different ecological niches. However, most were originally isolated from animals, mainly mammals, especially during the milk feeding period of life. Their presence in high numbers is associated with good health of the host. Moreover, bifidobacteria are often found in poultry and insects that exhibit a social mode of life (honeybees and bumblebees). This review is designed as a summary of currently known species of the genus Bifidobacterium, especially focused on their difference and similarities. The primary focus is on their occurrence in the digestive tract of animals, as well as the specificities of animal strains, with regard to their potential use as probiotics.
Collapse
Affiliation(s)
- V Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - E Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - V Rada
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| | - J Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14200 Prague 4-Krč, Czech Republic
| | - S Musilova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 16521 Prague 6-Suchdol, Czech Republic
| |
Collapse
|
21
|
Andriantsoanirina V, Teolis AC, Xin LX, Butel MJ, Aires J. Bifidobacterium longum and Bifidobacterium breve isolates from preterm and full term neonates: Comparison of cell surface properties. Anaerobe 2014; 28:212-5. [DOI: 10.1016/j.anaerobe.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/04/2014] [Accepted: 07/04/2014] [Indexed: 12/26/2022]
|
22
|
Akay HK, Bahar Tokman H, Hatipoglu N, Hatipoglu H, Siraneci R, Demirci M, Borsa BA, Yuksel P, Karakullukcu A, Kangaba AA, Sirekbasan S, Aka S, Mamal Torun M, Kocazeybek BS. The relationship between bifidobacteria and allergic asthma and/or allergic dermatitis: a prospective study of 0-3 years-old children in Turkey. Anaerobe 2014; 28:98-103. [PMID: 24878320 DOI: 10.1016/j.anaerobe.2014.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/25/2014] [Accepted: 05/19/2014] [Indexed: 12/17/2022]
Abstract
Bifidobacteria are beneficial bacteria for humans. These bacteria are particularly effective at protecting against infectious diseases and modulating the immune response. It was shown that in newborns, the fecal distribution of the colonizing Bifidobacterium species influences the prevalence of allergic diseases. This study aimed to compare the faecal Bifidobacterium species of allergic children to those of healthy children to detect species level differences in faecal distribution. Stool samples were obtained from 99 children between 0 and 3 years of age whose clinical symptoms and laboratory reports were compatible with atopic dermatitis and allergic asthma. Samples were also obtained from 102 healthy children who were similar to the case group with respect to age and sex. Bifidobacteria were isolated by culture and identified at the genus level by API 20 A. In addition, 7 unique species-specific primers were used for the molecular characterization of bifidobacteria. The McNemar test was used for statistical analyses, and p < 0.05 was accepted as significant. Bifidobacterium longum was detected in 11 (11.1%) of the allergic children and in 31 (30.3%) of the healthy children. Statistical analysis revealed a significant difference in the prevalence of B. longum between these two groups (X(2): 11.2, p < 0.001). However, no significant differences in the prevalence of other Bifidobacterium species were found between faecal samples from healthy and allergic children. (p > 0.05). The significant difference in the isolation of B. longum from our study groups suggests that this species favors the host by preventing the development of asthma and allergic dermatitis. Based on these results, we propose that the production of probiotics in accordance with country-specific Bifidobacterium species densities would improve public health. Thus, country-specific prospective case-control studies that collect broad data sets are needed.
Collapse
Affiliation(s)
- Hatice Kubra Akay
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Hrisi Bahar Tokman
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Nevin Hatipoglu
- Kanuni Sultan Suleyman Education and Research Hospital, Department of Pediatric Infectious Diseases, Allergy and Immunology, Istanbul, Turkey.
| | - Huseyin Hatipoglu
- Kanuni Sultan Suleyman Education and Research Hospital, Department of Pediatric Infectious Diseases, Allergy and Immunology, Istanbul, Turkey.
| | - Rengin Siraneci
- Kanuni Sultan Suleyman Education and Research Hospital, Department of Pediatric Infectious Diseases, Allergy and Immunology, Istanbul, Turkey.
| | - Mehmet Demirci
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Baris Ata Borsa
- Kemerburgaz University, Medical Faculty, Department of Medical Microbiology, Istanbul, Turkey.
| | - Pelin Yuksel
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Asiye Karakullukcu
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Achille Aime Kangaba
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Serhat Sirekbasan
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Sibel Aka
- Acıbadem University School of Medicine, Department of Children Health and Disease, Istanbul, Turkey.
| | - Muzeyyen Mamal Torun
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| | - Bekir S Kocazeybek
- Istanbul University, Cerrahpasa School of Medicine, Department of Medical Microbiology, Istanbul, Turkey.
| |
Collapse
|
23
|
Liu W, Chen Y, Kwok L, Li M, Sun T, Sun C, Wang X, Dan T, Menghebilige, Zhang H, Sun T. Preliminary selection for potential probiotic Bifidobacterium isolated from subjects of different Chinese ethnic groups and evaluation of their fermentation and storage characteristics in bovine milk. J Dairy Sci 2013; 96:6807-6817. [DOI: 10.3168/jds.2013-6582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 07/29/2013] [Indexed: 11/19/2022]
|
24
|
Joly C, Gay-Quéheillard J, Léké A, Chardon K, Delanaud S, Bach V, Khorsi-Cauet H. Impact of chronic exposure to low doses of chlorpyrifos on the intestinal microbiota in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME) and in the rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:2726-34. [PMID: 23135753 DOI: 10.1007/s11356-012-1283-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/23/2012] [Indexed: 05/15/2023]
Abstract
The impact of the insecticide chlorpyrifos (CPF) on the mammalian digestive system has been poorly described. The present study aimed at evaluating the effect of chronic, low-dose exposure to CPF on the composition of the gut microbiota in a Simulator of the Human Intestinal Microbial Ecosystem: the SHIME and in rats. The SHIME comprises six reactor vessels (stomach to colon). The colonic segments were inoculated with feces from healthy humans. Then, the simulator was exposed to a daily dose of 1 mg of CPF for 30 days. The changes over time in the populations of bacteria were examined at different time points: prior to pesticide exposure (as a control) and after exposure. In parallel, pregnant rats were gavaged daily with 1 mg/kg of CPF (or vehicle) until the pups were weaned. Next, the rats were gavaged with same dose of CPF until 60 days of age (adulthood). Then, samples of different parts of the digestive tract were collected under sterile conditions for microbiological assessment. Chronic, low-dose exposure to CPF in the SHIME and in the rat was found to induce dysbiosis in the microbial community with, in particular, proliferation of subpopulations of some strains and a decrease in the numbers of others bacteria. In compliance with European guidelines, the use of the SHIME in vitro tool would help to (1) elucidate the final health effect of toxic agents and (2) minimize (though not fully replace) animal testing. Indeed, certain parameters would still have to be studied further in vivo.
Collapse
Affiliation(s)
- Claire Joly
- Peritox Laboratory, EA4285 UMI01 INERIS, Faculty of Medicine, Jules Verne University of Picardy, 3 rue des Louvels, 80036 Amiens, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Andriantsoanirina V, Allano S, Butel MJ, Aires J. Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe 2013; 21:39-42. [PMID: 23598280 DOI: 10.1016/j.anaerobe.2013.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/04/2013] [Accepted: 04/06/2013] [Indexed: 12/21/2022]
Abstract
Bifidobacteria are part of the human gastrointestinal microbiota and are used as probiotics in functional food products because of their health promoting properties. However, only few data are available on the phenotypic characteristics displayed by human bifidobacteria strain populations. In this study we compared the in vitro tolerance to acid, bile and oxygen of the largest number of independent human intestinal strains. Bile and acid tolerance varied among species and independent strains within a species: B. adolescentis strains were the most tolerant to bile followed by Bifidobacterium longum and B. breve; B. longum, B. breve and B. dentium showed the highest viability levels after exposure to acid pH. Oxygen tolerance was largely distributed among intestinal bifidobacteria: B. longum, B. breve and B. bifidum showed the highest oxygen tolerance. B. adolescentis showed the highest susceptibility to acid and oxygen stresses. The present study gave us the opportunity to update our knowledge about the phenotypic characteristics of human intestinal bifidobacteria. B. longum and B. breve harboured the best tolerance to oxygen, bile and acid stresses. Based on such biological characters, B. longum and B. breve species showed the highest interest in terms of potential selection of human probiotics.
Collapse
Affiliation(s)
- Valérie Andriantsoanirina
- EA4065, Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | | | | | | |
Collapse
|
26
|
Characterization of bifidobacteria in the digestive tract of the Japanese honeybee, Apis cerana japonica. J Invertebr Pathol 2013; 112:88-93. [DOI: 10.1016/j.jip.2012.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 09/11/2012] [Accepted: 09/18/2012] [Indexed: 11/20/2022]
|
27
|
Lakshminarayanan B, Harris HMB, Coakley M, O'Sullivan Ó, Stanton C, Pruteanu M, Shanahan F, O'Toole PW, Ross RP, On Behalf Of The Eldermet Consortium. Prevalence and characterization of Clostridium perfringens from the faecal microbiota of elderly Irish subjects. J Med Microbiol 2012; 62:457-466. [PMID: 23222860 DOI: 10.1099/jmm.0.052258-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to investigate the diversity and composition of the intestinal microbiota of elderly subjects using a combination of culture-dependent techniques and 16S rRNA gene amplicon sequencing. The study was performed as part of the ELDERMET project, in which 368 faecal samples were assessed for viable numbers of Bifidobacterium spp., Lactobacillus spp. and Enterobacteriaceae on selective agar. However, the Bifidobacterium selective medium used also supported the growth of Clostridium perfringens, which appeared as distinct colonies and were subsequently characterized phenotypically and genotypically. All the isolates were confirmed as toxin biotype A producers. In addition, three isolates tested also had the genetic determinants for the β2 toxin. Of the 368 faecal samples assessed, C. perfringens was detected in 28 samples (7.6%). Moreover, C. perfringens was observed in samples from subjects in all the residence locations assessed but was most prevalent in subjects from long-stay residential care, with 71.4% of the samples (63.2% of the subjects) being from this residence location, and with a shedding level in excess of 10(6) c.f.u. (g faeces)(-1). Microbiota profiling revealed some significant compositional changes across both the family and genus taxonomic levels between the C. perfringens-positive and -negative datasets. Levels of culturable Bifidobacterium spp. and Lactobacillus spp. were significantly (P<0.05) lower in the C. perfringens-positive samples. Sequence-based methods also confirmed a significant difference in the Bifidobacterium spp. level (P<0.05) between both datasets. Taken together, these data suggest that a high viable count [>10(6) c.f.u. (g faeces)(-1)] of C. perfringens in stool samples may be indicative of a less healthy microbiota in the intestine of elderly people in long-stay residential care.
Collapse
Affiliation(s)
- Bhuvaneswari Lakshminarayanan
- Department of Microbiology, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Hugh M B Harris
- Department of Microbiology, University College Cork, Cork, Ireland
| | - Mairéad Coakley
- Department of Microbiology, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Órla O'Sullivan
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Catherine Stanton
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | - Mihaela Pruteanu
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- Department of Medicine, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Department of Microbiology, University College Cork, Cork, Ireland
| | - R Paul Ross
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
| | | |
Collapse
|
28
|
Aires J, Thouverez M, Allano S, Butel MJ. Longitudinal analysis and genotyping of infant dominant bifidobacterial populations. Syst Appl Microbiol 2011; 34:536-41. [PMID: 21680126 DOI: 10.1016/j.syapm.2011.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 12/26/2022]
Abstract
Bifidobacterial population dynamics were investigated by the longitudinal analysis of the dominant population isolated from the feces of young infants. After molecular identification and fingerprinting comparison, clone identity of the consecutive strains belonging to the same species for one individual was performed by pulsed-field gel electrophoresis. The results, obtained from 15 individuals sampled four times over a five-week period suggested a turnover of the dominant bifidobacteria in the population not only at the species but also at its species representative levels. This study provides new insights of the in vivo dynamics of commensal bifidobacteria. It highlights the need to take into consideration the fluctuation of bifidobacterial populations that may occur in one individual in order to investigate reliably the impact of dietary components, such as probiotics or prebiotics, on the intestinal ecosystem.
Collapse
Affiliation(s)
- J Aires
- Université Paris Descartes, EA4065, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France.
| | | | | | | |
Collapse
|
29
|
Waligora-Dupriet A, Campeotto F, Romero K, Mangin I, Rouzaud G, Ménard O, Suau A, Soulaines P, Nicolis I, Kapel N, Dupont C, Butel M. Diversity of gut Bifidobacterium species is not altered between allergic and non-allergic French infants. Anaerobe 2011; 17:91-6. [DOI: 10.1016/j.anaerobe.2011.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/14/2011] [Indexed: 12/11/2022]
|