1
|
Łasica A, Golec P, Laskus A, Zalewska M, Gędaj M, Popowska M. Periodontitis: etiology, conventional treatments, and emerging bacteriophage and predatory bacteria therapies. Front Microbiol 2024; 15:1469414. [PMID: 39391608 PMCID: PMC11464445 DOI: 10.3389/fmicb.2024.1469414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Inflammatory periodontal diseases associated with the accumulation of dental biofilm, such as gingivitis and periodontitis, are very common and pose clinical problems for clinicians and patients. Gingivitis is a mild form of gum disease and when treated quickly and properly is completely reversible. Periodontitis is an advanced and irreversible disease of the periodontium with periods of exacerbations, progressions and remission. Periodontitis is a chronic inflammatory condition that damages the tissues supporting the tooth in its socket, i.e., the gums, periodontal ligaments, root cementum and bone. Periodontal inflammation is most commonly triggered by bacteria present in excessive accumulations of dental plaque (biofilm) on tooth surfaces. This disease is driven by disproportionate host inflammatory immune responses induced by imbalance in the composition of oral bacteria and changes in their metabolic activities. This microbial dysbiosis favors the establishment of inflammatory conditions and ultimately results in the destruction of tooth-supporting tissues. Apart microbial shift and host inflammatory response, environmental factors and genetics are also important in etiology In addition to oral tissues destruction, periodontal diseases can also result in significant systemic complications. Conventional methods of periodontal disease treatment (improving oral hygiene, dental biofilm control, mechanical plaque removal, using local or systemic antimicrobial agents) are not fully effective. All this prompts the search for new methods of therapy. Advanced periodontitis with multiple abscesses is often treated with antibiotics, such as amoxicillin, tetracycline, doxycycline, minocycline, clindamycin, or combined therapy of amoxicillin with metronidazole. However, due to the growing problem of antibiotic resistance, treatment does not always achieve the desired therapeutic effect. This review summarizes pathogenesis, current approaches in treatment, limitations of therapy and the current state of research on the possibility of application of bacteriophages and predatory bacteria to combat bacteria responsible for periodontitis. We present the current landscape of potential applications for alternative therapies for periodontitis based on phages and bacteria, and highlight the gaps in existing knowledge that need to be addressed before clinical trials utilizing these therapeutic strategies can be seriously considered.
Collapse
Affiliation(s)
- Anna Łasica
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Gędaj
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Bostanghadiri N, Kouhzad M, Taki E, Elahi Z, Khoshbayan A, Navidifar T, Darban-Sarokhalil D. Oral microbiota and metabolites: key players in oral health and disorder, and microbiota-based therapies. Front Microbiol 2024; 15:1431785. [PMID: 39228377 PMCID: PMC11368800 DOI: 10.3389/fmicb.2024.1431785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
The review aimed to investigate the diversity of oral microbiota and its influencing factors, as well as the association of oral microbiota with oral health and the possible effects of dysbiosis and oral disorder. The oral cavity harbors a substantial microbial burden, which is particularly notable compared to other organs within the human body. In usual situations, the microbiota exists in a state of equilibrium; however, when this balance is disturbed, a multitude of complications arise. Dental caries, a prevalent issue in the oral cavity, is primarily caused by the colonization and activity of bacteria, particularly streptococci. Furthermore, this environment also houses other pathogenic bacteria that are associated with the onset of gingival, periapical, and periodontal diseases, as well as oral cancer. Various strategies have been employed to prevent, control, and treat these disorders. Recently, techniques utilizing microbiota, like probiotics, microbiota transplantation, and the replacement of oral pathogens, have caught the eye. This extensive examination seeks to offer a general view of the oral microbiota and their metabolites concerning oral health and disease, and also the resilience of the microbiota, and the techniques used for the prevention, control, and treatment of disorders in this specific area.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mobina Kouhzad
- Department of Genetics, Faculty of Science, Islamic Azad University North Tehran Branch, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Thatrimontrichai A, Surachat K, Singkhamanan K, Thongsuksai P. Differential Abundances of Bdellovibrio and Rheinheimera in the Oral Microbiota of Neonates With and Without Clinical Sepsis. Pediatr Infect Dis J 2024; 43:e195-e200. [PMID: 38295225 DOI: 10.1097/inf.0000000000004259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
BACKGROUND Neonatal sepsis is associated with high rates of morbidity and mortality, long hospital stays and high cost of care, thereby inflicting a burden on health care systems. Oral care with breast milk has been shown to modify the intestinal tract microbiota and immune system. Herein, we attempted to identify probiotics that may be beneficial to prevent or treat neonatal sepsis. METHODS This was a secondary analysis comparing the microbiota during oropharyngeal care in very-low-birth-weight infants with and without clinical sepsis. Oral samples were collected before oral feeding was initiated. The primary outcome was oral microbiota composition including diversity, relative abundance and linear discriminant analysis effect size. RESULTS Sixty-three neonates, including 39 and 24 with and without clinical sepsis, respectively, were enrolled. The medians gestational age and birth weight were 29 (27-30) weeks and 1010 (808-1263) g. Neonates with clinical sepsis had lower gestational age, birth weight (both P < 0.001) and lower rate of oral care with breast milk ( P = 0.03), but higher doses and days of antibiotic exposure (both P < 0.001) compared to neonates without clinical sepsis. No differences in alpha and beta diversities were found between groups and Streptococcus agalactiae was the most common bacteria in both groups. Linear discriminant analysis effect size analysis revealed that neonates without clinical sepsis had significantly higher abundances of order Bdellovibrionales, family Bdellovibrionaceae, genus Bdellovibrio and genus Rheinheimera . CONCLUSIONS Neonates without clinical sepsis had a significantly greater abundance of the Bdellovibrio and Rheinheimera genera.
Collapse
Affiliation(s)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering
| | | | - Paramee Thongsuksai
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| |
Collapse
|
4
|
Pląskowska K, Zakrzewska-Czerwińska J. Chromosome structure and DNA replication dynamics during the life cycle of the predatory bacterium Bdellovibrio bacteriovorus. FEMS Microbiol Rev 2023; 47:fuad057. [PMID: 37791401 PMCID: PMC11318664 DOI: 10.1093/femsre/fuad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Bdellovibrio bacteriovorus, an obligate predatory Gram-negative bacterium that proliferates inside and kills other Gram-negative bacteria, was discovered more than 60 years ago. However, we have only recently begun to understand the detailed cell biology of this proficient bacterial killer. Bdellovibrio bacteriovorus exhibits a peculiar life cycle and bimodal proliferation, and thus represents an attractive model for studying novel aspects of bacterial cell biology. The life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase and an intracellular reproductive phase. During the reproductive phase, B. bacteriovorus grows as an elongated cell and undergoes binary or nonbinary fission, depending on the prey size. In this review, we discuss: (1) how the chromosome structure of B. bacteriovorus is remodeled during its life cycle; (2) how its chromosome replication dynamics depends on the proliferation mode; (3) how the initiation of chromosome replication is controlled during the life cycle, and (4) how chromosome replication is spatiotemporally coordinated with the proliferation program.
Collapse
Affiliation(s)
- Karolina Pląskowska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Molecular Microbiology, Faculty of Biotechnology, University
of Wrocław, ul. Joliot-Curie 14A, Wrocław,
Poland
| |
Collapse
|
5
|
Silva PHF, Oliveira LFF, Cardoso RS, Santana SI, Casarin RC, Ervolino E, Salvador SL, Palioto DB, Furlaneto FAC, Messora MR. Effects of Bdellovibrio bacteriovorus HD100 on experimental periodontitis in rats. Mol Oral Microbiol 2023; 38:158-170. [PMID: 36495122 DOI: 10.1111/omi.12402] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/12/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022]
Abstract
AIM The aim of this study was to evaluate the effects of Bdellovibrio bacteriovorus HD100 on experimental periodontitis (EP) in rats. METHODS Thirty-two rats were divided into four groups: control, C-HD100 (B. bacteriovorus), EP, and EP-HD100. On day 0, EP was induced by the placement of cotton ligatures around the mandibular first molars (MFMs) in the EP and EP-HD100 groups. In the C-HD100 and EP-HD100 groups, suspensions containing 1 × 109 PUF/ml of B. bacteriovorus HD100 were topically administered to the subgingival region of MFMs on days 0, 3, and 7. Animals were euthanized on day 14. Morphometrics analyses were performed in hemimandibles. The levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, monocyte chemoattractant protein (MCP)-1, IL-10, IL-1β, transforming growth factor beta (TGF-β), macrophage colony-stimulating factor (M-CSF) and regulated on activation and normal T cell expressed and secreted (RANTES) were determined by enzymatic immunoassays in gingival tissues. Beta defensin (BD)-1, BD-2, and BD-3, Toll-like receptors (TLR)-2 and TLR-4, and a cluster of differentiation (CD)-4, CD-8 and CD-57 were analyzed by immunohistochemistry in hemimandibles. Data were statistically analyzed. RESULTS The EP group showed greater alveolar bone loss than EP-HD100 (p < .05). The EP-HD100 group showed higher levels of MCP-1, RANTES, IL-10, and TGF-β, lower levels of TNF-α than the EP group (p < .05). No differences were observed in IL-1β, IL-6, and M-CSF levels between EP and EP-HD100 groups. The C-HD100 group had higher IL-6, TNF-α, RANTES, and MCP-1 levels than the control group (p < .05). Regarding BD, the EP-HD100 group showed a larger immunolabeling pattern for BD-1, BD-2, and BD-3 than the EP group (p < .05). No significant differences in the immunolabeling pattern were observed for TLR-2, TLR-4, CD-4, CD-8, and CD-57 between EP and EP-HD100 groups. CONCLUSION The topical use of B. bacteriovorus HD100 reduces alveolar bone loss, increases expression of BD, and modulates the cytokines levels on periodontal tissues in rats with EP.
Collapse
Affiliation(s)
- Pedro Henrique Felix Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Luiz Fernando Ferreira Oliveira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Renata Silva Cardoso
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Sandro Isaias Santana
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Renato Correa Casarin
- Department of Prosthodontics and Periodontics, School of Dentistry, Campinas State University, São Paulo, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, Division of Histology, Dental School of Araçatuba, São Paulo State University, São Paulo, Brazil
| | - Sergio Luiz Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Bazan Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Flávia Aparecida Chaves Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Michel Reis Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Mookherjee A, Jurkevitch E. Interactions between Bdellovibrio and like organisms and bacteria in biofilms: beyond predator-prey dynamics. Environ Microbiol 2021; 24:998-1011. [PMID: 34816563 DOI: 10.1111/1462-2920.15844] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022]
Abstract
Bdellovibrio and like organisms (BALOs) prey on Gram-negative bacteria in the planktonic phase as well as in biofilms, with the ability to reduce prey populations by orders of magnitude. During the last few years, evidence has mounted for a significant ecological role for BALOs, with important implications for our understanding of microbial community dynamics as well as for applications against pathogens, including drug-resistant pathogens, in medicine, agriculture and aquaculture, and in industrial settings for various uses. However, our understanding of biofilm predation by BALOs is still very fragmentary, including gaps in their effect on biofilm structure, on prey resistance, and on evolutionary outcomes of both predators and prey. Furthermore, their impact on biofilms has been shown to reach beyond predation, as they are reported to reduce biofilm structures of non-prey cells (including Gram-positive bacteria). Here, we review the available literature on BALOs in biofilms, extending known aspects to potential mechanisms employed by the predators to grow in biofilms. Within that context, we discuss the potential ecological significance and potential future utilization of the predatory and enzymatic possibilities offered by BALOs in medical, agricultural and environmental applications.
Collapse
Affiliation(s)
- Abhirup Mookherjee
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Plant Pathology and Microbiology, Faculty of Agriculture, Food and Environment, The Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
7
|
Ezzedine JA, Desdevises Y, Jacquet S. Bdellovibrio and like organisms: current understanding and knowledge gaps of the smallest cellular hunters of the microbial world. Crit Rev Microbiol 2021; 48:428-449. [PMID: 34595998 DOI: 10.1080/1040841x.2021.1979464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Almost sixty years ago, Bdellovibrio and like organisms (BALOs) were discovered as the first obligate bacterial predators of other bacteria known to science. Since then, they were shown to be diverse and ubiquitous in the environment, and to bear astonishing ecological, physiological, and metabolic capabilities. The last decade has seen important strides made in understanding the mechanistic basis of their life cycle, the dynamics of their interactions with prey, along with significant developments towards their use in medicine, agriculture, and industry. This review details these achievements, identify current understanding and knowledge gaps to encourage and guide future BALO research.
Collapse
Affiliation(s)
- Jade A Ezzedine
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France.,Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France
| | - Yves Desdevises
- CNRS, Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, Banyuls-sur-Mer, France
| | - Stéphan Jacquet
- Université Savoie Mont-Blanc, INRAE, CARRTEL, Thonon-les-Bains, France
| |
Collapse
|
8
|
Cuenca M, Sánchez MC, Diz P, Martínez-Lamas L, Álvarez M, Limeres J, Sanz M, Herrera D. In Vitro Anti-Biofilm and Antibacterial Properties of Streptococcus downii sp. nov. Microorganisms 2021; 9:450. [PMID: 33671537 PMCID: PMC7926871 DOI: 10.3390/microorganisms9020450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 12/22/2022] Open
Abstract
The aim of this study was to evaluate the potential anti-biofilm and antibacterial activities of Streptococcus downii sp. nov. To test anti-biofilm properties, Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, Fusobacterium nucleatum, Porphyromonas gingivalis, and Aggregatibacter actinomycetemcomitans were grown in a biofilm model in the presence or not of S. downii sp. nov. for up to 120 h. For the potential antibacterial activity, 24 h-biofilms were exposed to S. downii sp. nov for 24 and 48 h. Biofilms structures and bacterial viability were studied by microscopy, and the effect in bacterial load by quantitative polymerase chain reaction. A generalized linear model was constructed, and results were considered as statistically significant at p < 0.05. The presence of S. downii sp. nov. during biofilm development did not affect the structure of the community, but an anti-biofilm effect against S. mutans was observed (p < 0.001, after 96 and 120 h). For antibacterial activity, after 24 h of exposure to S. downii sp. nov., counts of S. mutans (p = 0.019) and A. actinomycetemcomitans (p = 0.020) were significantly reduced in well-structured biofilms. Although moderate, anti-biofilm and antibacterial activities of S. downii sp. nov. against oral bacteria, including some periodontal pathogens, were demonstrated in an in vitro biofilm model.
Collapse
Affiliation(s)
- Maigualida Cuenca
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - María Carmen Sánchez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - Pedro Diz
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (P.D.); (J.L.)
| | - Lucía Martínez-Lamas
- Clinical Microbiology, Microbiology and Infectology Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, 36312 Galicia, Spain; (L.M.-L.); (M.Á.)
| | - Maximiliano Álvarez
- Clinical Microbiology, Microbiology and Infectology Group, Galicia Sur Health Research Institute, Hospital Álvaro Cunqueiro, Complejo Hospitalario Universitario de Vigo, Vigo, 36312 Galicia, Spain; (L.M.-L.); (M.Á.)
| | - Jacobo Limeres
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), 15705 Santiago de Compostela, Spain; (P.D.); (J.L.)
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid (UCM), 28040 Madrid, Spain; (M.C.); (M.S.); (D.H.)
| |
Collapse
|
9
|
Herencias C, Salgado-Briegas S, Prieto MA, Nogales J. Providing new insights on the biphasic lifestyle of the predatory bacterium Bdellovibrio bacteriovorus through genome-scale metabolic modeling. PLoS Comput Biol 2020; 16:e1007646. [PMID: 32925899 PMCID: PMC7529429 DOI: 10.1371/journal.pcbi.1007646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 10/01/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
In this study we analyze the growth-phase dependent metabolic states of Bdellovibrio bacteriovorus by constructing a fully compartmented, mass and charge-balanced genome-scale metabolic model of this predatory bacterium (iCH457). Considering the differences between life cycle phases driving the growth of this predator, growth-phase condition-specific models have been generated allowing the systematic study of its metabolic capabilities. Using these computational tools, we have been able to analyze, from a system level, the dynamic metabolism of the predatory bacteria as the life cycle progresses. We provide computational evidences supporting potential axenic growth of B. bacteriovorus's in a rich medium based on its encoded metabolic capabilities. Our systems-level analysis confirms the presence of "energy-saving" mechanisms in this predator as well as an abrupt metabolic shift between the attack and intraperiplasmic growth phases. Our results strongly suggest that predatory bacteria's metabolic networks have low robustness, likely hampering their ability to tackle drastic environmental fluctuations, thus being confined to stable and predictable habitats. Overall, we present here a valuable computational testbed based on predatory bacteria activity for rational design of novel and controlled biocatalysts in biotechnological/clinical applications.
Collapse
Affiliation(s)
- Cristina Herencias
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
| | - Sergio Salgado-Briegas
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M. Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Biological Research Center-Margarita Salas, CSIC, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan Nogales
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Department of Systems Biology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| |
Collapse
|
10
|
Willis JR, Gabaldón T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020; 8:microorganisms8020308. [PMID: 32102216 PMCID: PMC7074908 DOI: 10.3390/microorganisms8020308] [Citation(s) in RCA: 216] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Abstract: The human oral cavity is home to an abundant and diverse microbial community (i.e., the oral microbiome), whose composition and roles in health and disease have been the focus of intense research in recent years. Thanks to developments in sequencing-based approaches, such as 16S ribosomal RNA metabarcoding, whole metagenome shotgun sequencing, or meta-transcriptomics, we now can efficiently explore the diversity and roles of oral microbes, even if unculturable. Recent sequencing-based studies have charted oral ecosystems and how they change due to lifestyle or disease conditions. As studies progress, there is increasing evidence of an important role of the oral microbiome in diverse health conditions, which are not limited to diseases of the oral cavity. This, in turn, opens new avenues for microbiome-based diagnostics and therapeutics that benefit from the easy accessibility of the oral cavity for microbiome monitoring and manipulation. Yet, many challenges remain ahead. In this review, we survey the main sequencing-based methodologies that are currently used to explore the oral microbiome and highlight major findings enabled by these approaches. Finally, we discuss future prospects in the field.
Collapse
Affiliation(s)
- Jesse R. Willis
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BCS-CNS), Jordi Girona, 29., 08034 Barcelona, Spain
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology (BIST), 08034 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
11
|
Dynamics of Chromosome Replication and Its Relationship to Predatory Attack Lifestyles in Bdellovibrio bacteriovorus. Appl Environ Microbiol 2019; 85:AEM.00730-19. [PMID: 31076424 PMCID: PMC6606864 DOI: 10.1128/aem.00730-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative, obligate predatory bacterium that is largely found in wet, aerobic environments (e.g., soil). This bacterium attacks and invades other Gram-negative bacteria, including animal and plant pathogens. The intriguing life cycle of B. bacteriovorus consists of two phases: a free-living nonreplicative attack phase, in which the predatory bacterium searches for its prey, and a reproductive phase, in which B. bacteriovorus degrades a host's macromolecules and reuses them for its own growth and chromosome replication. Although the cell biology of this predatory bacterium has gained considerable interest in recent years, we know almost nothing about the dynamics of its chromosome replication. Here, we performed a real-time investigation into the subcellular localization of the replisome(s) in single cells of B. bacteriovorus Our results show that in B. bacteriovorus, chromosome replication takes place only during the reproductive phase and exhibits a novel spatiotemporal arrangement of replisomes. The replication process starts at the invasive pole of the predatory bacterium inside the prey cell and proceeds until several copies of the chromosome have been completely synthesized. Chromosome replication is not coincident with the predator cell division, and it terminates shortly before synchronous predator filament septation occurs. In addition, we demonstrate that if this B. bacteriovorus life cycle fails in some cells of Escherichia coli, they can instead use second prey cells to complete their life cycle.IMPORTANCE New strategies are needed to combat multidrug-resistant bacterial infections. Application of the predatory bacterium Bdellovibrio bacteriovorus, which kills other bacteria, including pathogens, is considered promising for combating bacterial infections. The B. bacteriovorus life cycle consists of two phases, a free-living, invasive attack phase and an intracellular reproductive phase, in which this predatory bacterium degrades the host's macromolecules and reuses them for its own growth. To understand the use of B. bacteriovorus as a "living antibiotic," it is first necessary to dissect its life cycle, including chromosome replication. Here, we present a real-time investigation into subcellular localization of chromosome replication in a single cell of B. bacteriovorus This process initiates at the invasion pole of B. bacteriovorus and proceeds until several copies of the chromosome have been completely synthesized. Interestingly, we demonstrate that some cells of B. bacteriovorus require two prey cells sequentially to complete their life cycle.
Collapse
|
12
|
Silva PHF, Oliveira LFF, Cardoso RS, Ricoldi MST, Figueiredo LC, Salvador SL, Palioto DB, Furlaneto FAC, Messora MR. The impact of predatory bacteria on experimental periodontitis. J Periodontol 2019; 90:1053-1063. [PMID: 30828815 DOI: 10.1002/jper.18-0485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/31/2019] [Accepted: 02/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND This study evaluated the effects of topical administration of Bdellovibrio bacteriovorus HD100 on experimental periodontitis (EP) in rats. METHODS Thirty-two rats were divided into groups C (control), EP, C-HD100, and EP-HD100. At day 0, animals of groups EP and EP-HD100 received cotton ligatures around mandibular first molars (MFM). In groups C-HD100 and EP-HD100, 1 mL of suspensions containing B. bacteriovorus HD100 was topically administered in the subgingival region of MFMs at days 0, 3, and 7. Animals were euthanized at day 14. Gingival tissue, hemimandibles, and oral biofilm were collected. Data were statistically analyzed. RESULTS Group EP-HD100 presented greater bone volume and lower connective tissue attachment loss (CTAL) than group EP (P < 0.05). Group EP-HD100 presented greater proportions of Actinomyces and Streptococcus-like species and lower proportions of Prevotella intermedia, Peptostreptococcus micros, Fusobacterium nucleatum, Fusobacterium polymorphum, Eikenella corrodens, Eubacterium nodatum, Campylobacter gracilis, Capnocytophaga sputigena, and Veillonella parvula-like species than group EP. Group EP-HD100 presented greater levels of osteoprotegerin and gene expression of interleukin (IL)-17, IL-10, and forkhead box P3 than group EP (P < 0.05). CONCLUSION Topical use of B. bacteriovorus HD100 promotes a protective effect against alveolar bone loss and CTAL in rats with EP.
Collapse
Affiliation(s)
- Pedro H F Silva
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Luiz F F Oliveira
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Renata S Cardoso
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Milla S T Ricoldi
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Luciene C Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, São Paulo, Brazil
| | - Sérgio L Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Daniela B Palioto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Flávia A C Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| | - Michel R Messora
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto / SP, Brazil
| |
Collapse
|
13
|
Genome Analysis, Metabolic Potential, and Predatory Capabilities of Herpetosiphon llansteffanense sp. nov. Appl Environ Microbiol 2018; 84:AEM.01040-18. [PMID: 30194103 PMCID: PMC6210107 DOI: 10.1128/aem.01040-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/16/2018] [Indexed: 12/05/2022] Open
Abstract
Predatory bacteria are able to kill and consume other microbes and are therefore of interest as potential sources of new antimicrobial substances for applications in the clinic. “Wolf pack” predators kill prey by secreting antimicrobial substances into their surroundings, and those substances can kill prey organisms independently of the predatory cells. The genus Herpetosiphon exhibits wolf pack predation, yet its members are poorly described compared to other wolf pack predators, such as the myxobacteria. By providing a thorough characterization of a novel Herpetosiphon species, including its predatory, biochemical, and genomic features, this study increases our understanding of genomic variation within the Herpetosiphon genus and how that variation affects predatory activity. This will facilitate future rational exploitation of genus members (and other wolf pack predators) as sources of novel antimicrobials. Herpetosiphon spp. are ubiquitous, chemoheterotrophic, filamentous gliding bacteria with the ability to prey on other microbes through a “wolf pack” mechanism. The genus currently comprises four known species (H. aurantiacus, H. geysericola, H. giganteus, and H. gulosus), which produce antimicrobial secondary metabolites such as siphonazole. As part of a study isolating myxobacterial wolf pack predators, we serendipitously isolated a novel environmental strain (CA052B) from the edge of a stream at Llansteffan, United Kingdom, which was identified as a member of the Herpetosiphon genus. A lawn culture method was utilized to analyze the predatory activity of CA052B against 10 prey organisms of clinical relevance. CA052B was found to prey on Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus saprophyticus, Enterococcus faecalis, Bacillus subtilis, and Candida albicans. Purified CA052B outer membrane vesicles also exhibited killing activity against the prey organisms when tested by flow cytometry. 16S rRNA sequencing of CA052B showed 98 to 99% identity with other Herpetosiphon species members. Comparing the genome of CA052B with the publicly available genomes of H. aurantiacus and H. geysericola revealed average nucleotide identities of only 84% and 91%, respectively, whereas the genome-to-genome distance calculation showed sequence identities of 28.2% and 46.6%, respectively. Biochemical characterization also revealed distinctions between CA052B and both H. gulosus and H. giganteus. Thus, strain CA052BT (= DSM 107618T = NBRC 113495T) is proposed to be the type strain of a novel species, Herpetosiphon llansteffanense sp. nov. The genome sequence of CA052B also revealed diverse secondary metabolite biosynthetic clusters, encouraging further exploration of its antibiotic production potential. IMPORTANCE Predatory bacteria are able to kill and consume other microbes and are therefore of interest as potential sources of new antimicrobial substances for applications in the clinic. “Wolf pack” predators kill prey by secreting antimicrobial substances into their surroundings, and those substances can kill prey organisms independently of the predatory cells. The genus Herpetosiphon exhibits wolf pack predation, yet its members are poorly described compared to other wolf pack predators, such as the myxobacteria. By providing a thorough characterization of a novel Herpetosiphon species, including its predatory, biochemical, and genomic features, this study increases our understanding of genomic variation within the Herpetosiphon genus and how that variation affects predatory activity. This will facilitate future rational exploitation of genus members (and other wolf pack predators) as sources of novel antimicrobials.
Collapse
|
14
|
Marsh PD, Zaura E. Dental biofilm: ecological interactions in health and disease. J Clin Periodontol 2018; 44 Suppl 18:S12-S22. [PMID: 28266111 DOI: 10.1111/jcpe.12679] [Citation(s) in RCA: 244] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. AIM To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. METHODS PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. RESULTS Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. CONCLUSIONS Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease.
Collapse
Affiliation(s)
- P D Marsh
- Department of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Egija Zaura
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
16
|
Im H, Choi SY, Son S, Mitchell RJ. Combined Application of Bacterial Predation and Violacein to Kill Polymicrobial Pathogenic Communities. Sci Rep 2017; 7:14415. [PMID: 29089523 PMCID: PMC5663959 DOI: 10.1038/s41598-017-14567-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/11/2017] [Indexed: 12/02/2022] Open
Abstract
Violacein is a bisindole antibiotic that is effective against Gram-positive bacteria while the bacterial predator, Bdellovibrio bacteriovorus HD100, predates on Gram-negative strains. In this study, we evaluated the use of both together against multidrug resistant pathogens. The two antibacterial agents did not antagonize the activity of the other. For example, treatment of Staphylococcus aureus with violacein reduced its viability by more than 2,000-fold with or without B. bacteriovorus addition. Likewise, predation of Acinetobacter baumannii reduced the viability of this pathogen by more than 13,000-fold, regardless if violacein was present or not. When used individually against mixed bacterial cultures containing both Gram-positive and Gram-negative strains, violacein and B. bacteriovorus HD100 were effective against only their respective strains. The combined application of both violacein and B. bacteriovorus HD100, however, reduced the total pathogen numbers by as much as 84,500-fold. Their combined effectiveness was also demonstrated using a 4-species culture containing S. aureus, A. baumannii, Bacillus cereus and Klebsiella pneumoniae. When used alone, violacein and bacterial predation reduced the total population by only 19% and 68%, respectively. In conjunction with each other, the pathogen viability was reduced by 2,965-fold (99.98%), illustrating the prospective use of these two antimicrobials together against mixed species populations.
Collapse
Affiliation(s)
- Hansol Im
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seong Yeol Choi
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sangmo Son
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Robert J Mitchell
- Division of Biological Sciences, School of Life Sciences Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
17
|
Effect of predatory bacteria on the gut bacterial microbiota in rats. Sci Rep 2017; 7:43483. [PMID: 28262674 PMCID: PMC5337950 DOI: 10.1038/srep43483] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/24/2017] [Indexed: 01/14/2023] Open
Abstract
Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus are Gram-negative proteobacteria that are obligate predators of other Gram-negative bacteria and are considered potential alternatives to antibiotics. Most studies focusing on predatory bacteria have been performed in vitro, thus the effect of predatory bacteria on a live host, including the impact on the ecology of the native microbiota, has yet to be fully examined. In this study, intrarectal inoculations of Sprague-Dawley rats with predatory bacteria were performed. Additionally, feces were collected for seven days post-inoculation to determine the effect on gut bacterial diversity. Rat colonic tissue exhibited no abnormal histopathological effects due to predatory bacteria. A modest increase in pro-inflammatory cytokines was measured in the colons of rats inoculated with predatory bacteria by 24 and 48 hours, with all but IL-13 returning to baseline by seven days. V4 16S rRNA gene sequencing of fecal DNA demonstrated minimal shifts in taxonomic representation over the week due to predatory bacteria. Changes in bacterial populations due to exposure to B. bacteriovorus are predicted to contribute to health, however, an overgrowth of Prevotella was observed due to exposure to M. aeruginosavorus. This study further addresses safety concerns associated with the potential use of predatory bacteria to treat infections.
Collapse
|
18
|
Makowski Ł, Donczew R, Weigel C, Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Initiation of Chromosomal Replication in Predatory Bacterium Bdellovibrio bacteriovorus. Front Microbiol 2016; 7:1898. [PMID: 27965633 PMCID: PMC5124646 DOI: 10.3389/fmicb.2016.01898] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/11/2016] [Indexed: 11/18/2022] Open
Abstract
Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase) and replicating cells (the intracellular-growth phase). The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although, we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication - DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC) is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box [5'-NN(A/T)TCCACA-3']. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus). We compared the architecture of the DnaA-oriC complexes (orisomes) in homologous (oriC and DnaA from B. bacteriovorus) and heterologous (BdoriC and DnaA from prey, Escherichia coli or Pseudomonas aeruginosa) systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.
Collapse
Affiliation(s)
- Łukasz Makowski
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Rafał Donczew
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | | | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy – Polish Academy of SciencesWrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of WrocławWrocław, Poland
| |
Collapse
|
19
|
Mosca A, Leclerc M, Hugot JP. Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem? Front Microbiol 2016; 7:455. [PMID: 27065999 PMCID: PMC4815357 DOI: 10.3389/fmicb.2016.00455] [Citation(s) in RCA: 358] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/21/2016] [Indexed: 12/12/2022] Open
Abstract
Most of the Human diseases affecting westernized countries are associated with dysbiosis and loss of microbial diversity in the gut microbiota. The Western way of life, with a wide use of antibiotics and other environmental triggers, may reduce the number of bacterial predators leading to a decrease in microbial diversity of the Human gut. We argue that this phenomenon is similar to the process of ecosystem impoverishment in macro ecology where human activity decreases ecological niches, the size of predator populations, and finally the biodiversity. Such pauperization is fundamental since it reverses the evolution processes, drives life backward into diminished complexity, stability, and adaptability. A simple therapeutic approach could thus be to reintroduce bacterial predators and restore a bacterial diversity of the host microbiota.
Collapse
Affiliation(s)
- Alexis Mosca
- Hôpital Robert Debré, Assistance Publique-Hopitaux de ParisParis, France; Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Sorbonne Paris-Cité, United Medical Resources 1149 Labex InflamexParis, France
| | - Marion Leclerc
- INRA, AgroParisTech, United Medical Resources 1319 MICALIS Paris, France
| | - Jean P Hugot
- Hôpital Robert Debré, Assistance Publique-Hopitaux de ParisParis, France; Institut National de la Santé et de la Recherche Médicale et Université Paris Diderot, Sorbonne Paris-Cité, United Medical Resources 1149 Labex InflamexParis, France
| |
Collapse
|
20
|
|