1
|
Camargo A, Bohorquez L, López DP, Ferrebuz-Cardozo A, Castellanos-Rozo J, Díaz-Ovalle J, Rada M, Camargo M, Ramírez JD, Muñoz M. Clostridium perfringens in central Colombia: frequency, toxin genes, and risk factors. Gut Pathog 2024; 16:32. [PMID: 38965598 PMCID: PMC11225238 DOI: 10.1186/s13099-024-00629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
Clostridium perfringens is an opportunistic bacterium that causes intestinal diseases in both humans and animals. This study aimed to assess the frequency of C. perfringens and the presence of toxin-encoding genes in fecal samples from individuals with or without gastrointestinal symptoms in the Department of Boyacá, Colombia. Additionally, risk factors associated with carriage and disease development were analyzed. A total of 114 stool samples were analyzed using a molecular test based on specific polymerase chain reaction (PCR) targeting 16S-rRNA and alpha toxin (cpa) genes. For individuals with a positive result for the PCR test, stool samples were cultured on Tryptose Sulfite Cycloserine (TSC) agar. Two to five colonies forming units were selected based on phenotypic characteristics, resulting in 56 bacterial isolates. These isolates were then analyzed for toxin-coding genes associated with gastrointestinal diseases. In addition, sociodemographic and clinical data from 77 individuals were also analyzed. The overall frequency of C. perfringens was 19.3% (n = 22/114). The detection frequency in 77 individuals with clinical data was 16.6% (n = 5/30) among symptomatic individuals and 21.2% (n = 10/47) among asymptomatic individuals. All 56 isolates obtained carried the cpa gene, while cpb2 was present in 10.7% (n = 6/56); cpe and cpb genes were not detected. Notably, diabetes and autoimmune diseases are significantly associated with an increased risk of C. perfringens detection (adjusted OR 8.41: 95% CI 1.32-35.89). This study highlights an elevated frequency of C. perfringens and the presence of the cpb2 gene in asymptomatic individuals compared with their symptomatic counterparts. These findings offer insights into the distribution and virulence factors of C. perfringens at a micro-geographical level. This information supports the need for developing tailored prevention strategies based on local characteristics to promote active surveillance programs based on molecular epidemiology.
Collapse
Affiliation(s)
- Anny Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Universidad de Boyacá, Tunja, Colombia
| | - Laura Bohorquez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | | | | | | | | | | | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Funza, Cundinamarca, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
2
|
Li M, Wang Y, Hou B, Chen Y, Hu M, Zhao X, Zhang Q, Li L, Luo Y, Liu Y, Cai Y. Toxin gene detection and antibiotic resistance of Clostridium perfringens from aquatic sources. Int J Food Microbiol 2024; 415:110642. [PMID: 38428166 DOI: 10.1016/j.ijfoodmicro.2024.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Clostridium perfringens is a zoonotic opportunistic pathogen that produces toxins that can cause necrotic enteritis and even "sudden death disease". This bacterium is widely distributed in the intestines of livestock and human, but there are few reports of distribution in aquatic animals (Hafeez et al., 2022). In order to explore the isolation rate of C. perfringens and the toxin genes they carry, 141 aquatic samples, including clams (Ruditapes philippinarum), oysters (Ostreidae), and mud snails (Bullacta exerata Philippi), were collected from the coastal areas of Shandong Province, China. C. perfringens strains were tested for cpa, cpb, etx, iap, cpb2, cpe, netB, and tpeL genes. 45 clam samples were boiled at 100 °C for 5 min before bacteria isolation. 80 strains were isolated from 141 samples with the positive rate being 57 %.And the positive rates of cooked clams was 87 % which was higher than the average. In detection of 8 toxin genes, all strains tested cpa positive, 3 strains netB positive, and 2 cpb and cpe, respectively. 64 strains were selected to analyze the antibiotic resistance phenotype of 10 antibiotics. The average antibiotic resistance rates of the strains to tetracycline, clindamycin, and ampicillin were 45 %, 20 %, and 16 % respectively, and the MIC of 4 strains to clindamycin was ≥128 μg/mL. A high isolation rate of C. perfringens from aquatic animals was shown, and it was isolated from boiled clams for the first time, in which cpe and netB toxin genes were detected for the first time too. The toxin encoded by cpe gene can cause food poisoning of human, thus the discoveries of this study have certain guiding significance for food safety. Antibiotics resistant C. perfringens of aquatic origin may arise from transmission in the terrestrial environment or from antibiotic contamination of the aquaculture environment and is of public health significance.
Collapse
Affiliation(s)
- Mengxuan Li
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Ying Wang
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Bingyu Hou
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yibao Chen
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ming Hu
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xiaonan Zhao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qing Zhang
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lulu Li
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yanbo Luo
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuqing Liu
- Shandong Academy of Agricultural Sciences, Jinan, China.
| | - Yumei Cai
- College of Veterinary Medicine, Shandong Agricultural University, Taian, China.
| |
Collapse
|
3
|
Gautam H, Ayalew LE, Shaik NA, Subhasinghe I, Popowich S, Chow-Lockerbie B, Dixon A, Ahmed KA, Tikoo SK, Gomis S. Exploring the predictive power of jejunal microbiome composition in clinical and subclinical necrotic enteritis caused by Clostridium perfringens: insights from a broiler chicken model. J Transl Med 2024; 22:80. [PMID: 38243294 PMCID: PMC10799374 DOI: 10.1186/s12967-023-04728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/13/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Necrotic enteritis (NE) is a severe intestinal infection that affects both humans and poultry. It is caused by the bacterium Clostridium perfringens (CP), but the precise mechanisms underlying the disease pathogenesis remain elusive. This study aims to develop an NE broiler chicken model, explore the impact of the microbiome on NE pathogenesis, and study the virulence of CP isolates with different toxin gene combinations. METHODS This study established an animal disease model for NE in broiler chickens. The methodology encompassed inducing abrupt protein changes and immunosuppression in the first experiment, and in the second, challenging chickens with CP isolates containing various toxin genes. NE was evaluated through gross and histopathological scoring of the jejunum. Subsequently, jejunal contents were collected from these birds for microbiome analysis via 16S rRNA amplicon sequencing, followed by sequence analysis to investigate microbial diversity and abundance, employing different bioinformatic approaches. RESULTS Our findings reveal that CP infection, combined with an abrupt increase in dietary protein concentration and/or infection with the immunosuppressive variant infectious bursal disease virus (vIBDV), predisposed birds to NE development. We observed a significant decrease (p < 0.0001) in the abundance of Lactobacillus and Romboutsia genera in the jejunum, accompanied by a notable increase (p < 0.0001) in Clostridium and Escherichia. Jejunal microbial dysbiosis and severe NE lesions were particularly evident in birds infected with CP isolates containing cpa, netB, tpeL, and cpb2 toxin genes, compared to CP isolates with other toxin gene combinations. Notably, birds that did not develop clinical or subclinical NE following CP infection exhibited a significantly higher (p < 0.0001) level of Romboutsia. These findings shed light on the complex interplay between CP infection, the gut microbiome, and NE pathogenesis in broiler chickens. CONCLUSION Our study establishes that dysbiosis within the jejunal microbiome serves as a reliable biomarker for detecting subclinical and clinical NE in broiler chicken models. Additionally, we identify the potential of the genera Romboutsia and Lactobacillus as promising candidates for probiotic development, offering effective alternatives to antibiotics in NE prevention and control.
Collapse
Affiliation(s)
- Hemlata Gautam
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Lisanework E Ayalew
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Noor Ahmad Shaik
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Iresha Subhasinghe
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Alexa Dixon
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapy, School of Public Health, University of Saskatchewan, 5D40 Health Sciences, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
4
|
Huang KY, Liang BS, Zhang XY, Chen H, Ma N, Lan JL, Li DY, Zhou ZW, Yang M. Molecular characterization of Clostridium perfringens isolates from a tertiary children's hospital in Guangzhou, China, establishing an association between bacterial colonization and food allergies in infants. Gut Pathog 2023; 15:47. [PMID: 37807056 PMCID: PMC10561448 DOI: 10.1186/s13099-023-00572-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Cow's milk protein allergy (CMPA) is one of the most common types of food allergy in infants. Faecal pathogen cultures showed that the positive rate of Clostridium perfringens was more than 30%, which was significantly higher than that for other bacteria. Therefore, it is speculated that Clostridium perfringens colonization may be one of the pathogenetic factors for CMPA in infants. We conducted a real-world evidence study. Infants aged 0-6 months with diarrhoea and mucoid and/or bloody stools were recruited from a large tertiary hospital in China. Faecal pathogen cultures for the detection of Clostridium perfringens were confirmed by flight mass spectrometry, and potential toxin genes were identified using PCR. After 12 months of follow-up, the diagnoses of CMPA and food allergy were recorded. The correlation was assessed by Pearson correlation analysis. RESULTS In this study, 358 infants aged 0-6 months with gastrointestinal symptoms and faecal pathogen cultures were recruited. A total of 270 (44.07% girls; mean age, 2.78 ± 2.84 months) infants were followed up for 12 months. Overall, the rate of positivity for Clostridium perfringens in faecal pathogen cultures was 35.75% (128/358) in infants aged ≤ 6 months. The earliest Clostridium perfringens colonization was detected within 2 days after birth. The majority of Clostridium perfringens isolates were classified as type C in 85 stool samples. In the Clostridium perfringens-positive group, 48.21% (54/112) of infants were clinically diagnosed with food allergies after 12 months, including 37.5% (42/112) with CMPA, which was significantly higher than that of the negative group, with 7.59% (12/158) exhibiting food allergies and 5.06% (8/158) presenting CMPA (P < 0.0001). Faecal Clostridium perfringens positivity was significantly correlated with CMPA, food allergy, faecal occult blood, faecal white blood cells, antibiotic use, increased peripheral blood platelet counts, and decreased haemoglobin levels (P < 0.0001). CONCLUSIONS This study demonstrates that intestinal colonization by Clostridium perfringens is common in infants. The majority of Clostridium perfringens isolates are classified as type C. Colonization of the intestine by Clostridium perfringens is associated with the development of CMPA and food allergy in infants.
Collapse
Affiliation(s)
- Kun-Yi Huang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Shao Liang
- Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Yan Zhang
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ni Ma
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiao-Li Lan
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Ding-You Li
- Division of Gastroenterology, Children's Mercy Hospital, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Zhen-Wen Zhou
- Clinical Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, China.
| | - Min Yang
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
- Department of Pediatrics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Zhong JX, Zheng HR, Wang YY, Bai LL, Du XL, Wu Y, Lu JX. Molecular characteristics and phylogenetic analysis of Clostridium perfringens from different regions in China, from 2013 to 2021. Front Microbiol 2023; 14:1195083. [PMID: 37485514 PMCID: PMC10359303 DOI: 10.3389/fmicb.2023.1195083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/19/2023] [Indexed: 07/25/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is a significant foodborne pathogen and a common cause of intestinal diseases in both animals and humans. Our study investigated MLST, phenotypic antimicrobial resistance profiles, and resistance genes among isolates from human, animal and food. 186 C. perfringens isolates were obtained from nine provinces in China between 2013 and 2021. Additionally, some specific ST complexes were analyzed by cgMLST and cgSNP to investigate genetic relatedness. MLST indicated the most prevalent STs of C. perfringens of human and animal origin were as follows: ST221 (5/147), ST62 (4/147), ST408 (4/147), and ST493 (4/147) were predominant in humans, while ST479 (5/25) was the major type in animals. Within the same ST complex, genetically unrelated relationships or potential clustering/transmission events were further recognized by cgMLST and cgSNP, illustrating that these two methods are valuable in defining outbreaks and transmission events. All tested isolates were susceptible to vancomycin and meropenem. The rates of resistance to metronidazole, penicillin, cefoxitin, moxifloxacin, and chloramphenicol were low (metronidazole: 1.08%; penicillin: 9.68%; cefoxitin: 0.54%; moxifloxacin: 6.45%; and chloramphenicol: 3.76%). Interestingly, 49.66% of human origin were clindamycin-resistant, and 18.2% were penicillin-insensitive. Importantly, the portion of MDR isolates was significantly lower than in previous reports. The study provides an overview of the epidemiological characteristics of C. perfringens with different origins and hosts in China. C. perfringens demonstrated remarkable genetic diversity and distinct molecular features compared to antibiotic-resistance profiles from other studies.
Collapse
Affiliation(s)
- Jia xin Zhong
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Hao ran Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuan yuan Wang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Lu lu Bai
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Xiao li Du
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Jin xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
6
|
Tracking Clostridium perfringens strains from breeding duck farm to commercial meat duck farm by multilocus sequence typing. Vet Microbiol 2022; 266:109356. [DOI: 10.1016/j.vetmic.2022.109356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 11/23/2022]
|
7
|
Haider Z, Ali T, Ullah A, Basit A, Tahir H, Tariq H, Ilyas SZ, Hayat Z, Rehman SU. Isolation, toxinotyping and antimicrobial susceptibility testing of Clostridium perfringens isolated from Pakistan poultry. Anaerobe 2021; 73:102499. [PMID: 34890812 DOI: 10.1016/j.anaerobe.2021.102499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/16/2021] [Accepted: 12/04/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVES Clostridium perfringens is a causative agent of enteric infections in animals including poultry by producing twenty different types of toxins. A single strain produces only a subset of these toxins, which form the basis of its classification into seven toxinotypes (A-G). C. perfringens toxinotype A is a widespread cause of necrotic enteritis (NE) in poultry. The current study was conducted to determine the prevalence of different toxins and antimicrobial susceptibility of C. perfringens isolated from Pakistan NE affected poultry. METHODS A total of 134 intestinal samples of the diseased birds were collected postmortem and processed for isolation of C. perfringens using tryptose sulphite cycloserine (TSC) agar supplemented with d-cycloserine. Isolates were confirmed by Gram's staining, biochemical and molecular analyses. Toxinotyping was performed by multiplex PCR. Antimicrobial susceptibility profile of isolates was performed by Kirby Bauer disc diffusion method. RESULTS A total of 34 strains of C. perfringens were isolated from 134 samples with prevalence rate of 25.37%. All the isolated strains were toxinotype A, as they were positive for alpha toxin (CPA) and negative for other tested toxins such as beta (CPB), epsilon (ETX), iota (ITX), enterotoxin (CPE), toxin perfringens large (TpeL) and necrotic B-like toxin (NetB). Interestingly, all the isolated strains of C. perfringens were multidrug resistant. The highest resistance was observed against Neomycin, Trimethoprim, Tetracycline and Lincomycin which are routinely used at Pakistan poultry production. CONCLUSION C. perfringens toxinotype A is prevalent in Pakistan poultry. Incidence of C. perfringens with prevalence rate of 25.37% can pose serious threat to Pakistan's poultry industry given that all the isolated strains were multidrug resistant. Our findings highlight the need for new antibiotics and antibiotic alternatives to overcome multidrug resistance.
Collapse
Affiliation(s)
- Zulquernain Haider
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Tanveer Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Asim Ullah
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Abdul Basit
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Hamza Tahir
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Hafsa Tariq
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Syeda Zainab Ilyas
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| | - Zafar Hayat
- Department of Animal Sciences, College of Agriculture, University of Sarghoda, Sarghoda, Pakistan; Department of Animal Sciences, CVAS- Jhang Campus, University of Veterinary & Animal Sciences, Lahore, Pakistan.
| | - Shafiq-Ur Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, 54590, Pakistan.
| |
Collapse
|
8
|
Xiu L, Zhu C, Zhong Z, Liu L, Chen S, Xu W, Wang H. Prevalence and multilocus sequence typing of Clostridium perfringens isolated from different stages of a duck production chain. Food Microbiol 2021; 102:103901. [PMID: 34809933 DOI: 10.1016/j.fm.2021.103901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/26/2022]
Abstract
Clostridium perfringens (C. perfringens) is a zoonotic microorganism and rarely reported in duck production chain. This study aimed to investigate prevalence, serotype distribution, antibiotic resistance and genetic diversity of C. perfringens at different stages of a duck production chain. In total, 319 samples were collected from a large-scale rearing and slaughter one-stop enterprise in Weifang, China, of which 42.95% of samples were positive for C. perfringens. All isolates were genotype A. Cpe and cpb2 genes were found in 2.54% and 24.87% of the isolates, respectively. Antimicrobial susceptibility testing revealed that 55.47% of the isolates resistant to at least 5 classes of commonly used antibiotics. Multilocus sequence typing (MLST) results showed that 65 representative isolates were divided into 47 sequences types (STs), 33.85% of them were included into four clonal complexes (CC). Some of isolates from breeding and slaughtering stages were distributed in the same CC or ST, indicating duck products may be contaminated by C. perfringens originated from the breeding stage. Part of duck isolates were distributed in the same CC as human isolates and systemically close with human isolates. The high contamination rates of duck products, the isolates with multi-drug antibiotic resistance or the cpe gene, and the close relationship between strains from human and ducks, indicated potential public health risks, not only control measures at slaughtering stage but also at rearing stage should be considered to reduce this risks.
Collapse
Affiliation(s)
- Li Xiu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chuangang Zhu
- Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Min hang District, Shanghai, China
| | - Zhaobing Zhong
- Tai'an Daiyue District Animal Husbandry and Veterinary Bureau, Tai'an, Shandong, 271018, China
| | - Lixue Liu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Suo Chen
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Wenping Xu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Hairong Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
9
|
Clonal diversity of Clostridium perfringens human clinical isolates with various toxin gene profiles based on multilocus sequence typing and alpha-toxin (PLC) typing. Anaerobe 2021; 72:102473. [PMID: 34743038 DOI: 10.1016/j.anaerobe.2021.102473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Clostridium perfringens is a common anaerobic pathogen causing enteritis/enterocolitis and wound infections in humans. We analyzed clonal diversity and toxin gene prevalence in C. perfringens clinical isolates from humans in northern Japan. METHODS Prevalence of nine toxin genes was analyzed for 585 C. perfringens isolates from patients collected for 20-month period between May 2019 and December 2020 by molecular methods. Sequence type (ST) based on multilocus sequence typing (Xiao's scheme) and alpha-toxin (PLC) sequence type were determined for a total of 124 isolates selected in the present study along with those in our previous study (2017-2018). RESULTS Toxinotypes A (68.2%) was the most frequent, followed by F (31.6%), and G (0.2%), while additional toxin genes encoding binary enterotoxin (BEC/CPILE) and beta2 toxin were identified in one and six isolates, respectively. Among the 124 isolates with various toxin gene profiles, 62 STs including 53 novel types were identified, revealing the presence of six clonal complexes (CCs) consisting of 27 STs. Most of enterotoxin gene (cpe)-positive isolates belonged to CC36, CC41, and CC117. Based on 22 key amino acids in alpha toxin sequence, four PLC types (I-IV) including 21 subtypes were classified, and their relation to individual STs/CCs was clarified. Two isolates harboring bec/cpile belonged to different STs (ST95, ST131) and PLC types (If, IVb), indicating distribution of this toxin gene to distinct lineages. CONCLUSIONS The present study revealed the diversity in C. perfringens clones of human origin with various toxin gene profiles represented by ST/CC and PLC type.
Collapse
|
10
|
Prevalence and characterization of Clostridium perfringens isolated from different chicken farms in China. Anaerobe 2021; 72:102467. [PMID: 34688908 DOI: 10.1016/j.anaerobe.2021.102467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
Clostridium perfringens (C. perfringens) is a common pathogenic microorganism present in nature, which can cause animal and human diseases, such as necrotizing enteritis (NE) in poultry. Little is known about the current prevalence status of C. perfringens from poultry farms of different types and regions in China. From December 2018 to August 2019, we investigated the prevalence, genotype distribution and drug resistance of C. perfringens from Guangdong, Pingyin, Tai'an and Weifang. A total of 622 samples were collected and processed for C. perfringens isolation, among which 239 (38.42%) samples were determined to be positive for C. perfringens. A total of 312 isolates of C. perfringens were recovered (1-5 strains were isolated for each positive sample), and 98.72% of the isolates were identified as type A, while the others were type F. Antimicrobial susceptibility testing revealed that 47.71% of the isolates were resistant to at least five classes of commonly used antibiotics. Multilocus sequence typing (MLST) showed that 74 representative isolates were divided into 63 sequence types (STs), and the Simpson's diversity index (Ds) of the STs for the five farms was 0.9799. 37.84% of the isolates were classified into seven clonal complexes (CC1-CC7), and the isolates from the same farm were more concentrated in the minimum spanning tree. In addition, some cloaca isolates and feed isolates were distributed in the same ST or CC; this result indicates that the C. perfringens in chicken can come from the environment (feed etc.).
Collapse
|
11
|
Jiang H, Qin YM, Yang XT, Li QL, Shen QC, Ding JB, Wei RY, Zhang JD, Sun JL, Sun MJ, Fan XZ. Bacteriological and molecular typing of Clostridium perfringens strains isolated in retail beef in Beijing, China. J Vet Med Sci 2021; 83:1593-1596. [PMID: 34456197 PMCID: PMC8569878 DOI: 10.1292/jvms.21-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Clostridium perfringens is an important zoonotic pathogen. This study was designed to explore the prevalence and toxin types of C. perfringens in retail beef collected from Beijing, China. Among 221 beef samples collected, 53 samples were positive for C. perfringens, resulting in the average prevalence as 23.98%. By toxin gene-based typing, the most C. perfringens strains belong to type A (96.23%, 51/53), only 2 strains were identified as type D. By a multi-locus sequence typing (MLST)-based analysis, a total of 36 sequence types (STs) were detected, and the most STs (n=30) represented just a single strain. These finding suggested that the prevalence of C. perfringens in retail beef in Beijing was considerably high and these bacteria displayed extreme diversity in genetics.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Yu-Ming Qin
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Xiao-Tong Yang
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Qiao-Ling Li
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Qing-Chun Shen
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Jia-Bo Ding
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Run-Yu Wei
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jian-Dong Zhang
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Jia-Li Sun
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Ming-Jun Sun
- Laboratory of Zoonoses, China Animal Health and Epidemiology Center, Qingdao, 266032, China
| | - Xue-Zheng Fan
- Department of Veterinary Technology, China Institute of Veterinary Drug Control, Beijing, 100081, China
| |
Collapse
|
12
|
Xu W, Zhang H, Hu Z, Miao Z, Zhang Y, Wang H. Prevalence and multilocus sequence typing of Clostridium perfringens isolated from retail chicken products and diseased chickens in Tai'an region, China. Vet Med Sci 2021; 7:2339-2347. [PMID: 34535963 PMCID: PMC8604123 DOI: 10.1002/vms3.616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Clostridium perfringens is an important zoonotic microorganism, which can cause diseases in animals and humans under suitable conditions. Contamination of C. perfringens in chicken products has been reported worldwide, but the genetic diversity and relationship of isolates were seldom analyzed. Objectives The current study was undertaken to investigate the prevalence of C. perfringens from retail chicken products and sick chickens with suspected necrotic enteritis (NE) in Tai'an area, China. Methods In total, 295 samples were collected from Tai'an large poultry retail market and veterinary hospital in 2018, then the isolates were tested for toxin genes, drug resistance and multilocus sequence typing (MLST). Results Overall, 138 (46.78%) samples were determined to be positive for C. perfringens, and 99.37% of the isolates were identified as C. perfringens type A, with the remaining isolates being type F; 18.99% of the isolates were positive for cpb2 gene. Antimicrobial susceptibility testing revealed that 52.27% of the isolates from poultry retail market and diseased chickens showed multiple antibiotic resistance. MLST results showed that 50 analyzed isolates can be divided into 39 sequences types (STs), clustered in three clonal complexes (CCs) and 23 singletons. Although most of the isolates belong to type A, considerable genetic diversity can be observed, with the Simpson's diversity index up to 0.9181. MLST results and phylogenetic analysis showed that a portion of the isolates from humans and chickens were assigned to the same clusters in the phylogenetic tree or found to be in the same CCs, indicating the chicken isolates and the human isolates are related in certain stratification. Conclusions This study showed that the contamination rate of C. perfringens in the local retail chicken products was relatively high. Most of the isolates exhibit broad‐spectrum antimicrobial resistance. The high antibiotic resistance of C. perfringens isolates and the relationship between isolates from human and chicken indicated potential public health risks.
Collapse
Affiliation(s)
- Wenping Xu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong Agricultural University, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong Agricultural University, China
| | - Huining Zhang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong Agricultural University, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong Agricultural University, China
| | - Zixin Hu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong Agricultural University, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong Agricultural University, China
| | - Zengmin Miao
- School of Life Sciences, Shandong First Medical University, Tai'an, China
| | - Yuanrui Zhang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong Agricultural University, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong Agricultural University, China
| | - Hairong Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, Shandong Agricultural University, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, Shandong Agricultural University, China
| |
Collapse
|
13
|
Xiaoting W, Chengcheng N, Chunhui J, Yan L, Jing L, Qingling M, Jun Q, Lixia W, Kuojun C, Jinsheng Z, Zaichao Z, Weiwei Y, Yelong P, Xuepeng C. Antimicrobial resistance profiling and molecular typing of ruminant-borne isolates of Clostridium perfringens from Xinjiang, China. J Glob Antimicrob Resist 2021; 27:41-45. [PMID: 34438107 DOI: 10.1016/j.jgar.2021.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Clostridium perfringens (C. perfringens) can cause intestinal diseases in livestock and humans, which seriously threatens the healthy development of animal husbandry and human food safety. Here, the characteristics of antimicrobial resistance and molecular typing of ruminant-borne strains of C. perfringens in Xinjiang, China were explored and profiled. METHODS A total of 307 clinical feces collected from ruminants (cattle and sheep) with diarrheal symptoms were screened for C. perfringens. The recovered isolates were characterized in respect to their antimicrobial resistance pattern and molecular typing. RESULTS A total of 109 isolates of C. perfringens were isolated from 307 clinical feces of ruminants, most of which displayed the multidrug resistance (MDR) phenotype. Demonstration of the quinolone-resistance gene was the highest among the isolates (70.6%). The multiplex PCR typing based on toxin genes showed that type A and type D strains made up 82.6% (90/109) and 17.4% (19/109), among which, the isolates carrying β2 gene occupied 43.3% (39/90) of type A strains and 31.6% (6/19) of type D strains. These isolates were divided into 6 genotypes (I-VI) by enterobacterial repetitive intergenic consensus sequence-based PCR (ERIC-PCR) method. A total of 33 ST types (ST1-ST33) were identified by multilocus sequence typing (MLST) method. CONCLUSION C. perfringens isolates with multidrug resistance (MDR) were frequent and circulating in ruminants. Among them, type A-Ⅰ-ST19 was the dominant genotype of C. perfringens, displaying obvious genetic diversity. This study provided important epidemiological data for the risk assessment of food safety associated with ruminant-borne C. perfringens in Xinjiang, China.
Collapse
Affiliation(s)
- Wang Xiaoting
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China; Department of Animal Laboratory, Chifeng Municipal Hospital, Chifeng, Inner Mongolia, 024000, China
| | - Ning Chengcheng
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Ji Chunhui
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Yan
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Li Jing
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Meng Qingling
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Qiao Jun
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China.
| | - Wang Lixia
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, China
| | - Cai Kuojun
- Center for Animal Disease Prevention and Control, Urumqi, Xinjiang, 830000, China
| | - Zhang Jinsheng
- Center for Animal Disease Prevention and Control, Tacheng, Xinjiang, 834700, China
| | - Zhang Zaichao
- Center for Animal Disease Prevention and Control, Changji, Xinjiang, 831500, China
| | - Yu Weiwei
- Center for Animal Disease Prevention and Control, Korla, Xinjiang, 841000, China
| | - Peng Yelong
- Center for Animal Disease Prevention and Control, Aksu, Xinjiang, 8430000, China
| | - Cai Xuepeng
- State Key Lab of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| |
Collapse
|
14
|
Xu W, Wang H, Chen S, Chen Y, Liu L, Wu W. Tracing Clostridium perfringens strains along the chicken production chain from farm to slaughter by multilocus sequence typing. Zoonoses Public Health 2021; 68:431-442. [PMID: 33878232 DOI: 10.1111/zph.12831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/09/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
The current study is undertaken to characterize the prevalence, genotypes distribution, antibiotic resistance and genetic diversity of Clostridium perfringens (C. perfringens) collected from different stages of a chicken production chain. In total, 579 samples from a broiler farm and 378 samples from the slaughterhouse were collected from a large-scale rearing and slaughter one-stop enterprise in Weifang, China, between June and July 2019, of which 30.40% of the samples from farm and 54.50% of samples from slaughterhouse were determined to be positive for C. perfringens, respectively. The contamination of chicken products was relatively serious, with the total positive rate of carcasses at 59.73%; the positive rate of carcass samples was the highest in the evisceration process, which might be the critical point of C. perfringens contamination. A total of 476 isolates of C. perfringens were recovered; and 99.58% of recovered isolates were identified as type A, with the remaining isolates being type G. Antimicrobial susceptibility testing revealed that 97.15% of the isolates showed multiple antibiotic resistance and 67.89% of them were resistant to at least five classes of commonly used antibiotics. Multilocus sequence typing results of 91 representative isolates showed that the isolates can be divided into 74 sequences types (STs); 40.66% of the isolates can be included into seven clonal complexes (CCs). Although most of the isolates were classified as type A, considerable genetic diversity was observed, with the Simpson's diversity index of ST up to 0.9902. Some isolates from farm stage and slaughter stage were distributed in the same ST or CC, indicating that chicken products may be contaminated by the same ST or CC of C. perfringens originated from the farm stage. The high contamination rates of chicken products and the widespread multiple antibiotic resistance of isolates indicated potential public health risks, control measures at rearing and slaughtering stage should be considered to reduce this risk.
Collapse
Affiliation(s)
- Wenping Xu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Hairong Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Suo Chen
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Yong Chen
- Pingyin Animal Husbandry and Veterinary bureau, Jinan, China
| | - Lixue Liu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, China
| | - Wei Wu
- Weifang customs of the People's Republic of China, Weifang, China
| |
Collapse
|
15
|
Xiu L, Liu Y, Wu W, Chen S, Zhong Z, Wang H. Prevalence and multilocus sequence typing of Clostridium perfringens isolated from 4 duck farms in Shandong province, China. Poult Sci 2020; 99:5105-5117. [PMID: 32988549 PMCID: PMC7598333 DOI: 10.1016/j.psj.2020.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 01/23/2023] Open
Abstract
Clostridium perfringens is an important zoonotic microorganism. The present study was undertaken to investigate prevalence, serotype distribution, antibiotic resistance, and genetic diversity of C. perfringens isolates from 4 duck farms in Shandong, China. In total, 424 samples of cloacal swabs and environment were collected from 3 commercial meat-type duck farms in Tai'an, Liaocheng, and Weifang and one breeder duck farm in Liaocheng between December 2018 and June 2019, of which, 207 (48.82%) samples were determined to be positive for C. perfringens; a total of 402 isolates of C. perfringens were recovered, all of which were identified as type A; 30.85% of the isolates were positive for cpb2 gene; and cpe gene was found in 0.5% of the isolates. Antimicrobial susceptibility testing revealed that some of the isolates exhibited high antibiotic resistance, and 39.14% of the isolates were resistant to at least 5 classes of commonly used antibiotics. Multilocus sequence typing analysis showed that 85 representative isolates encompassed 54 different sequences types (STs), clustered in 5 clonal complexes (CCs) and 40 singletons. ST3, the most common ST in 54 STs, constituting 15.29% of all isolates, was also the most prevalent ST of isolates from the Liaocheng breeder duck farm (farm 3). CC1, the most prolific CC, containing 15.29% of the analyzed isolates, was the popular subtype of isolates from Liaocheng meat duck farm (farm 2). Although all the isolates belong to type A, the genetic diversity varied greatly in different regions; the Simpson's Diversity Index of STs for Liaocheng, Tai'an, and Weifang were 0.5941, 0.9198, and 0.9627, respectively. Some of cloacal isolates and environmental isolates were distributed in the same ST or CC, indicating close genetic relationship between cloacal isolates and environmental isolates. A portion of the strains from humans and ducks was found to be phylogenetically close. The close relationship between strains from humans and ducks, the high antibiotic resistance of C. perfringens, and the cpe-positive isolates indicated potential public health risks.
Collapse
Affiliation(s)
- Li Xiu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Yu Liu
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Wei Wu
- Inspection Department, Weifang Customs of the People's Republic of China, Weifang, Shandong 261031, China
| | - Suo Chen
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China
| | - Zhaobing Zhong
- Epidemic Prevention Department, Tai'an Daiyue District Animal Husbandry and Veterinary Bureau, Tai'an, Shandong 271018, China
| | - Hairong Wang
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
16
|
Verma AK, Abdel-Glil MY, Madesh A, Gupta S, Karunakaran AC, Inbaraj S, Abhishek, Nagaleekar VK, Chaudhuri P, Agarwal RK, Thomas P. Multilocus sequence typing of Clostridium perfringens strains from neonatal calves, dairy workers and associated environment in India. Anaerobe 2020; 63:102212. [PMID: 32413405 DOI: 10.1016/j.anaerobe.2020.102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023]
Abstract
Clostridium perfringens is a globally recognized zoonotic pathogen. We report isolation and genotyping of C. perfringens from neonatal calves, dairy workers and their associated environment in India. A total of 103 fecal samples from neonatal calves, 25 stool swabs from the dairy workers and 50 samples from their associated environment were collected from two dairy farms. C. perfringens was detected in 26 out of 103 (25.2%) neonatal calf samples, 7 out of 25 (28%) human stool samples and 17 out of 50 (34%) environmental samples. C. perfringens type A strains were predominant in neonatal calves (24/26; 92.3%) and associated environment (15/17; 88.2%). In contrast, strains from dairy workers mostly belonged to type F (5/7; 71.4%), which also carried the beta2 toxin gene. Seventeen strains were analyzed by multilocus sequence typing (MLST) for studying genotypic relationship along with 188 C. perfringens strains available from public databases. A total of 112 sequence types (STs) were identified from 205 C. perfringens strains analyzed. A Clonal complex (CC) represented by three STs (ST 98, ST 41 and ST 110) representing predominantly type F (18/20 strains) were mostly associated with human illnesses. Among predominant STs, ST 54 was associated with enteritis cases in foals and dogs and ST 58 associated with necrotic enteritis in poultry. Seventeen Indian strains were assigned to 13 STs. Genetic relatedness among strains of calves, dairy worker and associated environments indicate inter-host transfers and zoonotic spreads.
Collapse
Affiliation(s)
- Asha Kumari Verma
- Division of Veterinary Public Health and Epidemiology, Indian Council for Agricultural Research (ICAR)-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Mostafa Y Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743, Jena, Germany
| | - Angappan Madesh
- Division of Veterinary Public Health and Epidemiology, Indian Council for Agricultural Research (ICAR)-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Shailendri Gupta
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Athira Cheruplackal Karunakaran
- Division of Veterinary Public Health and Epidemiology, Indian Council for Agricultural Research (ICAR)-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Sophia Inbaraj
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Abhishek
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Viswas Konasagara Nagaleekar
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Pallab Chaudhuri
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Rajesh Kumar Agarwal
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Prasad Thomas
- Division of Bacteriology and Mycology, Indian Council for Agricultural Research (ICAR)- Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India.
| |
Collapse
|
17
|
Liu Y, Xiu L, Miao Z, Wang H. Occurrence and multilocus sequence typing of Clostridium perfringens isolated from retail duck products in Tai'an region, China. Anaerobe 2020; 62:102102. [DOI: 10.1016/j.anaerobe.2019.102102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/18/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
|
18
|
Park CS, Hwang JY, Cho GJ. The First Identification and Antibiogram of Clostridium perfringens Type C Isolated from Soil and The Feces of Dead Foals in South Korea. Animals (Basel) 2019; 9:E579. [PMID: 31434197 PMCID: PMC6719196 DOI: 10.3390/ani9080579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridium (C.) perfringens was isolated from 25 (11.1%) of 225 sampled horses and from 16 (35.56%) of 45 farms. All of the samples were negative for cpe, etx, itx, NetF genes and cpa gene were detected in 100% (25 of 25) of the samples that were positive for C. perfringens. cpb and cpb2 were detected in 40.0% (10 of 25) and 60.0% (15 of 25) of the samples that were positive for C. perfringens, respectively. Of the 25 C. perfringens isolates, 15 (60%) were type A and 10 (40%) were type C. Type C was observed on all the farms where the foals' deaths occurred. None of the isolates were positive for type B, type D, or type E. The MIC Evaluator strips antimicrobial susceptibility test showed meropenem (96%), ampicillin (92%), amoxicillin/clavulanic acid (84%), and tetracycline (8%) sensitivity.
Collapse
Affiliation(s)
- Chul Song Park
- Laboratory of Equine Medicine, College of Veterinary Medicine and Institute of Equine Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Ji Yong Hwang
- Laboratory of Equine Medicine, College of Veterinary Medicine and Institute of Equine Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Gil Jae Cho
- Laboratory of Equine Medicine, College of Veterinary Medicine and Institute of Equine Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
19
|
Matsuda A, Aung MS, Urushibara N, Kawaguchiya M, Sumi A, Nakamura M, Horino Y, Ito M, Habadera S, Kobayashi N. Prevalence and Genetic Diversity of Toxin Genes in Clinical Isolates of Clostridium perfringens: Coexistence of Alpha-Toxin Variant and Binary Enterotoxin Genes ( bec/ cpile). Toxins (Basel) 2019; 11:toxins11060326. [PMID: 31174364 PMCID: PMC6628447 DOI: 10.3390/toxins11060326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023] Open
Abstract
Clostridium perfringens (C. perfringens) is responsible for food-borne gastroenteritis and other infectious diseases, and toxins produced by this bacterium play a key role in pathogenesis. Although various toxins have been described for C. perfringens isolates from humans and animals, prevalence of individual toxins among clinical isolates has not yet been well explored. In the present study, a total of 798 C. perfringens clinical isolates were investigated for prevalence of eight toxin genes and their genetic diversity by PCR, nucleotide sequencing, and phylogenetic analysis. Besides the alpha-toxin gene (plc) present in all the isolates, the most common toxin gene was cpe (enterotoxin) (34.2%), followed by cpb2 (beta2 toxin) (1.4%), netB (NetB) (0.3%), and bec/cpile (binary enterotoxin BEC/CPILE) (0.1%), while beta-, epsilon-, and iota-toxin genes were not detected. Genetic analysis of toxin genes indicated a high level of conservation of plc, cpe, and netB. In contrast, cpb2 was revealed to be considerably divergent, containing at least two lineages. Alpha-toxin among 46 isolates was classified into ten sequence types, among which common types were distinct from those reported for avian isolates. A single isolate with bec/cpile harbored a plc variant containing an insertion of 834-bp sequence, suggesting its putative origin from chickens.
Collapse
Affiliation(s)
- Asami Matsuda
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | - Ayako Sumi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| | | | - Yuka Horino
- Sapporo Clinical Laboratory, Inc., Sapporo 060-0005, Japan.
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo 060-0005, Japan.
| | | | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan.
| |
Collapse
|
20
|
Diversity of CRISPR/Cas system in Clostridium perfringens. Mol Genet Genomics 2019; 294:1263-1275. [PMID: 31134321 DOI: 10.1007/s00438-019-01579-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/17/2019] [Indexed: 12/26/2022]
Abstract
Clostridium perfringens is an important pathogen of human and livestock infections, posing a threat to health. The horizontal gene transfer (HGT) of plasmids that carry toxin-related genes is involved in C. perfringens pathogenicity. The CRISPR/Cas system, which has been identified in a wide range of prokaryotes, provides acquired immunity against HGT. However, information about the CRISPR/Cas system in Clostridium perfringens is still limited. In this study, 111 C. perfringens strains with publicly available genomes were used to analyze the occurrence and diversity of CRISPR/Cas system and evaluate the potential of CRISPR-based genotyping in this multi-host pathogen. A total of 59 out of the 111 genomes harbored at least one confirmed CRISPR array. Four CRISPR/Cas system subtypes, including subtypes IB, IIA, IIC, and IIID systems, were identified in 32 strains. Subtype IB system was the most prevalent in this species, which was subdivided into four subgroups displaying subgroup specificity in terms of cas gene content, repeat sequence content, and PAM. We showed that the CRISPR spacer polymorphism can be used for evolutionary studies, and that it can provide discriminatory power for typing strains. Nevertheless, the application of this approach was largely limited to strains that contain the CRISPR/Cas system. Spacer origin analysis revealed that approximately one-fifth of spacers showed significant matches to plasmids and phages, thereby suggesting the implication of CRISPR/Cas systems in controlling HGT. Collectively, our results provide new insights into the diversity and evolution of CRISPR/Cas system in C. perfringens.
Collapse
|
21
|
Praveen Kumar N, Vinod Kumar N, Karthik A. Molecular detection and characterization of Clostridium perfringens toxin genes causing necrotic enteritis in broiler chickens. Trop Anim Health Prod 2019; 51:1559-1569. [PMID: 31076994 DOI: 10.1007/s11250-019-01847-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/13/2019] [Indexed: 11/26/2022]
Abstract
A total of 464 samples comprising of cloacal swabs from necrotic enteritis suspected live birds (191), intestinal scrapings from dead birds with symptoms of necrotic enteritis (91), and apparently healthy birds (182) were collected from selected districts of AP. The samples were subjected to multiplex PCR for simultaneous detection of α, β, and β2 toxin genes and uniplex PCR for the detection of NetB gene. Multiplex PCR screening of samples reveled α toxin gene positives from (cpa) 248/282 (87.94%) necrotic enteritis suspected and 40/182 (21.97%) apparently healthy samples. Among cpa positives 142/248 (57.25%) and 3/40 (7.5%) were positive for β2 toxin gene in necrotic enteritis suspected and apparently healthy birds respectively, indicating the involvement of C. perfringens type A, with minor pore forming toxin gene cpb2 in causing necrotic enteritis in poultry. None of the sample was positive for β toxin gene. The present research indicates C. perfringens type A along with β2 toxin gene was responsible for causing necrotic enteritis in broiler chickens in some parts of Andhra Pradesh in India. Phylogenetic relationship of amplified cpa and cpb2 amino acids sequences from present C. perfringens isolates were studied. The analysis reveals the sequence identity of cpb2 gene of the present isolates and variations at both nucleotide and amino acid level with the published sequences of cpb2 gene of C. perfringens isolates from different animal species of the USA, Iran, Netherlands, and Japan.
Collapse
Affiliation(s)
- N Praveen Kumar
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India.
| | - N Vinod Kumar
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India
| | - A Karthik
- Department of Veterinary Microbiology, College of Veterinary Science, SV Veterinary University, Tirupathi, Andhra Pradesh, India
| |
Collapse
|
22
|
Fahimeh Y, Peyman N, Gholamreza H, Gholamali K, Mohammad R, Jamshid R. Major and minor toxins of Clostridium perfringens isolated from healthy and diseased sheep. Small Rumin Res 2018. [DOI: 10.1016/j.smallrumres.2018.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Yang WY, Chou CH, Wang C. Characterization of toxin genes and quantitative analysis of netB in necrotic enteritis (NE)-producing and non-NE-producing Clostridium perfringens isolated from chickens. Anaerobe 2018; 54:115-120. [PMID: 30170048 DOI: 10.1016/j.anaerobe.2018.08.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Necrotic enteritis (NE) in chickens, a Clostridium perfringens infection, has re-emerged due to the removal of antibiotic growth promoters in feeds in recent years, thus contributing to significant economic losses for the industry. Toxins produced by C. perfringens in conjunction with predisposing factors are responsible for the onset and development of NE. Recently, several lines of evidence indicated the potential role of plasmid-encoded toxins in the virulence of NE, particularly necrotic enteritis B-like (NetB) toxin. However, the association of NetB, beta2 toxin (CPB2), and C. perfringens large cytotoxin (TpeL) in clinical NE isolates are not well-established. Therefore, we characterized the toxinotype and the presence of netB, cpb2, and tpeL genes in 15 NE-producing and 15 non-NE-producing C. perfringens isolates using conventional PCR and quantified netB among those isolates by quantitative PCR (qPCR). All isolates were characterized as toxinotype A and were negative for cpe, which is associated with human food poisoning. The netB was detected in 6.7% and 70% of NE-producing isolates by PCR and qPCR, respectively. In 15 non-NE-producing isolates, netB was not detected by conventional PCR, but was detected in 60% of isolates by qPCR. The presence of and the copy number of netB were not significantly different between NE- and non-NE-producing isolates (p >0.05). No difference was observed between NE- and non-NE-producing isolates in the presence of cpb2 or tpeL (p >0.05). These results suggest that the presence of netB, cpb2, and tpeL, as well as the copy number of netB in C. perfringens is not correlated with clinical NE. In addition, we suggest that qPCR, but not conventional PCR, be used to detect netB.
Collapse
Affiliation(s)
- Wen-Yuan Yang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, Mississippi State, USA
| | - Chung-Hsi Chou
- Zoonoses Research Center and School of Veterinary Medicine, National Taiwan University, Taipei City, Taiwan
| | - Chinling Wang
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi, Mississippi State, USA.
| |
Collapse
|